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Abstract
Solid cancers develop within a supportive microenvironment that promotes tumor formation and growth through the
elaboration ofmitogens and chemokines.Within these tumors,monocytes (macrophages andmicroglia) represent rich
sources of these stromal factors. Leveraging a genetically engineered mousemodel of neurofibromatosis type 1 (NF1)
low-gradebrain tumor (optic glioma), we have previously demonstrated thatmicroglia are essential for glioma formation
andmaintenance. To identify potential tumor-associatedmicroglial factors that support gliomagrowth (gliomagens),we
initiated a comprehensive large-scale discovery effort using optimized RNA-sequencing methods focused specifically
on glioma-associated microglia. Candidate microglial gliomagens were prioritized to identify potential secreted or
membrane-bound proteins, which were next validated by quantitative real-time polymerase chain reaction as well as by
RNA fluorescence in situ hybridization following minocycline-mediated microglial inactivation in vivo. Using these
selection criteria, chemokine (C-C motif) ligand 5 (Ccl5) was identified as a chemokine highly expressed in genetically
engineered Nf1 mouse optic gliomas relative to nonneoplastic optic nerves. As a candidate gliomagen, recombinant
Ccl5 increased Nf1-deficient optic nerve astrocyte growth in vitro. Importantly, consistent with its critical role in
maintaining tumor growth, treatment with Ccl5 neutralizing antibodies reduced Nf1 mouse optic glioma growth and
improved retinal dysfunction in vivo. Collectively, these findings establish Ccl5 as an important microglial growth factor
for low-grade glioma maintenance relevant to the development of future stroma-targeted brain tumor therapies.
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Introduction
Studies in various experimental model systems have demonstrated
that cancers develop within complex tissue environments that
dramatically influence tumor cell growth, transformation, and
metastasis. Within the microenvironment of most solid tumors are
a variety of nonneoplastic cell types, including fibroblasts, immune
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system cells, and endothelial cells. Each of these stromal cell types has
the capacity to produce growth/survival factors, chemokines,
extracellular matrix, and angiogenic molecules that can change the
local milieu in which neoplastic cells grow and infiltrate. Although the
importance of the cancer microenvironment was initially explored in
non–nervous system tumors [1], it is now clearly appreciated to be a
fundamental determinant of brain cancer biology. Similar to cancers
in other organs, the brain tumor microenvironment contains
endothelial cells and monocytes (macrophages and microglia). As
such, pioneering studies by Judah Folkman and colleagues revealed a
critical role for endothelial cells in the tumor milieu [2], leading to
brain tumor therapies that focus on inhibiting vascular endothelial
growth factor activity [3,4].
In addition to endothelial cells, brain tumor macrophages and

microglia represent other logical targets for stroma-directed therapies.
Analyses of human gliomas have revealed that 30% to 50% of the
cells in these central nervous system tumors are microglia or
macrophages [5–8], where the monocyte content has been associated
with increasing glioma malignancy grade [9]. Moreover, numerous
studies have revealed critical roles for microglia in high-grade glioma
growth and progression. In these studies, microglia produce factors
(gliomagens) that increase the growth and migration of glioma cells
[10–12]. Importantly, pharmacological or genetic disruption of
microglia function in mouse high-grade glioma models results in
attenuated tumor growth and progression [13–15].
In contrast to their high-grade counterparts, less is known about

the role of microglia in low-grade gliomas. The most common
inherited cause of low-grade glioma is the neurofibromatosis type 1
(NF1) cancer predisposition syndrome, in which 15% to 20% of
children develop pilocytic astrocytomas (PAs) involving the optic
pathway [16]. Children with NF1 are born with one mutated copy
of the NF1 gene and develop tumors following somatic inactivation
of the remaining normal NF1 gene in astroglial progenitors [5,17].
Similar to their human counterparts, nearly all Nf1+/− mice with
somatic Nf1 gene inactivation in neuroglial progenitors develop
low-grade gliomas of the optic nerve and chiasm [18]. These
resulting low-grade tumors are composed of neoplastic cells with
low proliferative indices embedded within a microenvironment
containing microglia and endothelial cells [18–20]. Moreover,
pharmacological (minocycline treatment, JNK inhibition) or
genetic (CD11b-thymidine kinase–mediated monocyte reduction
or the use of Cx3cr1 knockout mice) inhibition of microglial
function is sufficient to attenuate optic glioma formation and
maintenance [8,21–23].
In an effort to define the molecular mechanism(s) underlying

stromal maintenance of glioma growth in vivo, we sought to identify
candidate gliomagens uniquely expressed in tumor-associated
microglia. Whereas our previous studies employed Nf1+/− microglia
expanded in vitro [22], we now specifically focus on Nf1+/− microglia
present in the glioma as a means to discover critical glioma-maintaining
factors. Building on recent advances in RNA sequencing and the
analysis of low-abundance and low-quality RNA [24–27], Nf1+/−
microglia were isolated from control and tumor-bearing optic nerves
for this large-scale discovery effort. Following secondary validation
and analysis, chemokine (C-C motif) ligand 5 (Ccl5) was identified
as a candidate gliomagen elaborated by tumor-associated microglia in
genetically engineered Nf1 mouse optic gliomas, which is also
overexpressed in human PAs. Importantly, minocycline-mediated
microglia inactivation decreased Ccl5 expression in vivo, whereas
exogenous Ccl5 treatment increased the proliferation of Nf1-deficient
optic nerve astrocytes in vitro. In addition, neutralizing Ccl5
antibody administration reduced glioma growth and optic glioma–
associated retinal defects in vivo. Collectively, these experimental
results establish a critical role for stromal Ccl5 in the pathobiology of
low-grade brain tumors.

Materials and Methods

Mice
Three independent Nf1 optic glioma GEM models were used

based on the timing of Nf1 inactivation or the presence of additional
genetic changes. The first model (Nf1flox/mut; GFAP-Cre (FMC) [18])
was generated by successive breeding of Nf1+/− mice with Nf1flox/flox

(WT) mice [28] and GFAP-Cre mice [29]. In this model, Nf1
inactivation occurs in neuroglial progenitors at E14.5, whereas in the
second model (FMC* [30,31]), Nf1 loss occurs in neuroglial
progenitors at E11.5. The third Nf1 optic glioma GEM model
harbors Pten reduction and Nf1 loss in astroglial cells [32]. Nf1flox/
mut; Ptenflox/wt; GFAP-Cre (FMPC) mice [33] were generated by
intercrossing Ptenflox/flox mice [34] with Nf1flox/flox; GFAP-Cre mice
[29]. The resulting Ptenflox/wt; Nf1flox/flox; GFAP-Cre mice were then
mated with Nf1flox/mut (FM) mice to generate FMPC mice. In this
model, Nf1 inactivation and Pten reduction occur in neuroglial
progenitors at E14.5. WT and FM (Nf1+/−) littermates were used
as non-glioma controls (Table 1). All mice were maintained on a
C57BL/6 background and used in accordance with approved animal
studies protocols at the Washington University School of Medicine.
Mice were euthanized at 3 months of age, and optic nerves were
collected from anesthetized and Ringer’s solution–perfused mice for
histological analyses, RNA expression, and fluorescence-activated cell
sorting (FACS). For all in vivo experiments, mice were randomly
assigned to the treatment group, and the analyses were conducted in a
blinded fashion.

Minocycline Treatment
Minocycline hydrochloride (Sigma-Aldrich, St. Louis, MO) was

dissolved in PBS, and 50 mg/kg was administered 5 days/week
for 2 weeks. FMC mice were divided into two groups: one received
intraperitoneal (i.p.) injections of minocycline, whereas the other
received injections of vehicle alone (sterile PBS). Each cohort contained
at least four mice. After the last injection, mice were euthanized and the
optic nerves collected and processed for sectioning.

Anti-Ccl5 Antibody Treatment
FMC mice were treated by i.p. injection with 250 μg of either

anti-Ccl5 antibody (clone 53405; R&D Systems, Minneapolis, MN)
or an IgG2A isotype-matched control antibody (R&D Systems)
suspended in sterile PBS. Mice received treatment every day for 2
weeks. Each cohort contained at least five mice. After the last
injection, mice were euthanized and the optic nerves collected and
processed for sectioning.

Human Tissue Samples
Pathologically normal optic nerve (n = 4) and optic glioma (n =

5) tissues were obtained at autopsy from female and male
patients between 3 days and 17 years of age. Tissue was embedded
in paraffin, and 6-μm–thick sections were cut and processed for
immunohistochemical staining. These autopsy specimens were
obtained in accordance with an active and approved Human



Table 1. Genetically Engineered Nf1 Mouse Models.

Short Form Genotype Cell Type Description Time Point CNS Abnormality References

WT Nf1flox/flox Every cell Exons 31 and 32 of the Nf1 gene flanked by loxP sites None Zhu et al., 2001
FM Nf1flox/mut Every cell Reduced Nf1 gene expression No glioma
FMC Nf1flox/mut; GFAP-Cre Neuroglial progenitors

Surrounding cells
Complete Nf1 loss
Reduced Nf1 gene expression

E14.5 Optic glioma Bajenaru et al., 2003

FMC* Nf1flox/mut; GFAP-Cre Neuroglial progenitors Complete Nf1 loss E11.5 Optic glioma Hegedus et al., 2008
Surrounding cells Reduced Nf1 gene expression

FMPC Nf1flox/mut; Pten flox/wt; GFAP-Cre Neuroglial progenitors Complete Nf1 loss and Pten+/− E14.5 Optic glioma Kaul et al., 2014
Surrounding cells Reduced Nf1 gene expression
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Studies Institutional Review Board protocol at the Washington
University School of Medicine.

Primary Astrocyte Cultures
Primary astrocyte cultures were established from the optic nerves of

postnatal day 1 to 2 Nf1flox/flox pups [35]. Nf1-deficient (Nf1−/−)
cultures were generated following infection with adenovirus type 5
containing Cre recombinase (University of Iowa Gene Transfer
Vector Core, Iowa City, IA). To measure cell proliferation, 5 × 104

astroglial cells were plated in 24-well dishes, allowed to adhere, and
maintained in astrocyte growth media for 16 hours. Astrocyte cultures
were then treated with either murine recombinant Ccl5 (250 ng/ml;
R&D Systems) or PBS alone for up to 16 hours. The optimal
cytokine concentration for the proliferation assay was predetermined
using dose escalation experiments (data not shown).

Immunocytochemistry
Astrocytes were fixed in 4% paraformaldehyde and permeabilized with

0.2% Triton X-100. Following overnight incubation with Ki67 antibodies
(Abcam, Cambridge, MA), visualization was performed following
incubation with Alexa Fluor 488 IgG secondary antibodies (Invitrogen,
Carlsbad,CA).Cells were counterstainedwithDAPI. For each independent
culture, at least five distinct microscopic fields were analyzed on a Nikon
Eclipse TE300 fluorescence inverted microscope (Nikon, Tokyo, Japan)
equipped with an optical camera (Optronics, Goleta, CA) andMetaMorph
image analysis software (Molecular Devices, Dowingtown, PA).

Immunohistochemistry
Optic nerves were prepared for sectioning and immunostaining as

previously described [36]. For paraffin section immunohistochemis-
try, HRP-conjugated secondary antibodies (Vector Laboratories,
Burlingame, CA) were used in combination with Vectastain Elite
ABC development and hematoxylin counterstaining. In the immu-
nofluorescence detection experiments, appropriate Alexa Fluor–
tagged secondary antibodies (Invitrogen) were used, followed by
DAPI counterstaining. Amplification of the Brn3a and Ccl5 antibody
signal was performed using a biotinylated secondary antibody,
followed by HRP conjugation using Vectastain Elite ABC kit, and the
fluorescent signal was amplified with Tyramide Signal Amplification
Plus Cyanine 3 system (Perkin-Elmer, Billerica, MA) according to the
manufacturer's instructions. Terminal deoxynucleotide transferase-
mediated dUTP nick-end labeling (TUNEL) staining was performed
using the ApopTag Plus in situ apoptosis fluorescein detection kit
(Millipore, Billerica, MA) according to the manufacturer's recom-
mendations. Images were subsequently acquired on a Nikon Eclipse
TE300 fluorescence inverted microscope or a Nikon Eclipse E600
microscope equipped with an optical camera (Leica, Buffalo Grove,
IL) and Leica LAS EZ image analysis software (Leica).

Alternatively, optic nerves were processed for O.C.T. (Tissue-Tek,
Miles, Elkhart, IN) embedding (frozen sections). Immunofluores-
cence labeling was performed after blocking in PBS containing 3%
normal donkey serum (Jackson Immunoresearch Labs, Westgrove,
PA), 1% cold water fish gelatin (Sigma-Aldrich), and 0.1% Triton
X-100 for 1 hour at room temperature before incubation with
appropriate antibodies (Supplementary Table 1) in 10% normal
donkey serum for 16 hours at 4°C. Fluorescence-conjugated
secondary antibodies (1:100 dilution) were applied for 4 hours at
4°C. Images were acquired on a FluoView 1000 confocal microscope
(Olympus, Tokyo, Japan).

The number of lineage antibody-positive, Ki67+, or TUNEL+ cells
was quantitated as a percentage of total cells (DAPI+ cells or nuclei).

Microglial morphology was analyzed using ImageJ (version 1.48,
NIH) software. The length of the microglial processes was defined as
the distance between the nucleus and the tip of an extended process as
identified by Iba1 immunostaining (Supplementary Figure 1).

In vivo BrdU Labeling and Immunohistological Analysis
IgG and anti-Ccl5–treated animals were injected with 50 mg/kg of

BrdU (Sigma-Aldrich). Three hours after BrdU injection, animals
were transcardially perfused with ice-cold Ringer’s solution and fixed
with 4% paraformaldehyde. The optic nerves were dissected, fixed,
and processed for paraffin sectioning, and BrdU immunostaining was
performed as described previously [22].

RNA Fluorescence In Situ Hybridization (FISH)
FISH was performed using the QuantiGene ViewRNA kit

(Affymetrix Inc., Frederick, MD) according to the manufacturer’s
instructions. Conditions were optimized to include 10-minute
boiling and 10-minute protease treatments. The oligonucleotide
probes were commercially designed using murine Ccl5 (accession
number NM_013653.3) and Cxcl13 (NM_ 018866.2) sequences.
Images were obtained on a Nikon Eclipse TE300 fluorescence
inverted microscope (Nikon) and analyzed using MetaMorph image
analysis software (Molecular Devices). Individual mRNA punctae
were manually counted, and the number of mRNA molecules per
DAPI+ cell was calculated.

Fluorescence-Activated Cell Sorting
CD11b+/CD45low microglia from pools of 9 to 10 optic nerves/set

(FM and FMC)were collected and processed for antibody-mediated flow
sorting (Supplementary Table 1) using appropriate controls for gating, as
previously described [8,37]. FACS samples were sorted directly into
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TRIzol (Life Technologies Corporation, Carlsbad, CA) for total RNA
extraction. Sorting was performed at the High-Speed Cell Sorter Core
Facility at the Siteman Cancer Center, Washington University, and data
were subsequently analyzed using FlowJo (Tree Star, Inc., Ashland, OR).

RNA Extraction
TRIzol-chloroform extraction was used to isolate total RNA from

flow-sorted microglia. Extracted RNA samples were resuspended in
Ambion Nuclease-free water (Life Technologies), snap frozen, and
stored at −80°C. Before cDNA library construction and quantitative
real-time polymerase chain reaction (qRT-PCR), residual DNA was
eliminated with the TURBO DNA-free kit (Invitrogen). RNA
quality was assayed using the Agilent Eukaryotic Total RNA 6000
and quantified using the Quant-iT RNA assay kit on a Qubit
Fluorometer (Life Technologies).

RNA Sequencing
The Ovation RNA-Seq method was employed for cDNA synthesis

according to the manufacturer’s instructions (NuGen, San Carlos,
CA). cDNA was then concentrated and suspended in 10 mM
Tris-HCl (pH 8) using MinElute spin columns (Qiagen, Valencia,
CA). cDNA was quantified using the Quant-iT dsDNA HS Assay
(Life Technologies Corporation), whereas the molecular weight
distribution was determined using the BioAnalyzer 2100 and the
Agilent DNA 7500 Chip Assay (Agilent Technologies, Santa Clara,
CA). A total of 500 ng of cDNA (10ng/μl) was used for Illumina
library construction with the Illumina paired-end LT indexing
protocol as previously published [38,39]. Briefly, 500 ng of each
library was hybridized with the Agilent mouse exome reagent [40].
Eight mouse sample sets were sequenced from independently
generated biological replicates that included four samples of FM
microglia and four samples of tumor-associated microglia. Corre-
sponding RNA-Seq paired-end reads were processed using the
TopHat suite [41] with Cufflinks [42–44]. All RNA-sequencing data
will be uploaded into Gene Expression Omnibus (GEO) database.

Quantitative Real-Time Polymerase Chain Reaction
The Ovation Pico WTA System V2 was employed for cDNA

synthesis according to the manufacturer’s instructions (NuGen).
cDNA was then purified using the MinElute Reaction Cleanup kit
(Qiagen), followed by assessment of the concentration using a
NanoDrop2000 spectrophotometer. qRT-PCR was performed using
the Bio-Rad CFX96 Real-Time System (Bio-Rad Laboratories Inc.,
Hercules, CA) with SYBR Green detection (Life Technologies
Corporation). Primer sequences were designed with Primer-BLAST
(NCBI http://www.ncbi.nlm.nih.gov/tools/primer-blast/) to span
exon-exon junctions and target known splice variants (Suppl. Table
2). The ΔΔCT method was used to calculate fold expression changes.

Human CCL5 Expression Analysis
CCL5 expression in human PAs was analyzed from the GEO

dataset accession GSE44971 and GSE42656.

Statistical Analyses
All in vitro experiments were performed on independent litters,

repeated at least three times, and analyzed in blinded fashion.
Statistical analysis was performed using GraphPad Prism 5.0 software
(GraphPad, La Jolla, CA). Data were presented as mean values with
SEM. Data between two groups were compared using unpaired
two-tailed Student’s t tests. Data among multiple groups were
compared using Kruskal-Wallis test followed by Dunn’s multiple
comparison testing, with a significance level set at P b .05. Grubbs
outlier test was used to determine statistical outliers.

Results and Discussion

Optic Glioma–Associated Microglia Exhibit Morphologic
Changes Suggestive of Activation

To examine microglia associated with mouse low-grade glioma, we
employed three distinct models of Nf1 optic glioma. These three Nf1
murine optic glioma models differ by the timing of somatic Nf1 gene
inactivation in neuroglial cells (FMC and FMC* mice; [18,30]) or the
presence of additional neoplastic cell genetic changes (heterozygous
Pten mutation; FMPC mice; [45]) reported in rare NF1-associated
optic pathway gliomas (OPGs) [46]. Previous studies from our
laboratory have demonstrated that the tissue monocytes in these
tumors represent resident microglia (CD11b+; CD45low) with robust
Cx3cr1 expression rather than bone marrow–derived macrophages
(CD11b+; CD45high) [8,23]. Whereas prior studies of murine and
human NF1 optic nerve gliomas demonstrated an increased
percentage of microglia in these tumors [8,18,19], confocal image
analysis of these microglia within the mouse optic gliomas also
revealed striking morphological changes: Nonglioma (resident)
microglia in the optic nerve from either WT or Nf1+/− (FM) mice
exhibited morphologies typical of ramified microglia, with elongated,
fine processes that extended into their surroundings, whereas
tumor-associated Nf1+/− microglia (FMC, FMC*, and FMPC
mice) harbored shorter processes that were slightly thickened or
lacked processes completely (Figure 1, a and b). Similar changes in
morphology were also observed in human OPG specimens relative to
their normal tissue (optic nerve) counterparts (Figure 1, c and d),
including one specimen from a child with NF1.

These pronounced changes in microglial morphology have
previously been interpreted as microglia “activation” [47]. As such,
under normal physiological conditions, microglia have surveillance
functions, with an extensive array of fine processes that constantly
scan their surroundings [48]. However, in the setting of brain
pathology, like Alzheimer’s or Parkinson’s disease [49], microglia
undergo morphological changes that include thickening and
shortening, or even retraction, of their cellular processes to assume
an “amoeboid” morphology. The presence of these morphologic
changes in tumor-associated Nf1+/− microglia prompted us to
specifically examine these tissue macrophages as the source of
potential glioma-maintaining stroma-derived growth factors [50],
distinct from those made by resting Nf1+/− microglia within the
nonneoplastic optic nerve.

Ccl5 and Cxcl13 Are Highly Expressed Glioma-Associated
Microglia Transcripts

To identify potential gliomagens produced by tumor-associated
microglia, we initiated a large-scale RNA-sequencing discovery effort.
We were specifically interested in transcripts unique to Nf1+/−
microglia within optic gliomas relative to those found in Nf1+/−
microglia within the normal (non-neoplastic) optic nerve. Because the
mouse optic nerve is composed of fewer than 10% microglia [23] and
only ~2500 total cells per nerve can be recovered by FACS after
processing, we pooled at least nine 3-month-old mice per genotype to
obtain sufficient numbers of cells for FACS and RNA isolation.
Because of the extended processing times (~8 hours) required, the
small amounts of starting material, and the inherent cell loss
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associated with FACS separation, RNA isolated from microglia under
these conditions is in low abundance and frequently of low quality
(Figure 2a), necessitating optimization of RNA isolation and analysis
methods [24–27]. To circumvent these issues, we employed a
combination of exome capture enrichment and Illumina RNA
sequencing (cDNA-Capture sequencing) on microglia isolated from
optic glioma–bearing FMC mice and Nf1+/− non–tumor-bearing
(FM) mice. Samples were analyzed using the Cufflinks platform
[42–44] to calculate the differential expression of genes from each
pool (FMC and FM microglia). We further narrowed the candidate
list to transcripts whose predicted protein products were either
secreted or cell surface associated and also exhibited at least a 10-fold
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change in expression (six genes). Of these six candidates, only Ccl5
and Cxcl13 were independently validated by RNA FISH and
qRT-PCR as potential optic glioma–associated microglia gliomagens
(Figure 2b). Other transcripts previously identified in studies using
either high-grade glioma-associated or non–tumor-associated Nf1+/−
brain microglia maintained in vitro, including interleukin-6,
interleukin-10 [51,52], stem cell factor [53], transforming growth
factor beta [54], hyaluronidase, hepatocyte growth factor [55],
pleiotrophin, jagged-1, and insulin-like growth factor–1 [22], were
not uniquely expressed by optic glioma–associated microglia relative
to their nonneoplastic Nf1+/− optic nerve microglia counterparts.
Specifically, RNA FISH demonstrated increased Cxcl13 and Ccl5

expression in murine Nf1 optic glioma (FMC) nerves compared with
FM control optic nerves (Figure 2c). In addition, microglia samples
from the optic nerves of 3-month-old FM and FMC mice were
independently isolated by Percoll density gradient centrifugation [56]
and FACS. qRT-PCR analysis demonstrated that tumor-associated
Nf1+/− microglia had a 3.3-fold increase in Cxcl13 RNA expression
and a 300-fold increase in Ccl5 RNA expression relative to FM
(Nf1+/−) microglia (Figure 2d). Collectively, these results implicate
Ccl5 and Cxcl13 as potential tumor-associated microglia gliomagens.

Minocycline Treatment Reduces Optic Glioma Microglial
Ccl5 Expression

Previous studies have demonstrated that minocycline inactivation
of microglia reduced Nf1 optic glioma proliferation in vivo [22]. To
provide further support for a role of Ccl5 and Cxcl13 in mouse Nf1
optic glioma growth, FMC mice (n = 4 mice/group) were i.p. injected
with either minocycline or vehicle over a 2-week period, and the optic
nerves were analyzed by immunohistochemistry and RNA FISH.
Following minocycline treatment, the morphology of microglia (thin,
long, ramified processes) was restored to that observed in WT or FM
mice (Figure 3a). Importantly, whereas minocycline treatment had no
effect on Cxcl13 expression, Ccl5 expression was decreased to control



a

b

1abI

Vehicle

Minocycline

untreated

C
cl

5
m

R
N

A

0.0

0.5

1.0

1.5

2.0 **

FMC FM

C
xc

l1
3

m
R

N
A

0.0

0.5

1.0

1.5

2.0

2.5

*

FMC FM

0

10

20

30

40

***

Vehicle Minocycline

Vehicle Minocycline

Vehicle Minocycline

le
ng

th
 [µ

m
]

C
cl

5 
m

R
N

A
 m

ol
ec

ul
es

 / 
ce

ll
C

xc
l1

3 
m

R
N

A
 m

ol
ec

ul
es

 / 
ce

ll

Figure 3. Minocycline treatment reduces Ccl5 mRNA expression. (a) Following minocycline hydrochloride treatment (n = 4 mice/group),
Iba1+ microglia harbored long processes relative to vehicle-injected mice (n = 4 mice/group), similar to WT mice (Figure 1). Boxes
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nerves, Ccl5 mRNA expression was reduced to normal (FM) levels. Representative images are shown with insets of cells containing
mRNA molecules (red). DAPI (blue) was used as a counterstain to identify all cells in the sections. Scale bar, 50 μm. Each error bar
represents the mean ± SEM. Asterisks denote statistically significant differences: (*) P b .0225, (**) P = .0096, (***) P b .0001.
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(FM) levels (Figure 3b). These observations suggest that Ccl5, but not
Cxcl13, is particularly worthy of further exploration as a potential
tumor-associated microglia gliomagen.

Ccl5 Is Important for Nf1 Optic Glioma Growth
Because only Ccl5 expression was decreased following minocycline

treatment, we focused subsequent experiments on this high-priority
candidate. First, we examined Ccl5 expression at the protein level in
FM and FMC optic nerves. Relative to their nonneoplastic
counterparts, there was an 8.4-fold increase in the percentage of
Ccl5+ cells in the optic gliomas (Figure 4a). Moreover, nearly all of
the Ccl5+ cells were Iba1+ cells (microglia) in these tumors by
double-labeling immunofluorescent microscopy (Figure 4b).

Second, because symptomatic NF1-associated optic gliomas are
commonly treated without a prior tissue diagnosis (biopsy), we
leveraged available transcriptomal human PA data sets (GSE42556
[57] and GSE44971 [58]). Analysis of the GSE42556 specimens
revealed increased CCL5 expression (all three independent CCL5
probe sets) in sporadic PAs (n = 46) relative to normal brain controls
(n = 9), including three additional tumors from individuals with NF1
(Figure 4c). Similarly, analysis of the GSE44971 specimens revealed
increased CCL5 expression (both of the two independent CCL5
probe sets) in the sporadic PAs (n = 14) relative to normal brain
controls (n = 16) (Figure 4d). In contrast, no increase in CXCL13
expression was observed in the PA tumors from either data set (data
not shown), further underscoring the importance of CCL5 in
low-grade glioma.

Third, to determine whether Ccl5 has the capacity to increase
astrocyte growth in vitro, we employed Nf1-deficient optic nerve glia
cultures following acute Nf1 gene inactivation (adenovirus-mediated
Cre transduction). Because these cultures contain 70% NG2+ cells
and 30% GFAP+ cells, in which only the GFAP+ astrocytes
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hyperproliferate following Nf1 gene inactivation [59], we analyzed
the proliferation of optic nerve astroglial cells using Ki67 labeling
in vitro. Following treatment with murine recombinant Ccl5
(250 ng/ml), there was a 1.5-fold increase in astrocyte proliferation
(Figure 5), demonstrating that Ccl5 is sufficient to increase Nf1-defi-
cient astrocyte growth.
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Figure 5. Ccl5 increases optic nerve astrocyte proliferation in vitro. Following incubation with 250 ng of murine recombinant Ccl5, there
was an increase in Nf1-deficient astrocyte proliferation (Ki67 labeling) relative to vehicle treatment in vitro. Representative Ki67+
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Fourth, to establish that increased microglial Ccl5 expression is
necessary for Nf1 optic glioma growth, we sought to inhibit Ccl5
function in vivo. Because there are few selective small molecule
inhibitors of Ccl5 that cross the blood-brain barrier, we initially
employed MET-RANTES, an amino-terminal–modified methiony-
lated Ccl5 derivative [60,61] originally identified to competitively
bind to Ccr1 and Ccr5 and inhibit the signaling pathways activated
by Ccl5 [61]. In other experimental models of nervous system disease,
mice treated with MET-RANTES had less severe clinical symptoms
and reduced inflammation [62–64]. However, MET-RANTES–
treated mice exhibited increased Nf1 optic glioma growth and more
Iba1+ microglia compared with PBS-treated mice (Supplementary
Figure 2). The paradoxical effect of MET-RANTES treatment is
likely attributable to its function as a partial agonist [65], which
prompted us to explore other methods to target Ccl5.

Previous preclinical studies have used anti-Ccl5 neutralizing
antibodies to interfere with Ccl5 function and attenuate tumor
growth in vivo [66,67]. Specifically, treatment with Ccl5 antibody
blocked leukocyte adhesion and infiltration in experimental mouse
models of multiple sclerosis [68,69]. Based on these studies,
3-month-old FMC mice were treated with either anti-Ccl5 (250
μg) or IgG isotype control antibodies i.p. daily for 2 weeks (n = 5
mice/group). Following the completion of treatment, mice were
injected with BrdU (50 mg/kg), and the optic nerves were removed 3
hours later for analysis (Figure 6a). Anti-Ccl5 treatment resulted in a
9.8-fold reduction in Nf1 optic glioma proliferation (BrdU+ cells)
relative to IgG control–treated mice in vivo (P b .0001; Figure 6b).
Interestingly, consistent with the known chemoattractant properties
of Ccl5 [70–72], anti-Ccl5 treatment also reduced the number of
Iba1+ microglia into these tumors in vivo (Figure 6c).

Because optic gliomas cause clinical morbidity in children with
NF1 as a result of reduced visual function [73], the impact of
anti-Ccl5 treatment on optic glioma–induced retinal dysfunction was
assessed. In Nf1 optic glioma mice, visual impairment occurs
following retinal ganglion cell (RGC) apoptosis and loss [33].
Following anti-Ccl5 treatment, there were a 2.8-fold decrease in the
percent of apoptotic (%TUNEL+) cells and a 1.78-fold increase in
RGCs (Brn3a+ cells; Figure 6d) relative to IgG-treated controls.
Collectively, these findings demonstrate that microglia-produced
Ccl5 is both necessary and sufficient to increase Nf1-deficient
astrocyte proliferation relevant to Nf1 optic glioma maintenance and
that inhibiting Ccl5 function reduces retinal pathology in the setting
of murine Nf1 optic glioma.

The identification of Ccl5 as a candidate gliomagen in Nf1 murine
optic glioma suggests a new stromal target for therapeutic drug design.
Ccl5 is also known as RANTES (regulated upon activation, normal
T-cell–expressed and secreted), where it was originally identified as an
inducer of leukocyte recruitment to sites of inflammation [74]. Ccl5
induces leukocyte migration by binding to three distinct seven-
transmembrane G-protein–coupled receptors [75–77]. In the setting
of brain pathology, increased CCL5 expression in astrocytes and
microglia has been reported following viral infection [78–81], where
its inhibition results in decreased leukocyte adhesion within the
microcirculation of infected mice [82]. Importantly, mice lacking
Ccr5 expression exhibit reduced neuronal injury in responses to
HIV-1 infection [83], supporting a general role for CCL5 signaling in
neurologic disease.

One previous study examined CCL5 in malignant glioma,
demonstrating increased expression of CCL5 and its receptors
(CCR1, CCR5) in the murine high-grade GL261 astrocytoma cell
line [84]. In contrast, CCL5 function in low-grade gliomas has not
been explored, and the impact of CCL5 function on glioma biology
remains unclear. Whereas little is known about CCL5 in brain
tumors, increased CCL5 expression has been reported in lung,
prostate, melanoma, colorectal, and breast cancer [67,85–88], where
a positive correlation between increased CCL5 expression and disease
progression was identified [89,90]. In addition, CCL5-expressing
melanoma cells form increasingly aggressive tumors in a concen-
tration-dependent fashion [91], and Ccl5 increases the growth of
breast cancer cells in vitro [92]. Finally, blocking Ccl5 receptor
binding using neutralizing antibodies or siRNA knockdown reduces
tumor growth in experimental models of pancreatic adenocarcinoma
[93], colon cancer [67], and gastric cancer [94].

In the current study, we provide experimental evidence for a critical
role for Ccl5 in the maintenance of murine Nf1 optic glioma.
Following inhibition of Ccl5 with neutralizing antibodies, there were
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reduced tumor proliferation and attenuated retinal pathology. In
addition, Ccl5 inhibition resulted in decreased microglia within the
optic glioma, suggesting that Ccl5 may be a key stromal determinant
of tumor growth and associated optic nerve damage as well as
monocyte recruitment to the glioma. Although we specifically chose
to directly inhibit Ccl5 function, additional preclinical investigation
could involve the use of Ccl5 receptor antagonists. It should be
recognized that Ccl5 can bind to one of three receptors (Ccr1, Ccr3,
and Ccr5) to promote cell growth [95]. However, only Ccr1 and
Ccr5 are expressed by optic nerve astrocytes (data not shown),
complicating the decision regarding which Ccl5 receptor to inhibit.
In this regard, Ccr5 antagonism using Maraviroc [96] had no effect
on Nf1 optic glioma growth (data not shown), whereas
MET-RANTES increased Nf1 optic glioma growth. Based on these
findings, future preclinical studies will need to carefully consider the
specific effects of each Ccl5 inhibitor and the engagement of its
specific cognate receptors.

In summary, the observations in this report not only underscore
the importance of microglia in the glioma microenvironment in
maintaining tumor growth but also expand our understanding of the
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role of stroma-derived chemokines in glioma biology. In this regard,
CXCL12 is produced by both microglia [97] and endothelial cells
[98,99], where it can dually act to further attract additional microglia
as well as independently stimulate tumor growth. In addition,
chemokines can also be produced by glioma cells to direct microglia
migration and recruitment. For example, CX3CL1 acting on the
microglial CX3CR1 receptor is critical for microglia infiltration and
tumor formation in mouse Nf1 optic glioma strains [23]. Similarly,
colony-stimulating factor 1 (CSF-1) produced by mouse glioblastoma
cells attracts microglia through the CSF-1 receptor to further increase
glioma growth [100], such that attenuation of this CSF-1/CSF-1
receptor axis reduced murine glioblastoma growth in vivo [15].
Collectively, these studies suggest that future brain tumor therapies
might target the unique interplay between stromal cells and cancer
cells important for maintaining this specialized ecosystem.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neo.2015.10.002.
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