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We study some basic properties of the so-called bornological convergences in the realm of
quasi-uniform spaces. In particular, we revisit the results about when these convergences
are topological by means of the use of pretopologies. This yields a presentation of the
bornological convergences as a certain kind of hit-and-miss pretopologies. Furthermore, we
characterize the precompactness and total boundedness of the natural quasi-uniformities
associated to these convergences. We also obtain an extension of the classical result of
Künzi and Ryser about the compactness of the topology generated by the Hausdorff quasi-
uniformity to this framework.
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1. Introduction

Through all the paper, we will mainly deal with quasi-uniform spaces due to its generality and the applications of the
asymmetric topology to topological algebra, functional analysis and computer science [24,43]. Recall that a quasi-uniformity
on a nonempty set X [23,25] is a filter U of reflexive relations such that if U ∈ U there exists V ∈ U such that V 2 ⊆ U
where V 2 = {(x, z) ∈ X × X: there exists y ∈ X with (x, y), (y, z) ∈ V }. By U ∗ we denote the uniformity which has as a base
the elements of the form U∗ = U ∩ U−1 where U−1 = {(x, y) ∈ X × X: (y, x) ∈ U }.

Every quasi-uniformity U on X generates a quasi-proximity δU on X such that AδU B if U (A) ∩ B �= ∅ for all U ∈ U .

In a quasi-uniform space (X, U ) we will denote by P0(X) (resp. C L0(X), K0(X), F0(X)) the family of all nonempty (resp.
nonempty closed, nonempty compact, nonempty finite) subsets of (X, U ). Our basic references for quasi-uniform spaces are
[23,25].

Recall that a hypertopology is a topology defined over a certain family of sets. Our basic references for hypertopologies
are [1,37].

Vietoris [45,36] defined the so-called finite topology on a topological space (X, τ ) which is usually known as the Vietoris
topology. On the family P0(X) of all nonempty subsets of X , this topology τV has as a base all sets of the form

G+ ∩ V −
1 ∩ · · · ∩ V −

n

where G, V 1, . . . , Vn are open sets and

G+ = {
A ∈ P0(X): A ⊆ G

}
,

V −
i = {

A ∈ P0(X): A ∩ V i �= ∅}
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for all i ∈ {1, . . . ,n}. Fell [22] considered a slight although very important modification of the above topology. In this way,
the Fell topology τF has as a base all sets of the form G+ ∩ V −

1 ∩ · · · ∩ V −
n where G, V 1, . . . , Vn are open sets and Gc is

compact.
Notice that the only difference between τV and τF relies on the family to which the complement of G belongs: the

closed sets in the case of the Vietoris topology and the closed and compact sets in the case of the Fell topology.
These two topologies follow a general pattern which was studied by Poppe [39]. Let � be a cobase, i.e. a family of closed

sets containing the empty set, the singletons and closed under finite unions. Then the �-hit-and-miss topology has as a base
all sets of the form G+ ∩ V −

1 ∩ · · · ∩ V −
n where V 1, . . . , Vn are open sets and Gc ∈ �.

In the literature about hypertopologies (see [1,37]), the most well-known is the so-called topology of the Hausdorff distance.
Although this topology was first defined on a metric space, it was subsequently extended to a uniform space [14] and to a
quasi-uniform space [13,30]. Given a quasi-uniform space (X, U ), for each U ∈ U define

U+
H = {

(A, B) ∈ P0(X) × P0(X): B ⊆ U (A)
}
,

U−
H = {

(A, B) ∈ P0(X) × P0(X): A ⊆ U−1(B)
}
.

Then {U+
H : U ∈ U } is a base for the upper Hausdorff quasi-uniformity U +

H on P0(X) and {U−
H : U ∈ U } is a base for the

lower Hausdorff quasi-uniformity U −
H on P0(X). The quasi-uniformity U H = U +

H ∨ U −
H is the so-called Hausdorff (or Bourbaki)

quasi-uniformity of (X, U ) on P0(X).

We observe that a net (Aλ)λ∈Λ is convergent to A in the topology τ (U H ) generated by the Hausdorff quasi-uniformity if
and only if for all U ∈ U

Aλ ⊆ U (A) and A ⊆ U−1(Aλ) residually.

The topology of the Hausdorff quasi-uniformity is also related to other hypertopology called the C L0(X)-proximal miss
topology (or simply the upper proximal topology) and denoted by τ++

C L0(X)
[1]. This topology has as a base all the sets

of the form G++ = {A ∈ P0(X): U (A) ⊆ G for some U ∈ U } where G is an open set. Then it is easy to prove [1,42] that
τ++

C L0(X)
= τ (U +

H ).

Nevertheless, in general, the topology generated by the Hausdorff quasi-uniformity is considered to be too strong. For
example, let us consider R2 endowed with the usual uniformity. Then the graphs of the lines of slope 1/n passing through
the origin form a sequence which is not convergent to the horizontal axis in the topology of the Hausdorff uniformity. This
is due to the fact that this topology has not a good behavior with respect to unbounded sets.

A coarser topology is the so-called Attouch–Wets topology (see [2] for a survey). Traditionally, this topology is introduced
as a topological convergence in a metric space [1]: given a metric space (X,d), a net (Aλ)λ∈Λ in P0(X) is said to be
Attouch–Wets convergent to the nonempty set A if for every nonempty bounded subset B ⊆ X and every ε > 0

A ∩ B ⊆ Bd(Aλ, ε) and Aλ ∩ B ⊆ Bd(A, ε) residually.

The Attouch–Wets topology has been preferred for working in convex and set-valued analysis because it has a better
behavior [1,31,41].

A uniform version of the Attouch–Wets topology was considered in [33, Section 6] by means of totally bounded sets,
from where a quasi-uniform version can be naturally defined.

The two above topologies follow a pattern that can be generalized. Notice that if we consider the family P0(X), then
convergence of a net (Aλ)λ∈Λ to A in the topology of the Hausdorff quasi-uniformity is equivalent to ask that Aλ ∩ B ⊆ U (A)

and A ∩ B ⊆ U (Aλ) residually for all U ∈ U and B ∈ P0(X). So in both cases, the convergence is constructed by means of the
truncation with a certain family of sets: the nonempty subsets in the case of the topology of the Hausdorff quasi-uniformity
and the nonempty bounded subsets in the case of the Attouch–Wets topology.

Consequently, it is natural to study other convergences expressed in terms of truncations and enlargements with respect
to an arbitrary family S of nonempty subsets of X . The filters which generate these convergences were perhaps first con-
sidered by Di Maio, Meccariello and Naimpally in [33,34,32] although the first deep study was made by Lechicki, Levi and
Spakowski [29] (see [4] for a survey). We present here an asymmetric version of the so-called bornological convergences.

Definition 1.1. Let (X, U ) be a quasi-uniform space and S a family of nonempty subsets of X . We say that a net (Aλ)λ∈Λ of
nonempty subsets:

1. S +
U -converges to A if Aλ ∩ S ⊆ U (A) residually for each S ∈ S and U ∈ U ;

2. S −
U -converges to A if A ∩ S ⊆ U−1(Aλ) residually for each S ∈ S and U ∈ U ;

3. SU -converges to A if S −
U -converges to A and S +

U -converges to A.

In the sequel, we will omit the subscript U if no confusion arises.
It is very easy to see that no different convergence appears if we replace S by the family of all subsets of finite unions

of members of S . Consequently, we will only consider ideals, i.e. families of nonempty subsets which are closed under
nonempty subsets and finite unions. When an ideal S is also a cover then it is called a bornology. Since bornologies are
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more usual in applications, this kind of convergences is known as bornological convergences, whether or not the ideal is a
bornology.

We will say that an ideal S has a base B if for all S ∈ S we can find B ∈ B such that S ⊆ B. If the elements of the base
are closed, we say that B is a closed base for S.

We will denote by
⋃

S the union of all the elements of the ideal S.

Observe that if S is an ideal such that X ∈ S (like P0(X) or C L0(X)) then S -convergence is equivalent to convergence
in the topology of the Hausdorff quasi-uniformity meanwhile the Attouch–Wets topology is obtained by means of the
bornology of nonempty bounded subsets Bd(X).

Since the publication of [29], several papers have appeared studying this kind of convergences and bornologies [3–6,
8–12,46–48].

One of the main problems related to bornological convergences is to characterize when these convergences are topo-
logical [6,29]. The characterizations that have been already obtained are mainly based on constructing a (quasi-)uniformity
compatible with the bornological convergence. In Section 2, we present a new approach to this problem by means of
pretopological structures different of those considered in [29]. This allows us to present a pretopological structure whose
aspect is similar to the base of a hit-and-far-miss topology [35]. From this presentation, we present new proofs about when
bornological convergence is topological.

In Section 3, we characterize precompactness, total boundedness and compactness for bornological convergences. Our
results extend well-known results in the asymmetric setting due to Künzi and Ryser [28].

We finish the paper showing a characterization of right K-completeness of the bornological convergence.

2. Topologicity of bornological convergences

In this section, we revisit some results about when bornological convergence is topological [6,29] by using certain pre-
topological structures which allow to show that bornological convergences are also, to some extent, hit-and-miss topologies.

Recall that a pretopology N on X is a collection of families of subsets of X {N (x): x ∈ X} such that N (x) is a filter for
all x ∈ X and x ∈ N for all N ∈ N (x). The pretopologies are nothing else but the neighborhood system of a closure space as
defined by Čech [17].

A pretopology N which also verifies:

given N ∈ N (x) there exists Q ∈ N (x) such that Q ⊆ N and Q ∈ N (y) for all y ∈ Q ,

is a neighborhood system for a topology. In this case we say that N is a topology.
Every pretopology N generates a topology τ (N ) by considering a set G open if G ∈ N (x) for all x ∈ G.

2.1. Upper half

In [29], the authors introduce a natural pretopology to study S +-convergence. Here, we study a different one whose
aspect is very similar to an (upper) miss topology. Recall [37] that given a topological space (X, τ ) and � a cobase in X ,
the upper miss topology τ+

S has as a base all sets of the form (Dc)+ = {A ∈ P0(X): A ⊆ Dc} where D ∈ �.

Let S be an ideal in a quasi-uniform space (X, U ). For each A ∈ P0(X) define B+
S,U (A) = {(Sc)+: A ∈ (Sc)++, S ∈ S}. It

is obvious that B+
S,U = {B+

S,U (A): A ∈ P0(X)} is a base for a pretopology N +
S,U = {N +

S,U (A): A ∈ P0(X)} on P0(X).

A particular case of these pretopological structures was first studied in [38] in relation with the problem of obtaining
a hit-and-miss topology equivalent to the Wijsman topology. The smallest topology which contains the pretopology N +

S,U
was called the upper Wijsman S -topology in [35]. This is due to the fact that when we consider a metric space (X,d) and
the family Bd(X) of all closed balls, then the (pre)topology N +

Bd(X),U coincides with the upper Wijsman topology [38]. We

also observe that the above pretopology can also be obtained as an upper Bombay pretopology σ(γ1, γ2; S)+ when γ1 = δU
and γ2 is the Wallman proximity [32].

The following example shows that N +
S,U is not always a topology.

Example 2.1. Let us consider in the real line R the usual uniformity U and the bornology S generated by the family
P0([0,1])∪ F0([0,1]c). Then ([0,1]c)+ ∈ N +

S,U ({−1}). However, given S ∈ S such that {−1} ∈ (Sc)++ and (Sc)+ ⊆ ([0,1]c)+
then S = [0,1] ∪ F where F is a finite subset verifying F ∩ [0,1] = ∅. Therefore, Sc ∈ (Sc)+ but Sc /∈ ([0,1]c)++. This
means that for every basic N +

S,U -neighborhood (Sc)+ of {−1} contained in ([0,1]c)+ we can find A ∈ (Sc)+ such that

(Sc)+ /∈ N +
S,U (A). Therefore, N +

S,U is not a topology.

It is also known that every pretopology is equivalent to a convergence satisfying certain conditions [19]. The next re-
sult proves that the convergence associated to N +

S,U is exactly the S +-convergence. This means that the upper half of a
bornological convergence can be obtained as a generalization of a(n upper) miss topology.
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Lemma 2.2. Let S be an ideal in a quasi-uniform space (X, U ). Then the pretopology N +
S,U is compatible with S +-convergence.

Proof. Suppose that (Aλ)λ∈Λ is S +-convergent to A. Let S ∈ S such that A ∈ (Sc)++. Therefore, we can find U ∈ U such that
U (A) ⊆ Sc . Suppose, to obtain a contradiction, that Aλ /∈ (Sc)+ cofinally, i.e. Aλ ∩ S �= ∅ cofinally. By assumption Aλ ∩ S ⊆
U (A) residually and since U (A) ⊆ Sc this implies that S ∩ Sc �= ∅ which is not possible.

Now, suppose that (Aλ)λ∈Λ converges in the pretopology N +
S,U to A. Let S ∈ S and U ∈ U . Suppose that S �⊆ U (A)

(otherwise, the proof is finished). Then S0 = S\U (A) ∈ S and A ∈ (Sc
0)

++ so Aλ ∈ (Sc
0)

+ residually, i.e. Aλ ∩ S0 = ∅ residually.
Therefore, Aλ ∩ S ⊆ U (A) residually. �

Recall [18,20] that if N is a pretopology on a nonempty set X then the interior of a set A with respect to N is

intN (A) = {
x ∈ X: A ∈ N (x)

}
.

Furthermore, we say that a set O is open if O = intN (O ). The topology τ (N ) generated by the open sets of the pretopology
N is called the topologization of N . Furthermore, a pretopology N is a topology if for every N ∈ N (x) then intN (N) ∈
N (x) [20].

Lemma 2.3. Let S be an ideal in a quasi-uniform space (X, U ). Given S ∈ S then intN +
S,U

(Sc)+ = (Sc)++.

Proof. Let B ∈ intN +
S,U

(Sc)+. Since (Sc)+ ∈ N +
S,U (B) then there exists S0 ∈ S such that B ∈ (Sc

0)
++ and (Sc

0)
+ ⊆ (Sc)+ .

From this we deduce that Sc
0 ⊆ Sc so B ∈ (Sc)++.

On the other hand, if B ∈ (Sc)++ then (Sc)+ ∈ N +
S,U (B) so B ∈ intN +

S,U
(Sc)+. �

The following concept was introduced in [6] in order to characterize when S +-convergence is topological on C L0(X).

Definition 2.4. ([6, Definition 5.1]) Let S be an ideal in a quasi-uniform space (X, U ) and M ⊆ P0(X). We say that S ∈ S
is shielded from the family M by S if there exists S0 ∈ S such that if A ∈ M and A ∩ S0 = ∅ then A/δU S. In this case, we
say that S0 is a shield for S.

Definition 2.5. Let S be an ideal in a quasi-uniform space (X, U ). The upper S -proximal topology τ++
S on P0(X) is generated

by all sets of the form (Sc)++ = {A ∈ P0(X): U (A) ⊆ Sc for some U ∈ U } = {A ∈ P0(X): A/δU S} where S ∈ S.

The following result characterizes when the pretopology N +
S,U is a topology. Of course, this yields the characterization

of when S +-convergence is topological. Furthermore, in this case, the topology compatible with S +-convergence is nothing
else but the upper S -proximal topology τ++

S as was first observed in [11] (compare also with [32, Theorem 2.1] and [35,
Theorem 3.5]).

Theorem 2.6. Let S be an ideal in a quasi-uniform space (X, U ) and F0(X) ⊆ M ⊆ P0(X). The following statements are equivalent:

1. S +-convergence is topological on M;
2. N +

S,U is a topology on M;

3. (Sc)++ is τ (N +
S,U )-open for all S ∈ S (this implies that S + = τ++

S );
4. S is shielded from the family M by S for all non-dense S ∈ S.

Proof. (1) ⇔ (2). This is obvious since by Lemma 2.2, S +-convergence is compatible with N +
S,U .

(2) ⇒ (3). By Lemma 2.3, we know that intN +
S,U

(Sc)+ = (Sc)++ . Furthermore, it is well known [20] that a pretopology

is a topology if the interior of the neighborhoods are open sets. This implies that (Sc)++ is τ (N +
S,U )-open.

It is clear that it is always true that τ (N +
S,U ) � S + � τ++

S . To show the last inequality, let (Aλ)λ∈Λ be a net τ++
S -

convergent to A and let S ∈ S, U ∈ U . Suppose that S0 = S\U (A) �= ∅ (otherwise, the proof is finished). Then Aλ ∈ (Sc
0)

++
residually, so Aλ ∩ S0 = ∅ residually. Hence Aλ ∩ S ⊆ Aλ ∩ U (A) ⊆ U (A) residually.

Since (Sc)++ is τ (N +
S,U )-open then τ (N +

S,U ) = S + = τ++
S .

(3) ⇒ (4). Let S ∈ S which is not τ (U )-dense. Then we can find A ∈ (Sc)++ . By hypothesis, (Sc)++ ∈ N +
S,U (A) so there

exists S0 ∈ S such that A ∈ (Sc
0)

++ and (Sc
0)

+ ⊆ (Sc)++. Therefore, if B ∩ S0 = ∅ then B/δU S.

(4) ⇒ (3). Let S ∈ S be non-dense and let S0 ∈ S be a shield for S. Since F0(X) ⊆ M, then S ⊆ S0. Let A ∈ (Sc)++ . If
A ∈ (Sc

0)
++ then (Sc)++ ∈ N +

S,U (A) since (Sc
0)

+ ⊆ (Sc)++.

Otherwise, U (A) ∩ S0 �= ∅ for all U ∈ U . Let V ∈ U such that V 2(A) ∩ S = ∅. Then S1 = S0\V (A) ∈ S. It is clear that
A ∈ (Sc )++ . Furthermore, S ⊆ S1 since V (A) ∩ S = ∅ and S ⊆ S0. Now we prove that (Sc )+ ⊆ (Sc)++. Let B ∈ (Sc )+
1 1 1
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where B ∈ M. If B ∩ S0 = ∅ there is nothing to prove because since S0 is a shield for S then B/δU S. If B ∩ S0 �= ∅ then
B ∩ S0 ⊆ V (A) ∩ S0 since B ∩ S1 = ∅. Furthermore V (V (A) ∩ S0) ⊆ V 2(A) and V 2(A) ∩ S = ∅ so V (B ∩ S0) ∩ S = ∅, i.e.
B ∩ S0/δU S. Furthermore B\S0/δU S since B\S0 ∈ (Sc

0)
+ ⊆ (Sc)++. Hence [(B ∩ S0) ∪ (B\S0)]/δU S, i.e. B/δU S so we have

proved that (Sc
1)

+ ⊆ (Sc)++ and since A ∈ (Sc
1)

+ this means that (Sc)++ ∈ N +
S,U (A).

Therefore, (Sc)++ ∈ N +
S,U (A) for all A ∈ (Sc)++ so (Sc)++ is τ (N +

S,U )-open.

If S is dense then (Sc)++ = ∅ ∈ τ (N +
S,U ).

(3) ⇒ (2) is obvious. �
In a quasi-pseudometric space, let us denote by Bd−1 (X) the set of all d−1-bounded sets. Then we consider the asymmet-

ric version τ+
AW of the upper Attouch–Wets topology generated by the quasi-uniformity U +

d,Bd−1 (X)
whose basic entourages

are of the form U+
ε,S = {(A, B) ∈ P0(X) × P0(X): S ∩ B ⊆ Bd(A, ε)} where S is d−1-bounded and ε > 0.

Corollary 2.7. Let (X,d) be a quasi-pseudometric space and let F0(X) ⊆ M ⊆ P0(X). Then τ+
AW = τ++

Bd−1 (X) on M.

Proof. This is obvious since every d−1-bounded set is shielded from M by Bd−1(X). �
The next example shows that, in general, condition (4) of the above theorem is not true for dense sets.

Example 2.8. Let us consider the following quasi-metric defined on N:

d(n,m) =
{ 1

m if n < m,

1 if n > m,

0 if n = m.

Let S = P0({4,5,6, . . .}) and let us consider the pretopology N +
Ud,S on P0(N). If S ∈ S is τ (d)-dense then (Sc)++ = ∅ so

(Sc)++ ∈ τ (N +
Ud,S ). If S is not τ (d)-dense then S is finite so it is easy to see that (Sc)++ = (Sc)+ ∈ τ (N +

Ud,S ). This shows

that N +
Ud,S is a topology.

However, taking S = {4,5,6, . . .} ∈ S , if A ∩ S = ∅ then d(A, S) = 0.

We observe that the above example is T1 but not Hausdorff. Under this assumption, we can prove the following.

Lemma 2.9. ([6, Lemma 4.1]) Let S be an ideal in a Hausdorff quasi-uniform space (X, U ) which contains a dense set. Let F0(X) ⊆
M ⊆ P0(X). Then N +

U ,S is a topology on M if and only if S = P0(X).

Proof. Suppose that N +
U ,S is a topology on M so by Theorem 2.6 every non-dense S ∈ S is shielded from M by S. Let

S ∈ S be a dense set. If S is a singleton then X = S since the space is Hausdorff so S = P0(X) trivially. Suppose that
we can find two different points s1, s2 in S. Since (X, U ) is Hausdorff there exists U ∈ U such that U (s1) ∩ U (s2) = ∅.

Then S = S1 ∪ S2 where S1 = (S\U (s1)) ∈ S and S2 = (S\U (s2)) ∈ S . Furthermore, neither S1 nor S2 are dense sets so by
assumption they are shielded from M by S. This immediately implies that S is shielded from M by S. Let S0 ∈ S such
that if A ∩ S0 = ∅ then A/δU S, where A ∈ M. Since S is dense the only possibility is that S0 = X .

The converse is obvious because we obtain a pretopology compatible with the Hausdorff quasi-uniform topology. �
Definition 2.10. Let S be an ideal in a quasi-uniform space (X, U ). We say that:

• S is (almost) closed under U−1-small enlargements if for each (non-dense) S ∈ S there exists U ∈ U such that
U−1(S) ∈ S;

• S is (almost) closed under U -small enlargements if for each (non-dense) S ∈ S there exists U ∈ U such that U (S) ∈ S;
• S is an E-ideal if S is closed under U -small enlargements and under U −1-small enlargements.

Note that if S is an E-ideal, then S ∈ S for each S ∈ S (where the closure can be taken with respect to τ (U ) and also
with respect to τ (U −1)).

Corollary 2.11. Let S be an ideal in a quasi-uniform space (X, U ). Then S +-convergence is topological on P0(X) if and only if S is
almost closed under U −1-small enlargements.

Proof. It is obvious that if S is almost closed under U −1-small enlargements the condition (4) of Theorem 2.6 holds.
Now, suppose that condition (4) is true. Let S ∈ S non-dense, then there exists U ∈ U such that X\U−1(S) �= ∅. Let

A ⊆ X\U−1(S). Then A ∈ (Sc)++ and since N + is a topology there exists S0 ∈ S such that A ∈ (Sc )++ , (Sc )+ ⊆ (Sc)+
S,U 0 0
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and (Sc
0)

+ ∈ N +
S,U (B) for all B ⊆ Sc

0. If V −1(S) �⊆ S0 for all V ∈ U let xV ∈ V −1(S) ∩ Sc
0. Then C = {xV : V ∈ U } ⊆ Sc

0 so

(Sc
0)

+ ∈ N +
S,U (C). Hence C ∈ (Sc

0)
++ so W (C)∩ S0 = ∅ for some W ∈ U . However, W (xW )∩ S �= ∅ so W (xW )∩ S0 �= ∅ since

S ⊆ S0. Of course this is a contradiction, hence we can find V ∈ U with V −1(S) ⊆ S0 so V −1(S) ∈ S. �
Corollary 2.12. Let S be an ideal with a closed base in a quasi-uniform space (X, U ). Then S +-convergence is topological on K0(X),
so on F0(X).

Proof. Given S ∈ S , choose a closed set S0 ∈ S such that S ⊆ S0. Pick up A ∈ K0(X) verifying A ∩ S0 = ∅ and for each a ∈ A
let Ua ∈ U such that Ua(a) ∩ S0 = ∅. Since A is compact then A ⊆ ⋃n

i=1 Uai (ai) for a finite subset {a1, . . . ,an} ⊆ A. It is
obvious that A/δU S0 so A/δU S . The proof follows from Theorem 2.6. �
Corollary 2.13. ([6, Theorem 5.9]) Let S be an ideal in a quasi-uniform space (X, U ). Then S +-convergence is topological on C L0(X)

if and only if S is shielded from closed sets by S for every non-dense S ∈ S.

Corollary 2.14. Let (X, U ) be a uniform space. Then the upper Fell topology coincides with R0(X)+-convergence on C L0(X), where
R0(X) denotes the bornology of all the relatively compact sets.

Corollary 2.15. Let (X, U ) be a quasi-uniform space. Then F0(X)+-convergence is topological on C L−1
0 (X), the family of all nonempty

τ (U −1)-closed subsets.

2.2. Lower half

Let S be an ideal in a quasi-uniform space (X, U ). For each A ∈ P0(X) define B−
S,U (A) = {⋂x∈S U (x)−: S ∈ S, S ⊆ A

and U ∈ U } where U (x)− = {A ∈ P0(X): A ∩ U (x) �= ∅}. It is obvious that B−
S,U = {B−

S,U (A): A ∈ P0(X)} is a base for a

pretopology (see [29, Theorem 2.11]) N −
S,U = {N −

S,U (A): A ∈ P0(X)} on P0(X).

Observe that
⋂

x∈A∩S U (x)− = {B ∈ P0(X): A ∩ S ⊆ U−1(B)} whenever A ∩ S �= ∅. Consequently, this is a different pre-
sentation of the neighborhood system of the pretopology λ(S −) introduced in [29]. We have chosen this aspect of the
neighborhoods in order to present S −-convergence as a certain kind of hit topology [1,37]. In fact, when S = F0(X) then
N −

S,U is nothing else but the neighborhood system for the lower Vietoris topology.
We also remark that the above pretopology is a generalization of the lower locally finite topology as defined in [33,38].
The following result, whose easy proof is omitted, reconciles the pretopology N −

S,U with S −-convergence.

Lemma 2.16. ([29, Lemma 2.10]) Let S be an ideal in a quasi-uniform space (X, U ) and F0(X) ⊆ M ⊆ P0(X). Then the pretopology
N −

S,U is compatible with S −-convergence on M.

Lemma 2.17. Let S be an ideal in a quasi-uniform space (X, U ). Given U ∈ U and S ∈ S

intN −
S,U

(⋂
x∈S

U (x)−
)

= {
B ∈ P0(X): there exist S0 ∈ S contained in B and V ∈ U such that if S0 ⊆ V −1(A) then S ⊆ U−1(A)

}
.

Proof. Let B ∈ intN −
S,U

(
⋂

x∈S U (x)−). Therefore,
⋂

x∈S U (x)− ∈ N −
S,U (B) so there exist V ∈ U and S0 ∈ S such that S0 ⊆ B

and B ∈ ⋂
x∈S0

V (x)− ⊆ ⋂
x∈S U (x)− . Suppose that S0 ⊆ V −1(A). Then A ∈ ⋂

x∈S0
V (x)− so A ∈ ⋂

x∈S U (x)− , i.e. S ⊆ U−1(A).

Conversely, let B ∈ P0(X) such that there exist S0 ∈ S and V ∈ U verifying that S0 ⊆ B and if S0 ⊆ V −1(A) then
S ⊆ U−1(A). Hence B ∈ ⋂

x∈S0
V (x)− ⊆ ⋂

x∈S U (x)−. Therefore, B ∈ intN −
S,U

(
⋂

x∈S U (x)−). �
Definition 2.18. ([11, Definition 25]) Let (X, U ) be a quasi-uniform space and A ⊆ X . Given U ∈ U , the U -approximate
projection of A is the multifunction U − ProjA : X ⇒ P (X) given by

U − ProjA(x) = U (x) ∩ A.

In the next theorem, we will also use the following notation:⋂
x∈S

U (x)−S = {
B ∈ P0(X): there exists S0 ∈ S such that S0 ⊆ B and S ⊆ U−1(S0)

}
.
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Theorem 2.19. ([6, Theorem 3.3], [29, Corollary 2.12]) Let S be an ideal in a quasi-uniform space (X, U ) and F0(X) ⊆ M ⊆ P0(X).

Suppose that S ⊆ M. The following statements are equivalent:

1. S −-convergence is topological on M;
2. N −

S,U is a topology on M;

3. intN −
S,U

(
⋂

x∈S U (x)−) is τ (N −
S,U )-open whenever S ∈ S and U ∈ U ;

4. given S ∈ S and U ∈ U there exists V ∈ U such that, if A ∈ M and S ⊆ V −1(A), there exists S0 ∈ S with S0 ⊆ A and S ⊆
U−1(S0);

5. given S ∈ S and U ∈ U there exists V ∈ U such that if V − ProjA(s) is nonempty for every s ∈ S where A ∈ M then U − ProjA
has a selection f such that f (S) ∈ S ;

6. N −
S,U (A) is generated by {⋂x∈S U (x)−S : S ∈ S, S ⊆ A, U ∈ U }.

Proof. (1) ⇔ (2). This is obvious since by Lemma 2.16, S −-convergence is compatible with N −
S,U .

(2) ⇔ (3). As we have commented before, a pretopology forms a neighborhood system for a topology if the interior of
the neighborhoods are open sets. Therefore intN −

S,U
(
⋂

x∈S U (x)−) is τ (N −
S,U )-open.

(3) ⇒ (4). Given U ∈ U and S ∈ S , it is clear that S ∈ intN −
S,U

(
⋂

x∈S U (x)−). Since this set is τ (N −
S,U )-open we can

find V ∈ U and S ′ ∈ S such that S ′ ⊆ S and
⋂

x∈S ′ V (x)− ⊆ intN −
S,U

(
⋂

x∈S U (x)−). If A ∈ M and S ′ ⊆ S ⊆ V −1(A) then

A ∈ ⋂
x∈S ′ V (x)− ⊆ intN −

S,U
(
⋂

x∈S U (x)−) so by Lemma 2.17 there exists S0 ∈ S with S0 ⊆ A and S ⊆ U−1(S0).

(4) ⇒ (3). Let B ∈ intN −
S,U

(
⋂

x∈S U (x)−). Then there exist S0 ∈ S and V ∈ U such that S0 ⊆ B and
⋂

x∈S0
V (x)− ⊆⋂

x∈S U (x)−. Let W ′ ∈ U such that W ′2 ⊆ V . By assumption we can find W ∈ U such that W ⊆ W ′ and if S0 ⊆ W −1(A)

there exists S ′ ∈ S with S ′ ⊆ A and S0 ⊆ W ′−1(S ′).
We show that

⋂
x∈S0

W (x)− ⊆ intN −
S,U

(
⋂

x∈S U (x)−) which implies that intN −
S,U

(
⋂

x∈S U (x)−) ∈ N −
S,U (B).

Let A ∈ ⋂
x∈S0

W (x)− . Then S0 ⊆ W −1(A) so there exists S ′ ∈ S with S ′ ⊆ A and S0 ⊆ W ′−1(S ′). If B ∈ ⋂
x∈S ′ W (x)−

then S ′ ⊆ W −1(B) so S0 ⊆ W ′−1(S ′) ⊆ (W ′ ◦ W )−1(B) ⊆ V −1(B), i.e. B ∈ ⋂
x∈S0

V (x)− ⊆ ⋂
x∈S U (x)− . Consequently⋂

x∈S ′ W (x)− ⊆ ⋂
x∈S U (x)− so

⋂
x∈S U (x)− ∈ N −

S,U (A), which finishes the proof.

(4) ⇔ (5). This equivalence follows from the following facts: S ⊆ V −1(A) is equivalent to assert that V − ProjA(s) is
nonempty for every s ∈ S; the existence of S0 ∈ S verifying S0 ⊆ A and S ⊆ U−1(S0) is equivalent to the existence of a
selection f of U − ProjA such that f (S) ∈ S.

(4) ⇔ (6). It is clear that given A ∈ M, U ∈ U and S ∈ S with S ⊆ A then
⋂

x∈S U (x)−S ⊆ ⋂
x∈S U (x)−. On the other

hand, by assumption, there exists V ∈ U such that if B ∈ M and S ⊆ V −1(B) there exists S0 ∈ S verifying S0 ⊆ B and
S ⊆ U−1(S0). Therefore,

⋂
x∈S V (x)− ⊆ ⋂

x∈S U (x)−S .

The converse follows also easily. �
Remark 2.20. We observe that the fact that S ⊆ M is only used in the implication (3) ⇒ (4). This implication is also valid
if S ∈ M for all S ∈ S.

Example 2.21. Let (X, U ) be a quasi-uniform space. A subset A of X is called U −1-separated [16] if there exist U ∈ U and
an ordinal γ such that A = {aα: α < γ } and aβ /∈ U−1(aα) whenever α < β < γ . Let D be the family of finite unions of
U −1-separated sets. It is easy to see that D is a bornology.

Let U ∈ U and D ∈ D . Let V ∈ U verifying that V 2 ⊆ U and suppose that D ⊆ V −1(A). Suppose that A = {xα: α < γ }
where γ is an ordinal. Then define y1 = x1 and for each β < γ define by transfinite recursion yβ = xβ0 where β0 = min{α <

γ : xα ∈ A\⋃
λ<β V −1(yλ)}. Then it is easy to see that D0 = {yβ : β < γ } is a V −1-separated subset of A (so D0 ∈ D) and

that A ⊆ V −1(D0). Then D ⊆ V −1(A) ⊆ V −2(D0) ⊆ U−1(D0).
We have shown that D verifies condition (4) of the above theorem so N −

D,U is the neighborhood system for a topology.

In the following, we prove that τ (N −
D,U ) = τ (U −

H ). Naimpally [38, Lemma 3.4] was the first to prove this equality for

uniformities. Let U ∈ U and A ∈ P0(X). Let V ∈ U with V 2 ⊆ U and let D be a maximal V −1-separated subset of A.
Then A ∈ ⋂

x∈D V (x)− ⊆ U−
H (A). In fact, if B ∈ ⋂

x∈D V (x)− then D ⊆ V −1(B). Furthermore, A ⊆ V −1(D) so A ⊆ V −2(B) ⊆
U−1(B).

Now, let D be a V -separated subset of A and U ∈ U . Then if A ⊆ U−1(B) we deduce that D ⊆ U−1(B), i.e. B ∈⋂
x∈D U (x)−. Therefore, U−

H (A) ⊆ ⋂
x∈D U (x)−.

Corollary 2.22. Let (X, U ) be a quasi-uniform space and F0(X) ⊆ M ⊆ P0(X). Then F0(X)−-convergence is topological on M and
coincides with the lower Vietoris topology.

Corollary 2.23. Let S be an ideal in a quasi-uniform space (X, U ) closed under U -enlargements. Then S −-convergence is topological
on P0(X).
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Proof. Let U ∈ U and S ∈ S. By assumption, there exists V ∈ U such that V ⊆ U and V (S) ∈ S. Then if S ⊆ V −1(A), the set
S0 = V (S) ∩ A belongs to S and it is obvious that S ⊆ V −1(S0) ⊆ U−1(S0). Therefore, condition (4) of Theorem 2.19 holds
so S −-convergence is topological. �

Observe that, in general, the reverse implication is not true. It is enough to consider the real line endowed with the
usual metric and with the bornology of all finite subsets. Then by Corollary 2.22, S −-convergence is topological on P0(R)

but the bornology is not closed under small enlargements.

Corollary 2.24. Let S be an ideal in a quasi-uniform space (X, U ) which contains the singletons. Then S −-convergence is topological
on K∗

0(X), the family of all nonempty compact subsets of (X, τ (U ∗)).

Proof. Let S ∈ S and U ∈ U . Let V ∈ U such that V 2 ⊆ U and suppose that S ⊆ V −1(A) where A is compact. Let F =
{a1, . . . ,an} ⊆ A such that A ⊆ V s(F ). Then S ⊆ V −2(F ) ⊆ U−1(F ). This implies that condition (4) of Theorem 2.19 is
verified so the convergence is topological. �
Corollary 2.25. Let S be an ideal in a quasi-uniform space (X, U ) such that F0(X) ⊆ S. Then S −-convergence is topological on
F0(X) and coincides with the lower Vietoris topology.

2.3. Bilateral results

Let S be an ideal in a quasi-uniform space (X, U ). For each A ∈ P0(X) define B S,U (A) = {(Sc)+ ∩ ⋂
x∈S ′ U (x)−: A ∈

(Sc)++, S ′ ⊆ A and S, S ′ ∈ S}. It is obvious that B S,U = {B S,U (A): A ∈ P0(X)} is a base for a pretopology NS,U =
{NS,U (A): A ∈ P0(X)} on P0(X).

Putting together Lemmas 2.2 and 2.16 we obtain the following.

Lemma 2.26. Let S be an ideal in a quasi-uniform space (X, U ). Then the pretopology N S,U is compatible with S -convergence.

Theorem 2.27. ([6, Theorem 5.16]) Let S be an ideal in a quasi-uniform space (X, U ) and F0(X) ⊆ M ⊆ P0(X). The following
statements are equivalent:

1. S -convergence is topological on M;
2. NS,U is a topology on M;
3. • S is shielded from the family M by S for all non-dense S ∈ S ;

• given S ∈ S and U ∈ U there exists V ∈ U such that if A ∈ M and S ⊆ V −1(A) there exists S0 ∈ S with S0 ⊆ A and S ⊆
U−1(S0).

From the above results, we can obtain a lot of consequences. We only present here two of them.

Corollary 2.28. Let S be an E-ideal in a quasi-uniform space (X, U ). Then S -convergence is topological on P0(X).

Corollary 2.29. Let (X, U ) be a quasi-uniform space. Then F0(X)-convergence is topological on C L−1
0 (X), the family of all nonempty

τ (U −1)-closed subsets.

2.4. Quasi-uniformities compatible with bornological convergences

In [29], the authors introduce a natural family of sets which under some assumptions is the base for a uniform structure
compatible with the bornological convergence. We provide an asymmetric version of those results.

Let S be an ideal in a quasi-uniform space. For each U ∈ U and for each S ∈ S let us define:

U+
S = {

(A, B) ∈ P0(X) × P0(X): B ∩ S ⊆ U (A)
};

U−
S = {

(A, B) ∈ P0(X) × P0(X): A ∩ S ⊆ U−1(B)
};

U S = U+
S ∩ U−

S .

We set U +
S , U −

S and U S the filters which have as a base {U+
S : U ∈ U , S ∈ S}, {U−

S : U ∈ U , S ∈ S} and {U S : U ∈ U , S ∈ S},
respectively.

In the following, we characterize when the three above structures are quasi-uniformities.

Proposition 2.30. Let S be an ideal and (X, U ) a quasi-uniform space. Suppose that for each S ∈ S there exist U ∈ U and S ′ ∈ S with
S ⊆ S ′ such that

⋂
x∈S ′ U (x) = ∅.
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1. If U +
S is a quasi-uniformity then S is closed under U −1-small enlargements.

2. If U −
S is a quasi-uniformity then S is closed under U -small enlargements.

3. If U S is a quasi-uniformity then S is an E-ideal.

Proof. Suppose that U +
S is a quasi-uniformity and that there exists S0 ∈ S with U−1(S0) /∈ S for each U ∈ U . Let U ∈ U and

S ∈ S with S0 ⊆ S and such that
⋂

x∈S U (x) = ∅. Since U +
S is a quasi-uniformity, there exist W ∈ U and S1 ∈ S such that

(W +
S1

)2 ⊆ U+
S . Since W −1(S) � S1, there exists z ∈ W −1(S) \ S1, so we can find x ∈ S such that x ∈ W (z). By hypothesis,

there exists y ∈ S such that x /∈ U (y). Let A = {x}, B = {z} and C = {y}. Then A ∩ S1 ⊆ {x} ⊆ W (B) and B ∩ S1 = ∅ ⊆ W (C).
It follows that (C, A) ∈ (W +

S1
)2 ⊆ U+

S and hence A ∈ U+
S (C), that is, x ∈ U (y), a contradiction. Therefore there exists U ∈ U

with U−1(S0) ∈ S whence S is closed under U −1-small enlargements.
The second item follows similarly and the third item is a consequence of the first and second ones. �

Proposition 2.31. ([29]) Let S be an ideal and (X, U ) a quasi-uniform space.

1. If S is closed under U -small enlargements then U −
S is a quasi-uniformity.

2. If S is closed under U −1-small enlargements then U +
S is a quasi-uniformity.

3. If S is an E-ideal then U S is a quasi-uniformity.
4. If (X, U ) is Hausdorff and U −

S is a quasi-uniformity then S is closed under U -small enlargements.
5. If (X, U ) is Hausdorff and U +

S is a quasi-uniformity then S is closed under U −1-small enlargements.
6. If (X, U ) is Hausdorff and U S is a quasi-uniformity then S is an E-ideal.

Proof. Suppose that S is closed under U -small enlargements.
Let U ∈ U and S ∈ S . Take V ∈ U with V 2 ⊆ U and V (S) ∈ S . Let us prove that (V −

V (S))
2 ⊆ U−

S . Let A, B, C ⊆ X with

C ∈ V −
V (S)(B) and B ∈ V −

V (S)(A). Then B ∩ V (S) ⊆ V −1(C) and A ∩ V (S) ⊆ V −1(B). Let x ∈ A ∩ S , then x ∈ V −1(B) so there

exists b ∈ B with x ∈ V −1(b). Now b ∈ V (x) ∩ B ⊆ V (S) ∩ B ⊆ V −1(C), and hence x ∈ V −2(C) ⊆ U−1(C). It follows that
A ∩ S ⊆ U−1(C), that is, C ∈ U−

S (A). Therefore U −
S is a quasi-uniformity.

The second item follows similarly and the third item is a consequence of the first and second ones.
The rest of the items follows from the previous proposition. �

3. Precompactness, total boundedness and compactness of bornological structures

This section is devoted to study precompactness, total boundedness and compactness of the filter U S . Although this
filter is not always a quasi-uniformity, the aforementioned notions can be extended to this setting.

Definition 3.1. Let (X, U ) be a quasi-uniform space and B ⊆ P0(X). We say that A ⊆ X is B-weakly precompact if for every
U ∈ U we can find {B1, . . . , Bn} ⊆ B such that A ⊆ ⋃n

i=1 U (Bi).

Definition 3.2. Let (X, U ) be a quasi-uniform space and B ⊆ X . We say that A ⊆ X is B-precompact if for every U ∈ U we
can find {b1, . . . ,bn} ⊆ B such that A ⊆ ⋃n

i=1 U (bi).

Proposition 3.3. Let S be an ideal in a quasi-uniform space (X, U ) and M a nonempty subset of P0(X) which covers every element
of S . Let B ⊆ M be closed under finite unions. Then (M, U +

S ) is B-precompact if and only if S is B-weakly precompact for all S ∈ S.

Proof. Let S ∈ S and U ∈ U . Then there exists {B1, . . . , Bn} ⊆ B such that M = ⋃n
i=1 U+

S (Bi). Since S can be covered by
elements of M given s ∈ S there exists As ∈ M such that s ∈ As ∈ U+

S (B j) for some j ∈ {1, . . . ,n}. Therefore, s ∈ As ∩ S ⊆
U (B j) so S ⊆ ⋃n

i=1 U (B j).

Conversely, if S ⊆ B, given U ∈ U and S ∈ S then M = U+
S (S). Otherwise, suppose that there exists S ∈ S\B. Then

S ⊆ ⋃n
i=1 U (Bi) where Bi ∈ B for all i ∈ {1, . . . ,n}. It is easy to see that M = U+

S (
⋃n

i=1 Bi). �
Corollary 3.4. Let S be an ideal in a quasi-uniform space (X, U ). Then (P0(X), U +

S ) is S -precompact so precompact.

Corollary 3.5. Let S be an ideal in a quasi-uniform space (X, U ). Then (P0(X), U +
S ) is F0(X)-precompact if and only if S is X-

precompact for all S ∈ S.

Recall that given a family F of subsets of X , the grill of F is F � = {A ⊆ X: A ∩ F �= ∅ for all F ∈ F }.

Proposition 3.6. Let S be an ideal in a quasi-uniform space (X, U ) and M a nonempty subset of P0(X) such that S ⊆ M. Let
F0(X) ⊆ B ⊆ M. Then (M, U −) is B-precompact if and only if S is precompact for every S ∈ S ∩ M�.
S
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Proof. Suppose that (M, U −
S ) is B-precompact. Let S ∈ S such that A ∩ S �= ∅ for all A ∈ M. Given U ∈ U there exists

{B1, . . . , Bn} ⊆ B such that M ⊆ ⋃n
i=1 U−

S (Bi). Since B ⊆ M then Bi ∩ S �= ∅ so let bi ∈ Bi ∩ S for all i ∈ {1, . . . ,n}. Given
s ∈ S , since {s} ∈ M, there exists j ∈ {1, . . . ,n} with {s} ∈ U−

S (B j), i.e. B j ∩ S ⊆ U−1({s}). In particular b j ∈ U−1(s) so
S ⊆ ⋃n

i=1 U (bi).

Conversely, let S ∈ S and U ∈ U . If there exists A ∈ M such that A ∩ S = ∅ then M = U−
S (A). Otherwise, S ∩ A �= ∅

for all A ∈ M. Since S is precompact we can find a finite subset S0 of S such that S ⊆ ⋃
s∈S0

U (s). We show that M =⋃
F∈P0(S0) U−

S (F ). Given A ∈ M then A ∩ S �= ∅. Since A ∩ S ⊆ S there exists F ∈ P0(S0) such that U (x) ∩ (A ∩ S) �= ∅ for all

x ∈ F , i.e. F ∩ S ⊆ U−1(A ∩ S) ⊆ U−1(A) so A ∈ U−
S (F ). �

Corollary 3.7. Let S be an ideal in a quasi-uniform space (X, U ).

1. If X /∈ S then (P0(X), U −
S ) is precompact.

2. If X ∈ S then (P0(X), U −
S ) = (P0(X), U −

H ) is precompact if and only if X is precompact.

In the following, we prove some bilateral results.

Theorem 3.8. Let S be an ideal in a quasi-uniform space (X, U ). Then (P0(X), US ) is precompact if and only if for every S ∈ S and
U ∈ U there exists a finite set S0 ⊆ S such that S ⊆ U (S0) ∪ U (X\S).

If S is closed under U −1-small enlargements, the above condition reduces to S is X-precompact for all S ∈ S.

Proof. Suppose that (P0(X), US ) is precompact and let S ∈ S and U ∈ U . Then, there exists {A1, . . . , An} ⊆ P0(X) such that
P0(X) = ⋃n

i=1 U S (Ai). Let J ⊆ {1, . . . ,n} such that there exists s j ∈ A j ∩ S if and only if j ∈ J . Define S0 = ⋃
j∈ J s j . We see

that S ⊆ U (S0) ∪ U (X\S). Given s ∈ S we can find j ∈ {1, . . . ,n} such that {s} ∈ U S (A j). If j ∈ J then s ∈ U (s j) and if j /∈ J
then s ∈ U (A j) ⊆ U (X\S).

Conversely, let S ∈ S and U ∈ U . By assumption, there exists a finite subset S0 of S such that S ⊆ U (S0) ∪ U (X\S). Let
F = {B ∪ (X\S): B ∈ P0(S0)}. We show that P0(X) = ⋃

F∈F U S (F ). In fact, given A ∈ P0(X) we can find B ∈ F0(S0) (maybe
empty) such that A ∩ S ⊆ U (B) ∪ U (X\S) and U (b) ∩ A ∩ S �= ∅ for all b ∈ B. Then A ∈ U S (B ∪ (X\S)).

Now suppose that S is closed under U −1-small enlargements. It is clear that if S is X-precompact for all S ∈ S then the
above condition holds. Given S ∈ S and U ∈ U we can find V ∈ U with V ⊆ U and V −1(S) ∈ S . By assumption, there exits
a finite subset S0 of V −1(S) such that S ⊆ V −1(S) ⊆ V (S0) ∪ V (X\V −1(S)). Since S ∩ V (X\V −1(S)) = ∅ then S ⊆ V (S0) ⊆
U (S0). �

Our next example shows that, without the assumption of S been closed under U −1-small enlargements, the above
condition is not equivalent to X-precompactness.

Example 3.9. Let us consider the real line with the usual uniformity U . Let S = P0(Q). It is easy to see that for each S ∈ S
and U ∈ U , P0(R) = U S (R\Q). Therefore (P0(R), US ) is precompact. Nevertheless, Q is not R-precompact.

Definition 3.10. ([21,23]) Let (X, U ) be a quasi-uniform space.

• We say that (X, U ) is point-symmetric if for each x ∈ X and U ∈ U there exists V ∈ U such that V −1(x) ⊆ U (x).
• If S is an E-ideal in (X, U ), we say that (X, U ) is closed-symmetric for S if for each closed subset A of X , S ∈ S and

U ∈ U , there exists V ∈ U with V −1(A) ∩ S ⊆ U (A).
When S = P0(X), we simply say that (X, U ) is closed-symmetric.

We observe that every uniform space is point-symmetric and closed-symmetric.

Proposition 3.11. Let S be an E-ideal and (X, U ) a quasi-uniform space. (1) implies (2) and (2) and (3) are equivalent.

1. (C0(X), US ) is point-symmetric.
2. (X, U ) is closed-symmetric for S .
3. For each closed S ∈ S and each U ∈ U , there exists V ∈ U with V −1(S) ⊆ U (S).

Proof. (1) ⇒ (2). Let A ∈ C0(X), S ∈ S , U ∈ U . By (1) there exist V ∈ U and S1 ∈ S with V −1
S1

(A) ⊆ U S (A). Let W ∈ U with

W 2 ⊆ V . Then W −1(A) ⊆ V −1(A) so W −1(A) ∈ V −1
S1

(A) ⊆ U S (A) and hence W −1(A) ∩ S ⊆ U (A).

(2) ⇒ (3). Let S ∈ C0(X) ∩ S , U ∈ U and V ∈ U with V −1(S) ∈ S . By (2), there exists W ∈ U with W ⊆ V and W −1(S) ∩
V −1(S) ⊆ U (S). It follows that W −1(S) ⊆ U (S).
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(3) ⇒ (2). Let A ∈ C0(X), S ∈ S , U ∈ U and V ∈ U with V ⊆ U and V (S) ∈ S . By (3) there exists W ∈ U with W ⊆ V
and such that W −1(A ∩ V (S)) ⊆ U (A ∩ V (S)) (note that V (S) ∈ S and hence A ∩ V (S) ∈ S ). Then W −1(A ∩ V (S)) ⊆ U (A).

Let x ∈ W −1(A) ∩ S , then there exists a ∈ A with x ∈ W −1(a) and hence a ∈ W (x) ⊆ V (S). It follows that x ∈ W −1(A ∩
V (S)) ⊆ U (A). Therefore W −1(A) ∩ S ⊆ U (A). �
Corollary 3.12. Let S be an ideal closed under U −1-small enlargements in a closed-symmetric quasi-uniform space (X, U ). Then
(P0(X), US ) is precompact if and only if S is precompact for all S ∈ S.

Proof. Suppose that (P0(X), US ) is precompact. Let S ∈ S and U , V ∈ U with V 2 ⊆ U . Then S ∈ S and by assumption we
can find W ∈ U such that W ⊆ V and W −1(S) ⊆ V (S). Also, by the above corollary, there exists a finite subset S0 of X
such that S ⊆ W (S0). Then S0 ⊆ W −1(S) ⊆ V (S) so there exists a finite subset S ′

0 of S such that S0 ⊆ V (S ′
0). Consequently,

S ⊆ W (S0) ⊆ V (V (S ′
0)) ⊆ U (S ′

0).

The converse follows from the above results. �
The following example shows that if the space is not closed-symmetric, the above result could fail.

Example 3.13. Let us consider two countable families {An: n ∈ N} and {Bm: m ∈ N} of countable disjoint sets where An =
{an

k : k ∈ N} and Bm = {bm
q : q ∈ N} for all n,m ∈ N. Let X = ⋃

n∈N
(An ∪ Bn) and endow this set with the following quasi-

metric⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
(
ak

n,aq
m
) = d

(
ak

n,bq
m
) = 1 if k � q and n �= m,

d
(
ak

n,aq
m
) = d

(
ak

n,bq
m
) = d

(
bk

n,bq
m
) = k − q if k > q,

d
(
bk

n,aq
m
) = d

(
bk

n,bq
m
) = 1 if k < q,

d
(
bk

n,bk
m

) = 1

n
if n �= m,

d
(
bk

n,aq
m
) = 1

n
+ k − q if k � q,

d(x, y) = 0 if x = y

where m,n,k,q ∈ N. Then A1 is a closed set and for all ε > 0, Bd−1(A1, ε) �⊆ Bd(A1,1/2) = A since if 1/n < ε then b1
n ∈

Bd−1(A1, ε). Therefore, (X, Ud) is not closed-symmetric.
Now, let us define S = {A ⊆ X: A only intersects finitely many A′

ns and B ′
ns} which is an ideal closed under d−1-small

enlargements. It is easy to see that every S ∈ S is X-precompact so (P0(X), US ) is precompact by Theorem 3.8. However,
An is not precompact for all n ∈ N.

Corollary 3.14. Let (X, U ) be a uniform space and S an ideal closed under U -small enlargements. Then (P0(X), US ) is precompact if
and only if S is precompact for all S ∈ S.

The following result characterizes total boundedness of U S .

Theorem 3.15. Let S be an ideal in a quasi-uniform space (X, U ). The following statements are equivalent:

1. (P0(X), US ) is totally bounded;
2. (P0(X), U +

S ) is totally bounded;
3. (P0(X), U −

S ) is totally bounded;
4. S is totally bounded for all S ∈ S.

Proof. (1) ⇒ (4). Suppose that (P0(X), US ) is totally bounded and let S ∈ S and U ∈ U . Then we can find a finite number
{A1, . . . , An} of families of subsets of X such that P0(X) = ⋃n

i=1 Ai and Ai × Ai ⊆ U S for all i ∈ {1, . . . ,n}. Let us define
Si = {s ∈ S: {s} ∈ Ai}. It is clear that S = ⋃n

i=1 Si and Si × Si ⊆ U since given x, y ∈ Si then ({x}, {y}) ∈ Ai × Ai ⊆ U S so
{y} ∩ S = {y} ⊆ U ({x}), i.e. (x, y) ∈ U .

The implications (2) ⇒ (4) and (3) ⇒ (4) follow similarly.
(4) ⇒ (1). Let U ∈ U and S ∈ S. Since S is totally bounded we can find a finite number S1, . . . , Sn of subsets of S such

that S = ⋃n
i=1 Si and Si × Si ⊆ U . Let F = F0({1, . . . ,n}) and A F = {A ∈ P0(X): A ∩ S j �= ∅ ⇔ j ∈ F } for all F ∈ F . Then it

is straightforward to see that P0(X) = ⋃
F∈F A F ∪ P0(X\S). Furthermore, given (A, B) ∈ A F × A F for some F ∈ F then if

b ∈ B ∩ S there exists j ∈ F such that b ∈ B ∩ S j . Since A ∈ A F we can find a ∈ A ∩ S j . From S j × S j ⊆ U we obtain (a,b) ∈ U
so b ∈ U (A) which proves (A, B) ∈ U+

S . A similar reasoning shows (A, B) ∈ U−
S so (A, B) ∈ U S .

On the other hand, if (A, B) ∈ P0(X\S) × P0(X\S) then A ∩ S = ∅ and B ∩ S = ∅ which trivially implies that
(A, B) ∈ U S . �
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Remark 3.16. We observe that the above result is also true if we substitute P0(X) for an arbitrary subset of P0(X) which
contains the singletons.

In the following, we study the compactness of S -convergence beginning with the case when S is a bornology.

Proposition 3.17. Let (X, U ) be a compact quasi-uniform space and S an E-bornology. Then S = P0(X).

Proof. Since S is an E-bornology, for each S ∈ S there exists U S ∈ U such that U S (S) ∈ S and U S (S) is open. Then X =⋃{U S (S): S ∈ S}, and since X is compact there exists a finite subcovering. Since S is an ideal, X ∈ S and hence S =
P0(X). �
Corollary 3.18. Let S be an E-bornology in a quasi-uniform space (X, U ). If (P0(X), US ) is compact then S = P0(X).

Proof. By the previous proposition, it is enough to prove that X is compact. Let (xα)α∈Λ be a net in X , then ({xλ})λ∈Λ is a
net in P0(X) so it clusters to some A ∈ P0(X). Since S is a bornology, let a ∈ A ∩ S for some S ∈ S . It easily follows that a
is a cluster point of (xλ)λ∈Λ in X , and hence X is compact. �

The following corollary follows from the previous ones and the corresponding result for the Hausdorff quasi-uniformity
[26, Corollary 2].

Corollary 3.19. Let S be an E-bornology and (X, U ) a T1 quasi-uniform space. The following statements are equivalent:

1. (P0(X), US ) is compact;
2. (X, U ) is compact and U −1 is hereditarily precompact;
3. (X, U ) is compact, U −1 is hereditarily precompact and S = P0(X) (and hence U S is the Hausdorff quasi-uniformity U H ).

Next, we study the compactness of S -convergence for ideals. We also note that if S1, S2 ∈ S and S1 ⊆ S2, then U S2 ⊆ U S1

for each U ∈ U .

Lemma 3.20. Let S be an E-ideal in a quasi-uniform space (X, U ) and let F0(X) ⊆ M ⊆ P0(X). If (M, US ) is compact then S is
compact for each S ∈ S .

Proof. Let S ∈ S and suppose that S is closed. Let (xλ)λ∈Λ be a net in S . Then ({xλ})λ∈Λ is a net in M so there exists
A ∈ M such that ({xλ})λ∈Λ clusters to A. Let U ∈ U such that U−1(S) ∈ S . For each λ0 there exists λ � λ0 such that
{xλ} ∈ U S (A). It follows that xλ ∈ U (A) ∩ S and hence U−1(S) ∩ A �= ∅. Let a ∈ U−1(S) ∩ A.

Let us prove that a is a cluster point of (xλ)λ∈Λ . Given V ∈ U and β0, there exists β � β0 such that {xβ} ∈ V U−1(S)(A).
Then a ∈ A ∩ U−1(S) ⊆ V −1(xβ), so xβ ∈ V (a). Therefore a is a cluster point of (xλ)λ∈Λ and hence S is compact. �
Lemma 3.21. Let S be an E-ideal in a T1 quasi-uniform space (X, U ) and let F0(X) ⊆ M ⊆ P0(X). If (M, US ) is compact then
(S, U −1) is precompact for each S ∈ S .

Proof. Suppose that there exist S ∈ S , U0 ∈ U and points an ∈ S such that an+1 /∈ U−1
0 ({a1, . . . ,an}) for each n ∈ N. Let

An = {ai: i � n}. Since An ∈ M and M is compact, the sequence (An)n∈N clusters to some A ∈ M.
Let U ∈ U with U 2 ⊆ U0 and U−1(S) ∈ S . Let k ∈ N be such that Ak ∈ UU−1(S)(A). By Lemma 3.20, U−1(S) is compact

and hence point-symmetric, so there exists W ∈ U with W ⊆ U and such that W −1(ak+1) ∩ U−1(S) ⊆ U (ak+1). Since
W −1(ak+1) ⊆ U−1(S), then W −1(ak+1) ⊆ U (ak+1). Let n � k + 1 be such that An ∈ W U−1(S)(A). Then ak+1 ∈ An ∩ S ⊆ W (A),
so there exists a ∈ A such that ak+1 ∈ W (a). Then a ∈ W −1(ak+1) ⊆ U (ak+1), that is, ak+1 ∈ U−1(a). On the other hand,
a ∈ A ∩ W −1(ak+1) ⊆ A ∩ U−1(S) ⊆ U−1(Ak). It follows that ak+1 ∈ U−2(Ak) ⊆ U−1

0 (Ak), a contradiction. Therefore (S, U −1)

is precompact for each S ∈ S . �
To prove the following results, we will make use of the following concepts.

Definition 3.22. ([40,44]) A net (xλ)λ∈Λ is said to be left K-Cauchy if for each U ∈ U there exists λ0 ∈ Λ such that xλ2 ∈ U (xλ1 )

whenever λ2 � λ1 � λ.

The quasi-uniformity U is called left K-complete provided that each left K-Cauchy net converges.

Lemma 3.23. Let S be an E-ideal which is not a bornology in a quasi-uniform space (X, U ). Suppose that S is compact and (S, U −1)

is precompact for each S ∈ S . Then (P0(X), US ) is compact.
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Proof. Recall that a quasi-uniform space is compact if and only if it is precompact and left K-complete [25, Remark 2.6.16].
First, note that (P0(X), US ) is precompact by Theorem 3.8.
Let (Aλ)λ∈Λ be a left K-Cauchy net in P0(X). We consider two cases:

1. For each closed S ∈ S and λ0 there exists λ � λ0 with Aλ ∩ S = ∅.
Since S is not a bornology, there exists x /∈ ⋃

S . Let C = {x}, then (Aλ)λ∈Λ S -converges to C . Indeed, let U ∈ U , S ∈ S ,
λ0 and λ � λ0 such that Aλ ∩ S = ∅. Since C ∩ S = ∅, it follows that Aλ ∈ U S (C). Since (Aλ)λ∈Λ is left K-Cauchy, let λ0
be such that Aλ2 ∈ U S (Aλ1 ) for λ2 � λ1 � λ0. Let λ � λ0 with Aλ ∈ U S (C). If β � λ, Aβ ∈ U S (Aλ) ⊆ U 2

S (C). It follows
that (Aλ)λ∈Λ converges to C .

2. S1 �= ∅, with S1 = {S ∈ S : S is closed and there exists λ0 with Aλ ∩ S �= ∅ for each λ � λ0}.

Claim. Let S ∈ S be such that for each λ0 there exists λ � λ0 with Aλ ∩ S �= ∅. Then there exists S ′ ∈ S1 such that S ⊆ S ′ .

In order to prove that claim, let S ∈ S be such that for each λ0 there exists λ � λ0 with Aλ ∩ S �= ∅. Let U ∈ U with
U−1(S) ∈ S . Since (Aλ)λ∈Λ is left K-Cauchy, there exists λ0 such that Aλ2 ∈ U S (Aλ1 ) for each λ2 � λ1 � λ0. Let λ � λ0 and
let λ1 � λ with Aλ1 ∩ S �= ∅, then Aλ1 ∩ S ⊆ U (Aλ) and hence Aλ ∩ U−1(S) �= ∅ and this proves the claim with S ′ = U−1(S).

Now, let S ∈ S1, then (Aλ ∩ S)λ∈Λ is a net in the compact quasi-uniform space (P0(S), U H ) (note that it is compact by
Corollary 3.19). Let C S ∈ P0(S) be its cluster point. Let C = ⋃

S∈S1
C S , and let us prove that C is a cluster point of (Aλ)λ∈Λ .

Let U ∈ U , S ∈ S and λ0 ∈ Λ. We consider two cases:

(a) S /∈ S1.
(i) C ∩ S = ∅. Since S /∈ S1, then Aλ ∩ S = ∅ cofinally so Aλ ∈ U S (C) cofinally.

(ii) C ∩ S �= ∅. Let x ∈ C ∩ S , and let S1 ∈ S1 with x ∈ C S1 ∩ S . Let V ∈ U be such that V (S) ∈ S . Given λ1, since
C S1 is a τ (U H )-cluster point of (Aλ ∩ S1)λ∈Λ , there exists λ � λ1 such that x ∈ C S1 ⊆ V −1(Aλ ∩ S1). Since x ∈ S ,
Aλ ∩ V (S) �= ∅. By the claim, there exists S ′ ∈ S1 with S ⊆ S ′ .

(b) S ∈ S1 (if S /∈ S1 and C ∩ S �= ∅, we work with any S ′ ∈ S1 containing S instead of S).
Let x ∈ C ∩ S and V ∈ U with V 3 ⊆ U . Since C ∩ S ∈ S , it is precompact with respect to U −1, so there exist c1, . . . , cn ∈
C ∩ S such that C ∩ S ⊆ V −1({c1, . . . , cn}). Let Si ∈ S1 with ci ∈ C Si and let S ′ = ⋃n

i=1 Si . Since (Aλ)λ∈Λ is left K-Cauchy,
let β0 � λ0 be such that Aβ2 ∈ V S ′(Aβ1 ) for each β2 � β1 � β0.
Since C Si is a cluster point of (Aλ ∩ Si)λ∈Λ , for each i ∈ {1, . . . ,n} there exists λi � β0 with C Si ⊆ V −1(Aλi ∩ Si). Let β1 �
λi for i ∈ {1, . . . ,n}. If β � β1, C ∩ S ⊆ V −1({c1, . . . , cn}) ⊆ ⋃n

i=1 V −1(C Si ) ⊆ ⋃n
i=1 V −2(Aλi ∩ Si) ⊆ V −3(Aβ) ⊆ U−1(Aβ).

On the other hand, since C S is a cluster point of (Aλ ∩ S)λ∈Λ , there exists λ � β1 with Aλ ∩ S ⊆ V (C S ) ⊆ V (C). It follows
that Aλ ∈ U S (C).
We conclude that C is a cluster point of (Aλ)λ∈Λ and hence a limit point (a cluster point of a left K-Cauchy net is a
limit point). Therefore P0(X) is left K-complete, and since it is precompact, it is compact. �

Theorem 3.24. Let S be an E-ideal in a T1 quasi-uniform space (X, U ). Then:

• If S is not a bornology: (P0(X), US ) is compact if and only if S is compact and (S, U −1) is precompact for each S ∈ S .
• If S is a bornology: (P0(X), US ) is compact if and only if (X, U ) is compact, U −1 is hereditarily precompact and S = P0(X) (and

hence U S is the Hausdorff quasi-uniformity U H ).

Proof. It follows from the previous results. �
Corollary 3.25. Let S be an E-ideal in a Hausdorff uniform space (X, U ). Then (P0(X), US ) is compact if and only if S is compact for
each S ∈ S .

Note that if S is a bornology the latter condition is equivalent to X being compact (and U S being the Hausdorff uniformity U H ).

Now, we look for a characterization of the compactness of (K0(X), US ).

Corollary 3.26. Let S be an E-ideal in a T1 quasi-uniform space (X, U ). If (K0(X), US ) is compact then (P0(X), US ) is compact.

Proof. It follows from Lemmas 3.20 and 3.21 and Theorem 3.24. �
Lemma 3.27. Let (X, U ) be a quasi-uniform space, and let K be a compact subspace of (X, U ). Then clτ (U −1)(K ) is compact in (X, U ).

Proof. Let {O i: i ∈ I} be an open covering of clτ (U −1)(K ). Since K is compact, there exist {O i1 , . . . , O in } with K ⊆ ⋃n
k=1 O ik .

Since K is compact, there exists U ∈ U with K ⊆ U (K ) ⊆ ⋃n
k=1 O ik , and hence, since clτ (U −1)(K ) ⊆ U (K ), {O i1 , . . . , O in } is a

finite subcovering of clτ (U −1)(K ). �
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Proposition 3.28. Let S be an E-ideal and (X, U ) a quasi-uniform space. If (K0(X), US ) is compact then there exists a compact
subspace K of X such that

⋃
S ⊆ K .

Proof. By Lemma 3.20, S is compact for each S ∈ S , and hence (S)S∈S is a net in (K0(X), US ). Since (K0(X), US ) is
compact, the net has a cluster point K ∈ K0(X). For each U ∈ U and S0 ∈ S there exists S ∈ S with S ⊇ S0 and such that
S ∈ U S0 (K ). It follows that S0 = S ∩ S0 ⊆ U (K ) and hence

⋃
S ⊆ U (K ) for each U ∈ U , so

⋃
S ⊆ clτ (U −1)(K ). This completes

the proof, since clτ (U −1)(K ) is compact by Lemma 3.27. �
Proposition 3.29. Let S be an E-ideal in a quasi-uniform space (X, U ). If (P0(X), US ) is compact and there exists K ∈ K0(X) with⋃

S ⊆ K then (K0(X), US ) is compact.

Proof. Let (Kλ)λ∈Λ be a net in (K0(X), US ). Since (P0(X), US ) is compact, let A ∈ P0(X) be a cluster point of the net. It
easily follows that A is also a cluster point of the net, so we can assume that A is closed.

Let us prove that A ∩ K is a cluster point of (Kλ)λ∈Λ in (K0(X), US ).
First, note that A ∩ K is a closed subset of K , so it is compact. Let U0 ∈ U , S ∈ S , λ0 ∈ Λ and U ∈ U with U ⊆ U0 and

U−1(S) ∈ S . Then there exists λ � λ0 such that Kλ ∈ U S (A), that is, Kλ ∩ S ⊆ U (A) and A ∩ S ⊆ U−1(Kλ). It is clear that
A ∩ K ∩ S ⊆ U−1(Kλ).

In order to prove that Kλ ∩ S ⊆ U (A ∩ K ), let x ∈ Kλ ∩ S . There exists a ∈ A with x ∈ U (a). Then a ∈ U−1(x) ⊆ U−1(S) ⊆⋃
S ⊆ K , so x ∈ U (A ∩ K ). Therefore Kλ ∩ S ⊆ U (A ∩ K ) and hence A ∩ K is a cluster point of (Kλ)λ∈Λ .
Finally, note that if A ∩ K = ∅, by the previous reasoning it follows that Kλ ∩ S = ∅. Then we can take a ∈ A and {a} is a

cluster point of (Kλ)λ∈Λ . �
Theorem 3.30. Let S be an E-ideal in a T1 quasi-uniform space (X, U ). Then (K0(X), US ) is compact if and only if (P0(X), US ) is
compact and there exists K ∈ K0(X) with

⋃
S ⊆ K .

Corollary 3.31. Let S be an E-ideal in a Hausdorff quasi-uniform space (X, U ). The following statements are equivalent:

1. (K0(X), US ) is compact;
2. (P0(X), US ) is compact and

⋃
S is compact;

3.
⋃

S is compact and (S, U −1) is precompact for each S ∈ S .

Corollary 3.32. Let S be an E-ideal in a Hausdorff uniform space (X, U ). Then (K0(X), US ) is compact if and only if
⋃

S is compact.

The proof of the following result is straightforward (note that A ∈ U S (A) for each U ∈ U and S ∈ S ).

Proposition 3.33. Let S be an E-ideal in a quasi-uniform space (X, U ). Then (C0(X), US ) is compact if and only if so is (P0(X), US ).

4. Right K-completeness of bornological convergences

In this section, we study a certain notion of completeness for the quasi-uniformity compatible with a bornological con-
vergence. For quasi-uniform spaces, there exist many notions for completeness [25]. It has been proved [28,27] that the
notion which has a good behavior for hyperspaces is right K-completeness.

Definition 4.1. ([40,44]) A net (xλ)λ∈Λ is said to be right K-Cauchy if for each U ∈ U there exists λ0 ∈ Λ such that xλ1 ∈ U (xλ2 )

whenever λ2 � λ1 � λ.

The quasi-uniformity U is called right K-complete provided that each right K-Cauchy net converges.

This concept allows to obtain an elegant extension of the characterization due to Burdick [15] of those uniform spaces
which have a complete Hausdorff uniformity to the quasi-uniform setting [28] (see also [7] for a characterization of cofinal
completeness of the Hausdorff metric). Here, we obtain a similar characterization of the quasi-uniformity U S associated
with an E-ideal S .

We also recall some other concepts that will be useful.

Definition 4.2. Let (X, U ) be a quasi-uniform space.

• A net (xλ)λ∈Λ on (X, U ) is said to be U ∗-Cauchy if for each U ∈ U there exists λ0 ∈ Λ such that xλ1 ∈ U∗(xλ2 ) for all
λ2, λ1 � λ0;

• (X, U ) is said to be half complete if every U ∗-Cauchy net converges in (X, U ).
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Lemma 4.3. Let S be an E-bornology with X /∈ S in a quasi-uniform space (X, U ). Then there exists a U ∗
S -Cauchy net in F0(X)

without a cluster point in (P0(X), US ).

Proof. For each S ∈ S , let xS ∈ X \ S . If S ⊆ S1 then xS1 ∈ U∗
S (xS ). It follows that ({xS })S∈S is a U ∗

S -Cauchy net in F0(X).
Suppose that A ∈ P0(X) is a cluster point of ({xS})S∈S , and let a ∈ A. Since S is a bornology, there exists S ∈ S with

a ∈ S . Let U ∈ U with U (S) ∈ S , then there exists S0 ⊇ U (S) with xS0 ∈ U S (A). Therefore a ∈ A ∩ S ⊆ U−1(xS0 ) and hence
xS0 ∈ U (a) ⊆ U (S) ⊆ S0, a contradiction. �
Proposition 4.4. Let S be an E-bornology in a quasi-uniform space (X, U ) and F0(X) ⊆ M ⊆ P0(X). If (M, US ) is half complete
then S = P0(X).

Corollary 4.5. Let S be an E-bornology in a quasi-uniform space (X, U ) and F0(X) ⊆ M ⊆ P0(X). If (M, US ) is complete then
S = P0(X).

Corollary 4.6. Let S be an E-bornology in a quasi-uniform space (X, U ) and F0(X) ⊆ M ⊆ P0(X). If (M, US ) is compact then
S = P0(X).

Definition 4.7. We say that a filter F is stable in an ideal S of a quasi-uniform space (X, U ) if:

• there exists S ′ ∈ S with S ′ ∩ F �= ∅ for each F ∈ F , and
• for each U ∈ U and S ∈ S there exists F0 ∈ F such that F0 ∩ S ⊆ U (F ) for each F ∈ F .

The following two results and their proofs are based on [28, Lemma 6 and Proposition 6].

Lemma 4.8. Suppose that (X, U ) is a quasi-uniform space in which each stable filter in S has a cluster point. Let F be a stable filter in
S and C its set of cluster points. Then for each U ∈ U and S ∈ S there exists F ∈ F with F ∩ S ⊆ U (C).

Proof. Suppose that there exist U0 ∈ U and S ∈ S such that E ∩ S \ U 2
0(C) �= ∅ for each E ∈ F . In particular, note that

E ∩ S �= ∅ for each E ∈ F .
Let HU E = {a ∈ X: there is V ∈ U such that V 2 ⊆ U , V −2(a) ∩ U0(C) = ∅ and a ∈ E ∩ ⋂

F∈F V (F )} for each E ∈ F and
U ∈ U .

First note that HU E �= ∅. To check this, let V ∈ U with V 2 ⊆ U ∩ U0. Since F is stable in S , there exists F0 ∈ F with
F0 ∩ S ⊆ ⋂

F∈F V (F ). Then F V = F0 ∩ E ∈ F , so there exists a ∈ S ∩ F V \ U 2
0(C). It follows that a ∈ HU E ∩ S .

On the other hand, it is clear that HU1 E1 ⊆ HU2 E2 whenever U1, U2 ∈ U with U1 ⊆ U2 and E1, E2 ∈ F with E1 ⊆ E2.
Thus {HU E : U ∈ U , E ∈ F } is a base for a filter H on X . Let us prove that H is stable in S . First, note that we have

already proved that HU E ∩ S �= ∅ for each U ∈ U and E ∈ F . Let U , V ∈ U , E ∈ F and S ′ ∈ S .
Let us prove that HU X ∩ S ′ ⊆ U (H V E ). Let a ∈ HU X ∩ S ′ , then there is W ∈ U such that W −1(S ′) ∈ S , W 2 ⊆ U , W −2(a)∩

U0(C) = ∅ and a ∈ ⋂
F∈F W (F ). Let Z ∈ U with Z 2 ⊆ V ∩W . Since F is stable in S , there exists F0 ∈ F with F0 ∩W −1(S ′) ⊆⋂

F∈F Z(F ). Define F Z = F0 ∩ E ∈ F . Since a ∈ W (F Z ), there exists y ∈ F Z ∩ W −1(a). It follows that Z−2(y) ⊆ W −2(a) and
hence Z−2(y)∩U0(C) = ∅. Finally y ∈ F Z ∩W −1(a) ⊆ F0 ∩W −1(S ′) ⊆ ⋂

F∈F Z(F ), and hence a ∈ W (y) ⊆ U (y) and y ∈ H V E ,
so a ∈ U (H V E).

Therefore H is stable in S , so, by hypothesis, it has a cluster point x ∈ X . Since HU F ⊆ F for each U ∈ U and F ∈ F , then
F ⊆ H and x ∈ C . But this is a contradiction, since HU E ∩ U0(C) = ∅ for each U ∈ U and E ∈ F . �
Theorem 4.9. Let S be an E-ideal in a quasi-uniform space (X, U ). Then (P0(X), US ) is right K-complete if and only if any stable filter
in S has a cluster point in (X, U ) and (S is not a bornology or X ∈ S ).

Proof. If S is a bornology and X /∈ S , then (P0(X), US ) is not half complete by Corollary 4.5. If X ∈ S , then U S is the
Hausdorff quasi-uniformity U H and the result follows from [28, Proposition 6] (note that if X ∈ S , a filter is stable in S if
and only if it is stable).

So we can assume that S is not a bornology.
Suppose that (P0(X), US ) is right K-complete, and let F be a stable filter in S . It easily follows that (F )F∈F is a right

K-Cauchy net in (P0(X), US ), so it S -converges to some C ∈ P0(X).
Let S ∈ S with S ∩ F �= ∅ for each F ∈ F , and let V ∈ U with V −1(S) ∈ S . Then there exists F0 ∈ F such that F ∈ V S(C)

for each F ⊆ F0, so F ∩ S ⊆ V (C). Since F ∩ S �= ∅, it follows that C ∩ V −1(S) �= ∅. Choose x ∈ C ∩ V −1(S).
Now we will prove that x is a cluster point of F . Let U ∈ U and W = U ∩ V . Then there exists F1 ∈ F such that

F ∈ W V −1(S)(C) for each F ⊆ F1. Hence x ∈ C ∩ V −1(S) ⊆ W −1(F ) ⊆ U−1(F ) for each F ⊆ F1. Therefore x is a cluster point
of F .

Conversely, suppose that any stable filter in S has a cluster point in (X, U ), and let (Aλ)λ∈Λ be a right K-Cauchy net in
P0(X).
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For each λ ∈ Λ, let Fλ = ⋃
β�λ Aβ and define F as the filter generated by the filter base {Fλ: λ ∈ Λ}. Now we consider

two cases:

1. For each S ∈ S there exists λ0 such that Aλ ∩ S = ∅ for each λ � λ0.
Since S is not a bornology, we can take x /∈ ⋃

S . It easily follows that (Aλ)λ∈Λ converges to {x}.
2. There exists S0 ∈ S such that for each λ0 there exists λ � λ0 with Aλ ∩ S0 �= ∅.

Let us prove that F is stable in S . It follows that Fλ ∩ S0 �= ∅ for each λ ∈ Λ, and hence F ∩ S0 �= ∅ for each F ∈ F .
Let U ∈ U and S ∈ S , then there exists λ0 such that Aλ1 ∈ U S (Aλ) for each λ � λ1 � λ0. Then Aλ1 ∩ S ⊆ U (Aλ) for each
λ � λ1 � λ0. It follows that Fλ0 ∩ S ⊆ U (Fβ) for each β ∈ Λ, and hence F is stable in S .
By hypothesis F has a cluster point x ∈ X . Let C ∈ P0(X) be the set of cluster points of F and let us prove that C is a
cluster point of the net (Aλ)λ∈Λ .
Let U , W ∈ U and S ∈ S such that W 2 ⊆ U and W (S) ∈ S . There exists λ0 such that Aλ1 ∈ W W (S)(Aλ2 ) for each
λ2 � λ1 � λ0. We prove that S ∩ C ⊆ U−1(Aλ) for each λ � λ0. Let x ∈ S ∩ C and λ � λ0. Then x ∈ W −1(Fλ). Let a ∈ Fλ

with x ∈ W −1(a), then a ∈ Aβ for some β � λ. It follows that a ∈ Aβ ∩ W (x) ⊆ Aβ ∩ W (S) ⊆ W −1(Aλ) and hence
x ∈ W −2(Aλ) ⊆ U−1(Aλ). Therefore S ∩ C ⊆ U−1(Aλ) for each λ � λ0.
On the other hand, by Lemma 4.8 there exists λ with Fλ ∩ S ⊆ U (C), and hence Aβ ∩ S ⊆ U (C) for each β � λ.
We conclude that (Aλ)λ∈Λ converges to C . �

Corollary 4.10. Let S be an E-ideal in a uniform space (X, U ). Then (P0(X), US ) is complete if and only if any stable filter in S has a
cluster point in (X, U ) and (S is not a bornology or X ∈ S ).
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[17] E. Čech, Topological Spaces, Publishing House of the Czechoslovak Academy of Sciences, 1966.
[18] G. Choquet, Convergences, Ann. Univ. Grenoble 23 (1947–1948) 55–112.
[19] S. Dolecki, An initiation into convergence theory, in: F. Mynard, E. Pearl (Eds.), Beyond Topology, in: Contemp. Math., vol. 486, 2009, pp. 115–162.
[20] S. Dolecki, G.H. Greco, Topologically maximal pretopologies, Studia Math. LXXVII (1984) 265–281.
[21] J. Deák, On the coincidence of some notions of quasi-uniform completeness defined by filter pairs, Studia Sci. Math. Hungar. 26 (1991) 411–413.
[22] J.M.G. Fell, A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space, Proc. Amer. Math. Soc. 13 (1962) 472–476.
[23] P. Fletcher, W.F. Lindgren, Quasi-Uniform Spaces, Marcel Dekker, New York, 1982.
[24] L.M. García-Raffi, S. Romaguera, E.A. Sánchez-Pérez, The Goldstine theorem for asymmetric normed linear spaces, Topology Appl. 156 (2009) 2284–

2291.
[25] H.P.A. Künzi, An introduction to quasi-uniform spaces, in: F. Mynard, E. Pearl (Eds.), Beyond Topology, in: Contemp. Math., vol. 486, 2009, pp. 501–569.
[26] H.P.A. Künzi, S. Romaguera, Well-quasi-ordering and the Hausdorff quasi-uniformity, Topology Appl. 85 (1998) 207–218.
[27] H.P.A. Künzi, S. Romaguera, Left K-completeness of the Hausdorff quasi-uniformity, Rostock. Math. Kolloq. 51 (1997) 167–176.
[28] H.P.A. Künzi, C. Ryser, The Bourbaki quasi-uniformity, Topology Proc. 20 (1995) 161–182.
[29] A. Lechicki, S. Levi, A. Spakowski, Bornological convergences, J. Math. Anal. Appl. 297 (2004) 751–770.
[30] N. Levine, W.J. Stager, On the hyper-space of a quasi-uniform space, Math. J. Okayama Univ. 15 (1971–1972) 101–106.
[31] R. Lucchetti, Convexity and Well-Posed Problems, CMS Books Math./Ouvrages Math. SMC, Springer, 2006.
[32] G. Di Maio, E. Meccariello, S. Naimpally, Uniformizing (proximal) � topologies, Topology Appl. 137 (2004) 99–113.
[33] G. Di Maio, E. Meccariello, S. Naimpally, Bombay hypertopologies, Appl. Gen. Topol. 4 (2003) 421–444.
[34] G. Di Maio, E. Meccariello, S. Naimpally, Graph topologies on closed multifunctions, Appl. Gen. Topol. 4 (2003) 445–465.
[35] G. Di Maio, S. Naimpally, Hit-and-far-miss topologies, Mat. Vesnik 60 (2008) 59–78.
[36] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951) 152–182.
[37] S. Naimpally, Proximity Approach to Problems in Topology and Analysis, Oldenbourg, Munich, 2009.
[38] S. Naimpally, All hypertopologies are hit-and-miss, Appl. Gen. Topol. 3 (2002) 45–53.
[39] H. Poppe, Eine Bemerkung über Trennungsaxiome in Räumen von abgeschlossenen Teilmengen topologischer Räume, Arch. Math. 16 (1965) 197–199.
[40] I.L. Reilly, P.V. Subrahmanyam, M.K. Vamanamurthy, Cauchy sequences in quasi-pseudo-metric spaces, Monatsh. Math. 93 (1982) 127–140.
[41] R.T. Rockafellar, R.J.-B. Wets, Variational Analysis, Comprehensive Studies in Mathematics, vol. 317, Springer, 1998.
[42] J. Rodríguez-López, S. Romaguera, The relationship between the Vietoris topology and the Hausdorff quasi-uniformity, Topology Appl. 124 (2002)

451–464.



J. Rodríguez-López, M.A. Sánchez-Granero / Topology and its Applications 158 (2011) 101–117 117
[43] J. Rodríguez-López, M. Schellekens, Ó. Valero, An extension of the dual complexity space and an application to Computer Science, Topology Appl. 156
(2009) 3052–3061.

[44] S. Romaguera, On hereditary precompactness and completeness in quasi-uniform spaces, Acta Math. Hungar. 73 (1–2) (1996) 159–178.
[45] L. Vietoris, Bereiche zweiter Ordnung, Monatsh. Math. 32 (1922) 258–280.
[46] T. Vroegrijk, Pointwise bornological spaces, Topology Appl. 156 (12) (2009) 2019–2027.
[47] T. Vroegrijk, Pointwise bornological vector spaces, Topology Appl. 157 (8) (2010) 1558–1568.
[48] T. Vroegrijk, Uniformizable and realcompact bornological universes, Appl. Gen. Topol. 10 (2) (2009) 277–287.


	Some properties of bornological convergences
	Introduction
	Topologicity of bornological convergences
	Upper half
	Lower half
	Bilateral results
	Quasi-uniformities compatible with bornological convergences

	Precompactness, total boundedness and compactness of bornological structures
	Right K-completeness of bornological convergences
	References


