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It was recently pointed out in [1] that AdS6 solutions in IIB theory enjoy an extended symmetry structure 
and the consistent truncation to D = 4 internal space leads to a nonlinear sigma model with target 
SL(3, R)/S O (2, 1). We continue to study the purely bosonic D = 4 effective action, and elucidate how 
the addition of scalar potential term still allows Killing spinor equations in the absence of gauge fields. 
In particular, the potential turns out to be a single diagonal component of the coset representative. 
Furthermore, we perform a general analysis of the integrability conditions of Killing spinor equations 
and establish that the effective action can be in fact generalized to arbitrary sizes and signatures, e.g. 
with target SL(n, R)/S O (p, n − p) and the scalar potential expressible by a single diagonal component of 
the coset representative. We also comment on a similar construction and its generalizations of effective 
D = 5 purely bosonic non-linear sigma model action related to AdS6 in M-theory.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Ever since the AdS/CFT correspondence was proposed in [2], the 
supersymmetric AdS solutions of supergravity theory have been 
extensively studied as the gravity duals to the superconformal 
field theories formulated on the boundaries of AdS space. How-
ever, for the case of AdS6, which would be the gravity dual of 
five-dimensional SCFT, there is a relatively small number of solu-
tions known in the literature. The first one was found in massive 
type IIA supergravity by Brandhuber and Oz [3], which is a warped 
product of AdS6 space and a half of S4. Two other solutions 
were obtained by abelian/non-abelian T-dual transformations of 
the Brandhuber–Oz solution [4,5]. The systematic searches for AdS6
solutions also have been done. It was proved that the Brandhuber–
Oz solution is the unique one in massive IIA theory [6]. In type 
IIB supergravity, Apruzzi et al. studied the most general supersym-
metric conditions and obtained a set of BPS equations, which are 
coupled partial differential equations [7]. They also showed that 
AdS6 solution dose not exist in M-theory. In [1], we revisited the 
IIB solutions and studied D = 4 effective theory obtained by a di-
mensional reduction on AdS6 space to get more insight on the 
AdS6 solutions and their properties. We discovered that the un-
expected symmetry S L(3, R)/S O (2, 1) came out in a dimensional 
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reduction. In this note we continue to study the hidden symmetry 
structure of AdS6 solutions in type IIB supergravity theory.

We consider general AdS6 and the metric is written as follows,

ds2
10 = e2U L2 ds2 (AdS6) + e−6U ds2 (M4) . (1.1)

Here the warp factor U is a function on M4, and L is a book-
keeping parameter and sets the curvature radius scale of AdS6. 
We rescale the four-dimensional space by e−6U to obtain an Ein-
stein frame action in the dimensionally reduced theory. Among the 
fields of IIB theory the five-form flux F5 is set to be zero and the 
complexified three-form flux G will be dualized to two real scalars 
f and g in M4. In addition, there is axio-dilaton field C + ie−φ . 
After all there are five scalars on M4.

Since all the fields should be independent of coordinates of 
AdS6, we can dimensionally reduce the D = 10 equations down 
to D = 4 on M4. The equations are summarized by a non-linear 
sigma model of five scalar fields interacting with gravity. In [1], we 
pointed out that the target space is in fact coset S L(3, R)/S O (2, 1). 
More concretely, the Lagrangian is

L = √
g4

[
R − 24(∂U )2 − 1

2
(∂φ)2 − 1

2
e2φ(∂C)2

+ 1

2
e−12U−φ(∂ f )2 + 1

8
e−12U+φ(∂ g + 2C∂ f )2

− 30
2

e−8U
]
, (1.2)
L
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= √
g4

[
R − Pμi j Pμi j − 30

L2
e−8U

]
. (1.3)

Our notations and conventions for the coset construction can be 
found in the Appendix A. Note also the scalar potential, which 
originates from the non-vanishing curvature of the AdS6 space. 
This scalar potential depends on only one scalar field U and breaks 
the global symmetry S L(3, R) into a certain sub-algebra which is 
so-called A5,40 ∼= sl(2, R) �R

2 according to the classification in [8].
The scalar U is what we usually call “breathing-mode” in 

Kaluza–Klein reduction analysis. In general, the breathing mode 
resides in a massive multiplet and does not appear in the su-
persymmetric truncation. Our approach here is to cover all AdS6
solutions in a consistent way, so we keep U since it is a singlet of 
AdS6 isometry group.

We should emphasize that our four-dimensional theory above is 
not a supersymmetric theory on its own. Of course as it stands it 
is purely bosonic, but even if we include all fermionic fields which 
are singlets with respect to AdS6, the action cannot be made su-
persymmetric. One way of seeing it is that the number of scalar 
fields is odd, so they cannot parametrize a Kähler manifold. How-
ever the action is equipped with the Killing spinor equations which 
are inherited from the ten-dimensional supergravity transforma-
tion rules. Any solution of the equations from action (1.3) gives rise 
to an exact D = 10 solution, supersymmetric or otherwise. And as 
usual, if the solution admits a non-trivial solution to the associated 
Killing spinor equations, the uplifted D = 10 solution is supersym-
metric.

Superficially the action (1.3) is similar to the bosonic sector of 
gauged supergravity which can be obtained through Kaluza–Klein 
reduction on curved internal spaces. The scalar fields parametrize 
a coset, and the curvature L−2 plays a role of coupling constant 
for the scalar potential. But it is rather puzzling that there are no 
gauge fields here in (1.3). Usually in extended supergravity models 
there are a number of vector fields, which through the gauging 
process become non-abelian gauge fields and at the same time 
scalar potential terms are introduced to the action. Gauging pro-
cess induces new terms in the supersymmetry transformation rule, 
and also changes the integrability conditions which should be con-
sistent with the Einstein and matter field equations. We recall that, 
in gauged supergravity, a covariant derivative acting on the dilatino 
variation rule leads to gauge field equations as well as the scalar 
field equations.1 And in the gauge field equations, the derivative 
of a certain scalar potential term plays a role of composite current 
which source the gauge field. Naively, we expect to have a prob-
lem since with (1.3) we have scalar potential but no vector field. 
This line of thought motivated us to check the integrability condi-
tions of Killing spinor equations for (1.3) carefully. In that process, 
as a by-product we confirm that (1.3) can be in fact generalized to 
arbitrarily larger cosets with general signature, S L(n, R)/S O (p, q)

with p + q = n.
The main purpose of this paper is thus to clarify carefully 

the hidden symmetry structure and requirement of AdS6 solu-
tions of type IIB supergravity. We focus on the scalar potential 
of (1.3), and first rewrite the associated Killing spinor equations in 
a S L(3, R)/S O (2, 1)-covariant way. By examining the integrability 
conditions of the Killing spinor equations, we identify the covari-
ant form of the scalar potential and the unbroken symmetry of the 
theory. This study might shed new light on the understanding of 
the geometric structure of AdS6 solutions in IIB supergravity.

Based on this, we generalize this analysis to more general 
cosets and classify the four-dimensional theories admitting Killing 

1 A classic example of such a computation can be found e.g. in the appendix B of 
[9], for D = 7 maximal supergravity.
spinor equations. It enables us to investigate a class of non-
supersymmetric D = 4 gravity theory, coupled to a non-linear 
sigma model with a non-trivial scalar potential, using BPS equa-
tions.

We expect that the similar constructions might be possible in 
a similar setup, for example, for gravity solutions containing d + 1
dimensional AdS or Minkowski space. Then, the coset G/H may 
emerge as a symmetry of the solution space in dimensional re-
duction of the theory. From the view point of a lower dimensional 
theory, we would like to emphasize again that it is not included in 
gauged supergravity theory due to the presence of the breathing 
mode and the absence of the gauge fields. Even though the theory 
is purely bosonic, it is interesting that there is a set of associated 
Killing spinor equations which enjoy the coset symmetry and are 
compatible with the field equations. Hence, it is desirable to study 
the various examples to have a concrete understanding and this 
paper may serve as a starting point for further investigations.

This paper is organized as follows. In section 2, we study the 
hidden symmetry structure of IIB AdS6 solutions. Section 3 dis-
cusses the classification by the generalized Killing spinor equa-
tions. The technical details are relegated to the appendices. In Ap-
pendix D, we present a similar construction and analysis for AdS6
solutions in D = 11 supergravity.

2. Coset non-linear sigma model

2.1. Scalar potential

We start by illustrating the symmetry structure of the scalar 
potential of our theory, which was not manifest in the form of 
Lagrangian written as (1.3). The basic building block of the non-
linear sigma model is the coset representative V . Hence, our goal 
is to express the scalar potential in terms of V . We first rewrite the 
Killing spinor equations of our system (B.2) into a covariant form, 
which respect S L(3, R)/S O (2, 1). Then we study the integrability 
conditions of these Killing spinor equations. They yield the equa-
tions of motion and enable us to identify the scalar potential in 
terms of the coset representative.

With appropriate linear combinations and rescalings, which are 
explained in detail in the Appendix B, the Killing spinor equations 
can be re-phrased in a more covariant way. The first set of Killing 
spinor equations, which we call “gravitino variation”, can be writ-
ten as(

δψμ+
δψμ−

)
≡

(
Dμ Sγμ

Sγμ D̄μ

)(
ξ+
ξ−

)
, (2.1)

and the second set, which we call “dilatino variation”, can be writ-
ten as(

δλi+
δλi−

)
≡

(
Mij	̄

j Pμi jγ
μ	̄ j

Pμi jγ
μ	 j Mij	

j

)(
ξ+
ξ−

)
, (2.2)

where

Dμ = ∇μ + 1

4
Q μi j	

i j, D̄μ = ∇μ + 1

4
Q μi j	̄

i j,

	i = (τ 2, τ 1,−iτ 3), 	̄i = (τ 2, τ 1, iτ 3),

ξ± =
(

ξ1±
ξ2±

)
.

(2.3)

Here ∇μ is an ordinary covariant derivative and τ i are Pauli matri-
ces. We have two different representations of gamma matrices 	i

and 	̄i . A scalar S and a matrix Mij are

S = 3i
e−4U , Mij = 2i

e−4U diag(1,1,2). (2.4)

2L L
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Their presence is of course due to the non-trivial scalar poten-
tial in our theory, and we may regard them as an analogue of the 
T -tensor or its combinations in ordinary gauged supergravity the-
ories.

Now let us turn to the integrability conditions of the Killing 
spinor equations (2.1) and (2.2). We encounter two types of the 
integrability conditions. The first one is the gravitino-gravitino 
integrability condition (C.2) and the second one is the dilatino-
gravitino condition (C.4). To uncover the symmetry structure of the 
scalar potential, we examine the integrability conditions with gen-
eral, arbitrary S and Mij . The detailed calculation is given in the 
Appendix C. These integrability conditions give rise to the Einstein 
equation and the scalar equation of motion as

Rμν − 1

2
R gμν −

(
Pμi j P i j

ν − 1

2
gμν Pρi j Pρi j

)

+ gμν

(
−12S2 + 1

2
Mij M

ij
)

= 0, (2.5)

Dμ Pμ
i j − 4S Mij − 2S (K M K )i j + 1

2
MijTr (M Kη) = 0.

From the Einstein equation, one can easily read off the scalar po-
tential as

V = −24S2 + Mij M
ij. (2.6)

Here S and Mij are solutions to the following equations

∂μS + 1

4
Mij P i j

μ = 0,

∂μMij + (
Q μηM − MηQ μ

)
i j + 1

2
Tr

(
PμKη

)
Mij

+ 2S Pμi j − 2S
(

K PμK
)

i j = 0,

S Q μ − K S Q μK + 1

4

(
PμηM − MηPμ

)
− 1

4
K

(
PμηM − MηPμ

)
K = 0,

PμηM − MηPμ + K
(

PμηM − MηPμ

)
K = 0,

M K − K M = 0. (2.7)

These five equations appear in the integrability conditions (C.2)
and (C.4) and are required for compatibility with the field equa-
tions. We have found a solution to (2.7)

S = 3

4

α

V33
, Mij = α

V33
diag(1,1,2). (2.8)

Here α is an integration constant and Vii is an (i, i)-component of 
the coset representative V . The scalar potential V at hand turns 
out to be related to (3, 3)-component of V through (2.6) and (2.8).

Now we rephrase the main result of this subsection. Let us sup-
pose that we are given the Killing spinor equations (2.1) and (2.2), 
which can be written in terms of the S L(3, R)/S O (2, 1) coset rep-
resentative V . A scalar S and a matrix Mij are given by (2.8), 
which implies that the global S L(3, R) symmetry is broken to 
sl(2, R) �R

2 due to a non-trivial scalar potential as we will show 
in the next subsection. Then, we can construct a four-dimensional 
theory admitted by the Killing spinor equations as

L = √
g4

(
R − Pμi j Pμi j −

(
Mij M

ij − 24S2
))

. (2.9)

If we substitute the specific solution (2.4), the Lagrangian (2.9) re-
duce to our starting point Lagrangian (1.3), whose equations of 
motion is (2.5).
2.2. Group action

We have shown that the scalar potential depends only on the 
(3, 3)-component of the coset representative. As a consequence, 
the global S L(3, R) symmetry of the target space is broken to a 
non-trivial sub-algebra, under which V33 is invariant. In this sec-
tion, we directly apply the group transformations on the coset rep-
resentative and elucidate unbroken symmetry which is preserved 
by the whole theory.

The coset representative V transforms as

V −→ K V G, (2.10)

under global G and local K transformations. Infinitesimally, it trans-
forms as

V −→ V + α
(
�I

)
kV + V g (2.11)

where g ’s and k’s are generators of G and K, respectively. α’s are 
compensators and functions of �I , which are the coordinates of 
coset space G/K.

Now we study group actions on an S L(3, R)/S O (2, 1) coset 
representative V in the Borel gauge (A.1). Under the action of 
Cartan generators h1, h2 and positive root generators e1, e2, e3
of S L(3, R), the coset representative remains in the Borel gauge. 
Hence there is no need for compensators. On the other hand, when 
we transform V with negative root generators f1, f2, f3, we need 
the non-trivial compensators to restore the Borel gauge. The trans-
formations with appropriate compensators are written explicitly in 
the table below

δV
f1 e−φ k1 V + V f1

f2 −e6U+φ/2 k2 V + V f2

f3
(
e−φ f k1 + e6U+φ/2 C k2 − e6U−φ/2 k3

)
V + V f3

where k1, k2, k3 are S O (2, 1) generators. The scalar kinetic terms 
are invariant under the action of all the generators of S L(3, R). 
However, the scalar potential (2.6), i.e. V33 is invariant under only 
some of the generators. Explicit computations show that our the-
ory is invariant under the action of generators h1, e1, e2, e3 and 
f1 only.

Now let us focus on these five generators. Under the action of 
e1, h1, f1, e2, e3, each scalar field transforms as

δeφ δC δ f δg
e1 1 −2 f
h1

√
2 eφ −√

2 C 1/
√

2 f −1/
√

2 g
f1 2 C eφ e−2φ − C2 −1/2 g
e2 1
e3 2

The first three transformations under the action of the generators 
e1, h1 and f1 exactly correspond to S L(2, R) transformations of 
type IIB supergravity, which transform2

τ → pτ + q

rτ + s
,

(
C2
B2

)
→

(
p q
r s

)(
C2
B2

)
, (2.12)

where τ = C + i e−φ and p s −q r = 1, with the transformation ma-
trices

(
1 a
0 1

)
,

⎛
⎜⎝ 1 − a√

2
0

0 1 + a√
2

⎞
⎟⎠ ,

(
1 0
a 1

)
, (2.13)

2 The definition of 2-from potential C2 and B2 can be found in (A.6).
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respectively. Here a is a transformation parameter. The last two 
transformations are constant shift in f and g .

This result is consistent to the previous analysis. In [1], we 
showed that the scalar potential is invariant under the action of 
five Killing vectors K 1, K 3, K 4, K 6 and K 8, which generate a non-
trivial algebra A5,40 ∼= sl(2, R) �R

2. Using the following relations

δMV = α i
M

(
�I

)
ki V + V gM ,

= K MV (2.14)

where K M , M = 1, · · · , 8 are the Killing vectors (E.1) in [1], we can 
identify the eight Killing vectors with generators of SL(3, R) as

K 1 K 2 K 3 K 4 K 5 K 6 K 7 K 8

h1 −h2 − 1
2 e1 −2 f1 2 f3

1
2 e3 f2 e2

More precisely, the five Killing vectors (K 1, K 3, K 4, K 6, K 8) cor-
respond to the generators (h1, − 1

2 e1, −2 f1, 12 e3, e2). Therefore, it 
is the S L(2, R) symmetry of type IIB supergravity and the trivial 
gauge transformations of the dualized scalars that account for the 
appearance of the non-trivial algebra A5,40 in [1].

2.3. Examples

We have shown how to make the symmetry S L(3, R)/S O (2, 1)

manifest in AdS6 solutions of type IIB supergravity. In this section, 
we identify the S L(3, R)/S O (2, 1) symmetry of the known solu-
tions.

The first AdS6 solution in type IIB supergravity was obtained 
by taking abelian T-dual transformation of the Brandhuber and Oz 
solution [4,10]. The solution is given by (see eq. (A.1) in [10])

ds2 = 1

4
W 2 L2

(
9 ds2(AdS6) + 4 dθ2

+ sin2 θ
(

dφ2
1 + sin2 φ1 dφ2

2

)
+ 16

W 4 L6 sin2 θ
dφ2

3

)
,

B = − cosφ1 dφ2 ∧ dφ3,

F3 = 5

8
L4 (m cos θ)1/3 sin3 θ sinφ1 dθ ∧ dφ1 ∧ dφ2,

F1 = m dφ3,

eφ = 4

3 L2 (m cos θ)2/3 sin θ
, (2.15)

where W = (m cos θ)−1/6 and m is the Romans’ mass in the origi-
nal massive IIA theory. We rewrite the metric in the Einstein frame

ds2
E =

√
3

8
L3 (sin θ)1/2

(
9 ds2(AdS6) + 4 dθ2

+ sin2 θ
(

dφ2
1 + sin2 φ1 dφ2

2

)
+ 16

W 4 L6 sin2 θ
dφ2

3

)
, (2.16)

and identify the warp factor as

e2U = 9
√

3

8
L (sin θ)1/2. (2.17)

The axion C and the dilaton eφ are given by solution where F1 =
dC . We can easily obtain the dualized scalars f and g by using 
(A.6). By substituting solutions, i.e. these five scalar fields U , φ, C , 
f and g into the coset representative (A.1), we obtain
V =

⎛
⎜⎜⎝

16 csc θ

27 L2 (m cos θ)1/3
16m φ3 csc θ

27 L2 (m cos θ)1/3
27

128 L2

⎛
⎝27 L4 cot θ − 80m φ 2

3 csc θ

(m cos θ)1/3

⎞
⎠

0
4

9
(m cos θ)1/3 − 405

16
φ3 (m cos θ)1/3

0 0
243

64
L2 sin θ

⎞
⎟⎟⎠

(2.18)

This coset representative shows the S L(3, R)/S O (2, 1) symmetry 
manifestly and have all the informations to reconstruct the abelian 
T-dual AdS6 solution (2.15). Here we record the explicit expression 
for Pμ ,

Pθ =

⎛
⎜⎜⎜⎜⎝

cot θ − 1

3
tan θ 0 − 1

sin θ

0
1

3
tan θ 0

− 1

sin θ
0 cot θ

⎞
⎟⎟⎟⎟⎠ ,

Pφ3 = −2 m (m cos θ)−2/3

3 L2 sin θ

⎛
⎝ 0 1 0

1 0 5 cos θ

0 5 cos θ 0

⎞
⎠ .

(2.19)

The second AdS6 solution in type IIB supergravity is a non-
abelian T-dual solution obtained by [5]. Similarly, we can easily 
read off the five scalar fields and identify the coset representative. 
However, the explicit expression is not so illuminating. We do not 
present it here.

3. Generalization to S L(n, R)/S O (p, q)

In section 2.1, we have shown that the Killing spinor equa-
tions (2.1) and (2.2) consist of two parts. The diagonal com-
ponents of the gravitino variation equation and the off-diagonal 
components of the dilatino variation equation enjoy the coset 
S L(3, R)/S O (2, 1) symmetry. On the other hand, the remaining
part of the Killing spinor equations show that the symmetry is 
broken to sl(2, R) �R

2. Based on this symmetry structure, we have 
constructed a four-dimensional theory (2.9).

In this section, we formally generalize this construction to re-
spect the coset symmetry S L(n, R)/S O (p, q) with arbitrary n and 
signature. Since our construction is covariant to the coset sym-
metry, the form of the main equations is basically same. First, 
the construction of the S L(n, R)/S O (p, q) coset representative V , 
which is now an n × n matrix, is very straightforward. We also de-
fine the invariant metric of S O (p, q) as

η = diag(1, · · · ,1︸ ︷︷ ︸
p

,−1 · · · ,−1︸ ︷︷ ︸
q

), (3.1)

where p + q = n, and introduce a matrix K

K i
j = diag(1, · · · ,1︸ ︷︷ ︸

n−1

,−1), (3.2)

such that 	i = K i
j 	̄

j where i = 1, · · · , n. Then, we have the gen-
eralized version of the Killing spinor equations (2.1) and (2.2). 
Examining the integrability conditions give rise to the generalized 
equations of motion (2.5). Finally, we find solutions to eq. (2.7), 
which are now written in terms of n × n matrices, as

S = n

4

α

Vnn
, Mij = α

Vnn
M̃ k

i ηkj, (3.3)

where

M̃ j
i = diag(1, · · · ,1︸ ︷︷ ︸,−(n − 1)). (3.4)
n−1
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As a result, we can obtain new four-dimensional theories by plug-
ging the solutions (3.3) into the Lagrangian (2.9). This generaliza-
tion implies that we can classify and construct the theories admit-
ting the generalized Killing spinor equations (2.1) and (2.2). More 
precisely, we can construct four-dimensional gravity theory cou-
pled to a non-linear sigma model of (n2 + n − 2)/2 scalar fields 
with a certain class of scalar potential. The non-linear sigma model 
parametrize the coset space S L(n, R)/S O (p, q) and the scalar po-
tential is determined by (n, n)-component of the coset representa-
tive V . The S L(n, R) global symmetry is broken to a sub-algebra 
sl(n − 1, R) �R

n−1 which preserve this component.
Let us consider the simplest example, which is S L(2, R)/

S O (1, 1). The Lagrangian can be written as follows,

L =√
g4

[
R − 1

2
(∂ A)2 + 1

2
e−2A(∂ B)2 + 4α2 e−A

]
. (3.5)

At first sight, this Lagrangian looks very different from (1.2). It has 
only two scalar fields. Furthermore, this theory does not have any 
higher dimensional origin, in contrast to (1.2). However, these two 
theories can be classified into one category. They share the key 
property that they can be constructed by the Killing spinor equa-
tions of the same type.

To summarize, if we are given a coset representative V , 
which respect S L(n, R)/S O (p, q) symmetry, we can compute 
Pμi j, Q μi j, S and Mij by (A.3) and (3.3). Then, we can easily 
write down the generalized Killing spinor equations (2.1), (2.2)
and construct the compatible four-dimensional theories (2.9). The 
important feature of our theories is that they have Killing spinor 
equations although the theory is not a supergravity theory itself.3

With these Killing spinor equations, one may study a BPS sector of 
theory and search for the bosonic BPS equations.

4. Discussions

In this note we have studied the appearance of S L(3, R)/

S O (2, 1) in AdS6 solutions of type IIB supergravity [1]. We man-
aged to rewrite the associated Killing spinor equations also in a 
form compatible with the symmetry of the coset. Studying their 
integrability conditions enabled us to understand the scalar poten-
tial in terms of the (3, 3)-component of the coset representative V . 
As a consequence, the theory is invariant under the action of the 
some generators, which leave the (3, 3)-component of the coset 
representative fixed. We have shown that they satisfy a non-trivial 
algebra sl(2, R) � R

2, which exactly corresponds to the S L(2, R)

symmetry of type IIB supergravity and trivial gauge transforma-
tions of the dualized scalar fields, respectively.

Based on these analyses, we have rewritten the two known IIB 
AdS6 solutions according to the symmetry structure. Given the so-
lutions which respect the coset symmetry, it is well known that a 
new solution may be generated by the action of the group trans-
formations on the coset representative of a known solution (see, 
for example, [13,14]). Original motivation of this work was in fact 
to find new solutions, employing such “solution generating tech-
nique”. But unfortunately we were not able to do it, since the 
scalar potential breaks S L(3, R) to S L(2, R), which is just the fa-
miliar S-duality of the type IIB supergravity theory.

We also have constructed a class of four-dimensional gravity 
theories coupled to scalar fields. Their kinetic terms are described 
by the coset S L(n, R)/S O (p, n − p) non-linear sigma model and 
scalar potential is determined by (n, n)-component of the coset 
representative. These non-supersymmetric theories have nice prop-
erties that they are endowed with the Killing spinor equations.

3 The non-supersymmetric theories admitted by the Killing spinor equations were 
referred to as “fake supergravity” [11] and “pseudo-supersymmetry” [12].
As opposed to ordinary gauged supergravity theories, our model 
does not have any gauge fields to promote the global symmetry to 
local ones. However, by introducing the analogues of T -tensor in 
ordinary gauged supergravity, the global symmetry is broken to its 
sub-algebra and the scalar potential can be generated. More specif-
ically, we have introduced a scalar S and a matrix Mij , which 
can be determined in terms of the coset representative as (3.3), 
such that the scalar potential becomes (2.6). In the Appendix D, 
a similar analysis was done via a dimensional reduction of D = 11
supergravity on AdS6. In that case, two vectors Si and Ti are intro-
duced instead. With a specific solution (D.20), the scalar potential 
becomes (D.17). In each case, the analogues of T -tensor and the 
explicit expressions of the scalar potentials are different. However, 
their dependences on the coset representative and the unbroken 
symmetries are same. In other words, the scalar potentials can 
be completely determined by using only one-component of the 
diagonal elements of the coset representatives. Hence, the global 
symmetry S L(n, R) is broken to sl(n − 1, R) � R

n−1 algebra in 
both cases. One may ask whether this choice of a sub-algebra is 
unique or not. At present, we do not fully understand the mecha-
nism of the global symmetry breaking beyond the examples which 
we have presented in this paper. For this reason, it will be in-
teresting to examine all the possible subgroups which generate 
consistent theories with the non-trivial scalar potential. We hope 
to study this process in other examples and find a general, system-
atic method in a near future.
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Appendix A. S L(3, R)/S O (2, 1) coset representative

The coset representative in the Borel gauge is obtained by ex-
ponentiating the Cartan generators and the positive root genera-
tors. The explicit form of S L(3, R)/S O (2, 1) coset representative in 
terms of the five scalar fields is

V = e
1√
2

φ h1 e−2
√

6 U h2 eC e1 e f e2 e
1
2 g e3 ,

=
⎛
⎝ e−2U+φ/2 e−2U+φ/2C 1

2 e−2U+φ/2 (g + 2C f )
0 e−2U−φ/2 e−2U−φ/2 f
0 0 e4U

⎞
⎠ .

(A.1)

Here h1, h2 are Cartan generators and ei ’s are positive root gen-
erators of S L(3, R). In addition, three negative root generators are 
f i = eT

i . The explicit form of the generators are given by eq. (E.2) 
in [1]. The generators of S O (2, 1) are defined by

k1 = e1 − f1, k2 = e2 + f2, k3 = e3 + f3. (A.2)

We introduce a Lie algebra-valued one-form as

V m
i ∂μ(V−1) k

m ηkj = Pμ(i j) + Q μ[i j]. (A.3)

Here Pμi j is an orthogonal complement of so(2, 1) in sl(3, R) and 
Q μi j behaves as a composite S O (2, 1) gauge field

Dμ Pνi j = ∇μ Pνi j + [Q μ, Pν ]i j . (A.4)

The definition of Pμ and Q μ (A.3) give the following integrability 
relations
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D [μ Pν] = 0,

∇[μ Q ν] + P [μ Pν] + Q [μ Q ν] = 0. (A.5)

The two real scalars g and f can be obtained by dualizing the 
complex three-form flux G .4 Here we also write down the con-
ventions for real three-form fluxes and two-form potentials. Their 
relations are useful when we study the S L(2, R) symmetry of type 
IIB supergravity in 2.2 and the abelian T-dual AdS6 solution in 2.3.

∗ReG = 1

2
e−12U+φ/2(dg + 2C df ) = e−φ/2 ∗ H3

= −e−φ/2 ∗ dB2,

∗ImG = e−12U−φ/2df = −eφ/2 ∗ F3

= eφ/2 (C ∗ dB2 − ∗dC2) .

(A.6)

Appendix B. Killing spinor equations

In this section, we reorganize the four-dimensional Killing 
spinor equations (2.2)–(2.7) in [1] into a covariant form with 
respect to S L(3, R)/S O (2, 1) symmetry. By rescaling the four di-
mensional metric and spinor ξ as

gmn −→ e−6 U gmn, ξ −→ e−3/2 U ξ, (B.1)

the Killing spinor equations in terms of five scalar fields become5

−2δλ̃± ≡ (−∂μφ − ieφ∂μC
)
γ μξ2∓

+
(

1

4
e−6U+φ/2(∂μg + 2C∂μ f )

+ i

2
e−6U−φ/2∂μ f

)
γ μγ5ξ1∓,

−2δλ̂± ≡ (−∂μφ + ieφ∂μC
)
γ μξ1∓

+
(

1

4
e−6U+φ/2(∂μg + 2C∂μ f )

− i

2
e−6U−φ/2∂μ f

)
γ μγ5ξ2∓,

4 e−3U δχ̃± ≡ 4i

L
e−4U ξ1± + 4∂μUγ μξ1∓

+
(

1

4
e−6U+φ/2(∂μg + 2C∂μ f )

+ i

2
e−6U−φ/2∂μ f

)
γ μγ5ξ2∓,

4 e−3U δχ̂± ≡ 4i

L
e−4U ξ2± + 4∂μUγ μξ2∓

+
(

1

4
e−6U+φ/2(∂μg + 2C∂μ f )

− i

2
e−6U−φ/2∂μ f

)
γ μγ5ξ1∓,

δψ̃μ± ≡ ∇μξ1± − 3

2
∂νUγμγ νξ1± + i

4
eφ∂μCξ1±

− 3

8

(
1

4
e−6U+φ/2(∂ν g + 2C∂ν f )

4 Hodge dual is taken with respect to the rescaled four-dimensional space.
5 We call Killing spinor equations (2.2)–(2.7) in [1] as δψ̃μ± , δψ̂μ± , δχ̃∓ , δχ̂∓ , 

δλ̃∓ , δλ̂∓ .
+ i

2
e−6U−φ/2∂ν f

)
γμγ νγ5ξ2±

+ 1

2

(
1

4
e−6U+φ/2(∂μg + 2C∂μ f )

+ i

2
e−6U−φ/2∂μ f

)
γ5ξ2±,

δψ̂μ± ≡ ∇μξ2± − 3

2
∂νUγμγ νξ2± − i

4
eφ∂μCξ2±

− 3

8

(
1

4
e−6U+φ/2(∂ν g + 2C∂ν f )

− i

2
e−6U−φ/2∂ν f

)
γμγ νγ5ξ1±

+ 1

2

(
1

4
e−6U+φ/2(∂μg + 2C∂μ f )

− i

2
e−6U−φ/2∂μ f

)
γ5ξ1±. (B.2)

The scalar derivative terms in eq. (B.2) can be replaced with the 
components of Pμ and Q μ . Then, we define δλi±, δψμ± with the 
following combinations,

δλ1± ≡ τ 2
[
−

(
δλ̂±
δλ̃±

)
+ 2 e−3U

(
δχ̃±
δχ̂±

)]
,

δλ2± ≡ τ 1
[ (

δλ̂±
δλ̃±

)
+ 2 e−3U

(
δχ̃±
δχ̂±

)]
, (B.3)

and

δψμ± ≡
(

δψ̃μ±
δψ̂μ±

)
+ 3

2
γμe−3U

(
δχ̃∓
δχ̂∓

)
, (B.4)

where we devised the form of δλi± to satisfy the condition 
	̄iδλi+ = 	iδλi− = 0. Now we can write down the Killing spinor 
equations in a covariant form as (2.1) and (2.2).

Appendix C. Integrability conditions

We study the integrability conditions of Killing spinor equations 
(2.1) and (2.2) with general S and Mij . Let us denote Dμ as

Dμ ≡
(

Dμ Sγμ

Sγμ D̄μ

)
. (C.1)

We study the gravitino-gravitino integrability condition and com-
pute γ νρ

μ

[
Dν,Dρ

]
. From the first row, we have

− 1

2
Mi

j 	̄
j γμ δλi+ + 1

2
P i

ν j γ
ν 	 j γμ δλi−

+
(

Rμν − 1

2
Rgμν −

(
Pμi j P i j

ν − 1

2
gμν Pρi j Pρi j

)

+ gμν

(
−12S2 + 1

2
Mij M

ij
))

γ νξ+

− 4

(
∂ν S + 1

4
Mij P i j

ν

)
γ ν

μξ−

−
((

S Q νi j + 1

2
(PνηM)i j

)

− K l
i

(
S Q νlk + 1

2
(PνηM)lk

)
K k

j

)
	i jγ ν

μξ−

− 1

2

((
PμηM

)
i j + (

K PμηM K
)

i j

)
	i jξ−, (C.2)
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where we define K

K i
j = diag(1,1,−1), 6 (C.3)

such that 	i = K i
j 	̄

j . The first line vanishes if we impose the 
Killing spinor equations, i.e. δλi± = 0. The second line yields the 
Einstein equation. To cancel the third, the fourth and the fifth lines, 
we have three equations which S and Mij should satisfy.

The dilatino-gravitino integrability condition is

γ μDμ δλi−
= Pμi jγ

νγ μ	 jδψν+ + Mijγ
ν	 jδψν− + 2S K j

i δλ j+

− 1

2
Mij	

j	kδλk+ (C.4)

+
(

Dμ Pμ
i j − 4S Mij − 2S (K M K )i j

+ 1

2
MijTr (M Kη)

)
	 jξ+

+ Mij (M K )kl

(
η j[k	l] + 1

2
	 jkl

)
ξ+

+
(

∂μMij + (
Q μηM − MηQ μ

)
i j + 1

2
Tr

(
PμKη

)
Mij

+ 2S Pμi j − 2S
(

K PμK
)

i j

)
γ μ	 jξ−,

where we used(
Q μ − K Q μK + 2PμK

)
[i j] = 0. (C.5)

Similarly, the first line vanishes by the Killing spinor equations 
δψμ± = δλμ± = 0. The second line gives the scalar equations of 
motion. We have two equations for S and Mij , which eliminate 
the third and the fourth lines.

Appendix D. AdS6 in M-theory

In [7], the authors showed that supersymmetric AdS6 × M5 so-
lutions do not exist in D = 11 supergravity. However, regardless of 
the existence of the solution, the hidden symmetry structure can 
be also found in studying AdS6 solutions in M-theory. The analysis 
is exactly parallel to the IIB AdS6 case. We take a D = 11 metric as 
a warped product of AdS6 space and a five-dimensional space as

ds2
11 = e2U ds2

AdS6
+ e−4U ds2

5. (D.1)

Here we rescale a five-dimensional metric for later convenience. 
The four-form flux G can be dualized to a real scalar f 7

∗5G = −6 e−12U df . (D.2)

By dimensional reduction on AdS6 space, we obtain a five-
dimensional effective Lagrangian as

L = √
g5

(
R − 18 (∂ U )2 + 18 e−12U (∂ f )2 − 30 e−6U

)
. (D.3)

In two-dimensional target space, we have found three Killing vec-
tors

6 K is independent of the choice of the metric signature.
7 Hodge dual is taken with respect to the rescaled five-dimensional metric.
K 1 =
√

2

6

(
∂U + 6 f ∂ f

)
,

K 2 = f ∂U +
(

1

12
e12U + 3 f 2

)
∂ f ,

K 3 = −1

3
∂ f . (D.4)

These Killing vectors generate sl(2, R) algebra and correspond to 
a Cartan generator h, a positive root generator e1 and a nega-
tive root generator f1, respectively. The coset representative in the 
Borel gauge is constructed by exponentiating a Cartan and a posi-
tive root generator as

V = e−3
√

2 U he6 f e1 . (D.5)

This target space parametrize the coset S L(2, R)/S O (1, 1).
The non-trivial scalar potential breaks the global S L(2, R) sym-

metry. The Killing spinor equations are given by eq. (B.7) in [7]. 
With rescaling Dirac spinor η as

η −→ e−U η (D.6)

and the following combinations of the Killing spinor equations8

δψμ ≡
(

δψ̃μ+ + e−2U γμ δχ̃−
δψ̃μ− − e−2U γμ δχ̃+

)
,

δχ ≡ i 6 e−2U
(

δχ̃+
δχ̃−

)
,

(D.7)

the Killing spinor equations can be written covariantly

δψμ =
(

Dμ + Si 	
i γμ

)
η,

δχi =
(

Pμi j γ
μ 	 j + T j 	

j 	i

)
η,

(D.8)

where

Dμ = ∇μ + 1

4
Q μi j 	

i j, η =
(

η+
η−

)
,

	i =
(
τ 2,−i τ 1

)
.

(D.9)

Here two vectors Si and Ti are introduced as

Si = i e−3U (1, 0) , Ti = i 3 e−3U (1, 0) . (D.10)

The integrability conditions are examined with the general vec-
tors Si and Ti . The gravitino-gravitino integrability condition is

γ
νρ

μ

[
Dν,Dρ

]
η

= 1

2

(
P i

ν j γ
ν 	 j − T j 	

i 	 j
)
γμ δχi

+
(

Rμν − 1

2
R gμν −

(
Pμi j P i j

ν − 1

2
gμν Pρi j Pρi j

)

+ gμν

(
Ti T i − 24 Si Si

))
γ ν η

− 6

(
∂ν Si + Q j

νi S j + 1

3
P j

νi T j

)
γ ν

μ 	i η, (D.11)

where Dμ ≡ Dμ + Si 	
i γμ . The gravitino-dilatino integrability con-

dition is

8 We call the Killing spinor equations (B.7) in [7] as δχ̃∓ and δψ̃μ± .
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γ μ Dμ δχi

= Pνi j γ
μ γ ν 	 j δψμ + T j 	

j 	i γ
μ δψμ

+ 3	i S j δχ j − 3	 j S j δχi

+
(

Dμ Pμ
i j + 5 Tk Sk ηi j − 5 Ti S j − 5 T j Si

)
	 j η

− T j Sk 	i jk +
(
∂μ Ti + Q j

μi T j + 3 P j
μi S j

)
γ μ η

+
(
∂μ T j + Q k

μ j Tk + 3 P k
μ j Sk

)
	

j
i γ

μ η. (D.12)

In both integrability conditions, the first lines vanish by Killing 
spinor equations δψμ = δχi = 0. The second lines give the Einstein 
equation and the scalar equations of motion, respectively. Finally 
the rest give the equations for Si and Ti , which should be satisfied 
to yield conventional integrability conditions. We find a solution to 
these equations as

Ti = 3Si = (t,0) , t = α V11, (D.13)

where α is an integration constant.
As in the case of AdS6 in IIB supergravity, we generalize this 

construction to larger coset space S L(n, R)/S O (p, q). First, we have 
to modify the dilatino variation (D.8) as

δχi =
(

Pμi j γ
μ 	 j + T j 	

j 	i + n − 2

n
T j 	i 	

j
)

η, (D.14)

to satisfy 	i δχi = 0 condition. Here i = 1, · · · , n and Ti is a 
n-component vector. After a tedious calculation, the gravitino-
gravitino integrability condition reduces to

γ
νρ

μ

[
Dν,Dρ

]
η

= (r.h.s of (D.11)) − n − 2

2n
T j 	

j 	iγμ δχi

− gμν
(n − 2)2

2n
Ti T i γ ν η. (D.15)

There are two additional contributions to (D.11). The first term 
vanishes due to Killing spinor equations. The second term give the 
extra contribution to the scalar potential in the Einstein equation. 
As a result, we have the Einstein equation

Rμν − 1

2
R gμν −

(
Pμi j P i j

ν − 1

2
gμν Pρi j Pρi j

)

+ gμν

(
n

2
Ti T i − (n − 2)2

2n
Ti T i − 24 Si Si

)
= 0, (D.16)

where the scalar potential is

V = n Ti T i − (n − 2)2

n
Ti T i − 48 Si Si . (D.17)

The gravitino-dilatino integrability condition is more involved.

γ μ Dμ δχi

= (r.h.s of (D.12))

+ n − 2

n

{
γ μ T j 	i 	

j δψμ − 3	i S j δχ j

+
(
∂μ T j + Q k

μ j Tk + 3P k
μ j Sk

)
γ μ 	i 	

j η
+ 4 T j Sk 	i jk +
(

4 Ti S j + 2 T j Si − 8 Tk Sk ηi j

)
	 j η

}

+ 3

(
n − 2

n

)2 {
− T j Sk 	i jk

+
(
−Ti S j + T j Si + Tk Sk ηi j

)
	 j η

}
. (D.18)

Similarly, the only non-trivial contribution appears in the scalar 
equations of motion as

Dμ Pμ
i j + 5 Tk Sk ηi j − 5 Ti S j − 5 T j Si

+ n − 2

n

(
4 Ti S j + 2 T j Si − 8 Tk Sk ηi j

)

+ 3

(
n − 2

n

)2 (
−Ti S j + T j Si + Tk Sk ηi j

)
= 0. (D.19)

Even though we have examined the integrability conditions with 
the modified dilatino variation, the equations for Si and Ti , which 
should be satisfied and eliminated in the integrability conditions, 
are not changed except they are now n-component equations. They 
are easily solved by

Ti = 3Si = (t,0, · · · ,0) , t = α V11, (D.20)

which is the most simple generalization of (D.13). The scalar po-
tential is determined by (1, 1)-component of the coset representa-
tive V .
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