Topology and its Applications 158 (2011) 101-117

Contents lists available at ScienceDirect 5|
TOPOIOQY
_and its
Applications

Topology and its Applications

www.elsevier.com/locate/topol

Some properties of bornological convergences ™

Jestis Rodriguez-Lopez ®*, M.A. Sanchez-Granero®

4 Instituto Universitario de Matemdtica Pura y Aplicada, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
b Area of Geometry and Topology, Faculty of Science, Universidad de Almeria, 04120 Almeria, Spain

ARTICLE INFO ABSTRACT
Article history: We study some basic properties of the so-called bornological convergences in the realm of
Received 13 September 2010 quasi-uniform spaces. In particular, we revisit the results about when these convergences

Received in revised form 27 September
2010
Accepted 16 October 2010

are topological by means of the use of pretopologies. This yields a presentation of the
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1. Introduction

Through all the paper, we will mainly deal with quasi-uniform spaces due to its generality and the applications of the
asymmetric topology to topological algebra, functional analysis and computer science [24,43]. Recall that a quasi-uniformity
on a nonempty set X [23,25] is a filter I/ of reflexive relations such that if U € U/ there exists V € I such that V2 C U
where V2 = {(x,z) € X x X: there exists y € X with (x, ¥), (v, z) € V}. By U* we denote the uniformity which has as a base
the elements of the form U* =UNU~! where U™ = {(x, y) € X x X: (y,x) e U}.

Every quasi-uniformity ¢/ on X generates a quasi-proximity d;; on X such that Ady/B if U(A)NB # @ for all U e U.

In a quasi-uniform space (X,U) we will denote by Po(X) (resp. CLy(X), Ko(X), Fo(X)) the family of all nonempty (resp.
nonempty closed, nonempty compact, nonempty finite) subsets of (X, ). Our basic references for quasi-uniform spaces are
[23,25].

Recall that a hypertopology is a topology defined over a certain family of sets. Our basic references for hypertopologies
are [1,37].

Vietoris [45,36] defined the so-called finite topology on a topological space (X, t) which is usually known as the Vietoris
topology. On the family Py (X) of all nonempty subsets of X, this topology 7y has as a base all sets of the form

Gtnvyin---nvy,

where G, V1,..., V, are open sets and

GT={AePy(X): ACG},
Vi ={AePo(X): ANV, #0}
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for all i € {1,...,n}. Fell [22] considered a slight although very important modification of the above topology. In this way,
the Fell topology Tr has as a base all sets of the form Gt N vin-.-nV; where G,Vy,...,V, are open sets and G is
compact.

Notice that the only difference between 7y and tr relies on the family to which the complement of G belongs: the
closed sets in the case of the Vietoris topology and the closed and compact sets in the case of the Fell topology.

These two topologies follow a general pattern which was studied by Poppe [39]. Let A be a cobase, i.e. a family of closed
sets containing the empty set, the singletons and closed under finite unions. Then the A-hit-and-miss topology has as a base
all sets of the form G+ N ViNn---NV; where Vq,..., V;, are open sets and G eA.

In the literature about hypertopologies (see [1,37]), the most well-known is the so-called topology of the Hausdorff distance.
Although this topology was first defined on a metric space, it was subsequently extended to a uniform space [14] and to a
quasi-uniform space [13,30]. Given a quasi-uniform space (X, U), for each U € U define

Uj; = {(A, B) € Po(X) x Po(X): B U(A)},
Uy = {(A,B) € Po(X) x Po(X): ACUT(B)}.

Then {Uﬁ: U e U} is a base for the upper Hausdorff quasi-uniformity u; on Po(X) and {Uy: U €U} is a base for the
lower Hausdorff quasi-uniformity Uy, on Po(X). The quasi-uniformity Uy = L{,}L V Uy is the so-called Hausdorff (or Bourbaki)
quasi-uniformity of (X,U) on Py(X).

We observe that a net (A;),ca is convergent to A in the topology t(Uy) generated by the Hausdorff quasi-uniformity if
and only if for all U e 4

A, CU(A) and A CU7Y(A;) residually.

The topology of the Hausdorff quasi-uniformity is also related to other hypertopology called the CLy(X)-proximal miss
topology (or simply the upper proximal topology) and denoted by TC+L+0(X) [1]. This topology has as a base all the sets
of the form GT1 = {A € Py(X): U(A) C G for some U € U} where G is an open set. Then it is easy to prove [1,42] that
TELZO(X) =TUy).

Nevertheless, in general, the topology generated by the Hausdorff quasi-uniformity is considered to be too strong. For
example, let us consider R? endowed with the usual uniformity. Then the graphs of the lines of slope 1/n passing through
the origin form a sequence which is not convergent to the horizontal axis in the topology of the Hausdorff uniformity. This
is due to the fact that this topology has not a good behavior with respect to unbounded sets.

A coarser topology is the so-called Attouch-Wets topology (see [2] for a survey). Traditionally, this topology is introduced
as a topological convergence in a metric space [1]: given a metric space (X,d), a net (Aj)yea in Po(X) is said to be
Attouch-Wets convergent to the nonempty set A if for every nonempty bounded subset B C X and every ¢ >0

ANBCBy(Ay,e) and A, NB C By(A, ¢) residually.

The Attouch-Wets topology has been preferred for working in convex and set-valued analysis because it has a better
behavior [1,31,41].

A uniform version of the Attouch-Wets topology was considered in [33, Section 6] by means of totally bounded sets,
from where a quasi-uniform version can be naturally defined.

The two above topologies follow a pattern that can be generalized. Notice that if we consider the family Pp(X), then
convergence of a net (Aj)yca to A in the topology of the Hausdorff quasi-uniformity is equivalent to ask that A, "B C U(A)
and ANB C U(A,) residually for all U € 4 and B € Py(X). So in both cases, the convergence is constructed by means of the
truncation with a certain family of sets: the nonempty subsets in the case of the topology of the Hausdorff quasi-uniformity
and the nonempty bounded subsets in the case of the Attouch-Wets topology.

Consequently, it is natural to study other convergences expressed in terms of truncations and enlargements with respect
to an arbitrary family S of nonempty subsets of X. The filters which generate these convergences were perhaps first con-
sidered by Di Maio, Meccariello and Naimpally in [33,34,32] although the first deep study was made by Lechicki, Levi and
Spakowski [29] (see [4] for a survey). We present here an asymmetric version of the so-called bornological convergences.

Definition 1.1. Let (X, /) be a quasi-uniform space and S a family of nonempty subsets of X. We say that a net (A;),eca of
nonempty subsets:

1 Szj—converges to A if A; NS CU(A) residually for each S € S and U e U;
2. S;;-converges to A if ANS C U~1(A;) residually for each S e S and U e U;
3. Sy-converges to A if S;,-converges to A and Szj -converges to A.

In the sequel, we will omit the subscript I/ if no confusion arises.

It is very easy to see that no different convergence appears if we replace S by the family of all subsets of finite unions
of members of S. Consequently, we will only consider ideals, i.e. families of nonempty subsets which are closed under
nonempty subsets and finite unions. When an ideal S is also a cover then it is called a bornology. Since bornologies are
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more usual in applications, this kind of convergences is known as bornological convergences, whether or not the ideal is a
bornology.

We will say that an ideal S has a base B if for all S € S we can find B € 8 such that S C B. If the elements of the base
are closed, we say that 8 is a closed base for S.

We will denote by [ JS the union of all the elements of the ideal S.

Observe that if S is an ideal such that X € S (like Po(X) or CLy(X)) then S-convergence is equivalent to convergence
in the topology of the Hausdorff quasi-uniformity meanwhile the Attouch-Wets topology is obtained by means of the
bornology of nonempty bounded subsets By (X).

Since the publication of [29], several papers have appeared studying this kind of convergences and bornologies [3-6,
8-12,46-48].

One of the main problems related to bornological convergences is to characterize when these convergences are topo-
logical [6,29]. The characterizations that have been already obtained are mainly based on constructing a (quasi-)uniformity
compatible with the bornological convergence. In Section 2, we present a new approach to this problem by means of
pretopological structures different of those considered in [29]. This allows us to present a pretopological structure whose
aspect is similar to the base of a hit-and-far-miss topology [35]. From this presentation, we present new proofs about when
bornological convergence is topological.

In Section 3, we characterize precompactness, total boundedness and compactness for bornological convergences. Our
results extend well-known results in the asymmetric setting due to Kiinzi and Ryser [28].

We finish the paper showing a characterization of right K-completeness of the bornological convergence.

2. Topologicity of bornological convergences

In this section, we revisit some results about when bornological convergence is topological [6,29] by using certain pre-
topological structures which allow to show that bornological convergences are also, to some extent, hit-and-miss topologies.

Recall that a pretopology N on X is a collection of families of subsets of X {A'(x): x € X} such that AV/(x) is a filter for
all xe X and x € N for all N € AV'(x). The pretopologies are nothing else but the neighborhood system of a closure space as
defined by Cech [17].

A pretopology A which also verifies:

given N € N (x) there exists Q € A(x) such that Q €N and Q e N(y) forall ye Q,

is a neighborhood system for a topology. In this case we say that A/ is a topology.
Every pretopology N generates a topology t (/') by considering a set G open if G € N'(x) for all x€ G.

2.1. Upper half

In [29], the authors introduce a natural pretopology to study S*-convergence. Here, we study a different one whose
aspect is very similar to an (upper) miss topology. Recall [37] that given a topological space (X, t) and A a cobase in X,
the upper miss topology T§ has as a base all sets of the form (D€)* ={A € Py(X): A C D} where D € A.

Let S be an ideal in a quasi-uniform space (X, ). For each A € Py(X) define Bgu(/\) ={(SHT: Ae (ST, SeS). It
is obvious that Bg,u = {BE,U(A): A € Py(X)} is a base for a pretopology Ng,u = {Ng,u(A): A € Po(X)} on Pyo(X).

A particular case of these pretopological structures was first studied in [38] in relation with the problem of obtaining
a hit-and-miss topology equivalent to the Wijsman topology. The smallest topology which contains the pretopology N, ‘;{u
was called the upper Wijsman S-topology in [35]. This is due to the fact that when we consider a metric space (X, d) and

the family B4(X) of all closed balls, then the (pre)topology ./\%' OU coincides with the upper Wijsman topology [38]. We
d s

also observe that the above pretopology can also be obtained as an upper Bombay pretopology o (v1, y2; S)* when y1 = 8§y
and y, is the Wallman proximity [32].
The following example shows that N;M is not always a topology.

Example 2.1. Let us consider in the real line R the usual uniformity ¢/ and the bornology S generated by the family
Po([0, 11) U Fo ([0, 11°). Then ([0, 116 e/\/:;u({—l}). However, given S € S such that {—1} € (S)** and (5)™ € ([0, 11"
then S =[0,1]U F where F is a finite subset verifying F N [0, 1] = @. Therefore, S¢ € (S°)* but S¢ ¢ ([0, 1]°)*F. This
means that for every basic /\/;_u—neighborhood (89t of {—1} contained in ([0,1])" we can find A € (S5°)* such that
(§H* ¢N§.M(A). Therefore, ./\/:;u is not a topology.

It is also known that every pretopology is equivalent to a convergence satisfying certain conditions [19]. The next re-
sult proves that the convergence associated to N g y 1s exactly the ST-convergence. This means that the upper half of a
bornological convergence can be obtained as a generalization of a(n upper) miss topology.
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Lemma 2.2. Let S be an ideal in a quasi-uniform space (X, U). Then the pretopology N 5. 1s compatible with ST -convergence.

Proof. Suppose that (Ay),ca is ST-convergent to A. Let S € S such that A e (S°)*F. Therefore, we can find U € I/ such that
U(A) C S°. Suppose, to obtain a contradiction, that A; ¢ (S°)* cofinally, i.e. Ay NS # @ cofinally. By assumption A; NS €
U(A) residually and since U(A) C S¢ this implies that S NS¢ # @ which is not possible.

Now, suppose that (A;),ca converges in the pretopology Ng,u to A. Let S€ S and U € U. Suppose that S Z U(A)

(otherwise, the proof is finished). Then Sg = S\U(A) € S and A € (§5)™" so A; € (55T residually, i.e. A; NSg =@ residually.
0 0
Therefore, A, NS C U(A) residually. O

Recall [18,20] that if A is a pretopology on a nonempty set X then the interior of a set A with respect to A is
intyr(A) = {xe X: Ae N(»)}.

Furthermore, we say that a set O is open if O =inta/(0). The topology 7 (N generated by the open sets of the pretopology
N is called the topologization of A . Furthermore, a pretopology N is a topology if for every N € A/(x) then inta/(N) €
N(x) [20].

Lemma 2.3. Let S be an ideal in a quasi-uniform space (X,U). Given S € S then intNgu (8T = (89t

Proof. Let B ¢ intNgu(Sc)““. Since (56T eNgu(B) then there exists So € S such that B € (S{)™" and (S{)* < (§9)™.
From this we deduce that S§ € 5S¢ so B e (S9)t+.
On the other hand, if B € (S°)** then (5¢)™ e/\/";u(B) so Be intNgu(Sf)Jr. O

The following concept was introduced in [6] in order to characterize when S™-convergence is topological on CLo(X).

Definition 2.4. ([6, Definition 5.1]) Let S be an ideal in a quasi-uniform space (X,U) and M C Py(X). We say that S€ S
is shielded from the family M by S if there exists So € S such that if A€ M and AN Sy =@ then AdyS. In this case, we
say that Sq is a shield for S.

Definition 2.5. Let S be an ideal in a quasi-uniform space (X, ). The upper S-proximal topology 7:§+ on Pp(X) is generated
by all sets of the form (S)*+ ={A € Po(X): U(A) C S for some U e U} ={A € Py(X): AdyS} where S e S.

The following result characterizes when the pretopology N g u is a topology. Of course, this yields the characterization

of when S*-convergence is topological. Furthermore, in this case, the topology compatible with ST -convergence is nothing
else but the upper S-proximal topology ‘L';+ as was first observed in [11] (compare also with [32, Theorem 2.1] and [35,
Theorem 3.5]).

Theorem 2.6. Let S be an ideal in a quasi-uniform space (X, U) and Fo(X) € M C Py(X). The following statements are equivalent:

1. S*-convergence is topological on M;

2. N, is atopology on M:;

3. (ST is TN, )-open for all S € S (this implies that ST = t¢™);
4. S is shielded from the family M by S for all non-dense S € S.

Proof. (1) < (2). This is obvious since by Lemma 2.2, S*-convergence is compatible with Ngu.
(2) = (3). By Lemma 2.3, we know that intj\/SJrM(SC)+ = (S9)*+. Furthermore, it is well known [20] that a pretopology

is a topology if the interior of the neighborhoods are open sets. This implies that (S¢)** is ‘L'(/\/'g,u)—open.

It is clear that it is always true that (N ,,) < ST < td™. To show the last inequality, let (A;)rea be a net T"-
convergent to A and let S € S, U € U. Suppose that So = S\U(A) # @ (otherwise, the proof is finished). Then A, € (56)++
residually, so A, N Sp =@ residually. Hence A, NS C A, NU(A) C U(A) residually.

Since (STt is I(Ngu)-open then T(Ngu) =St=rf".

(3) = (4). Let S € S which is not T(f)-dense. Then we can find A € (5°)™". By hypothesis, (S°)** eN‘;u(A) so there
exists So € S such that A € (S))T and (§§)* € (S)**. Therefore, if BN Sog = then Bfy;S.

(4) = (3). Let S € S be non-dense and let Sg € S be a shield for S. Since Fo(X) € M, then S C So. Let A e (St If
A e (SHTT then ()1 e J\/'g,u(A) since (S§)T < (ST

Otherwise, U(A) N Sg# @ for all U e . Let V e U such that VZ(A)N'S=@. Then S; = Sp\V(A) € S. It is clear that
A € (S)T. Furthermore, S € S; since V(A)N'S=¢ and S C So. Now we prove that (S))* € (S)**. Let B € (SD*
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where B € M. If BN Sg =@ there is nothing to prove because since Sp is a shield for S then B§yS. If BN Sg # ¢ then
BN Sy C V(A)N Sy since BN Sy =¢. Furthermore V(V(A) N Sg) € VZ(A) and V2(A)NS=@ so V(BNS) NS =4, ie.
B N SodyS. Furthermore B\So§y/S since B\So € (S§)T € (S)*. Hence [(B N So) U (B\So)1§u/S, ie. BfyS so we have
proved that (S{)* € (S9)** and since A € (S{)" this means that (S¢)* e/\/:;u(A).

Therefore, (S)** e N, (A) for all A (S)*" so (S)** is T(Ng,,)-open.

If S is dense then (S)*+ =@ e T(NZ,,).

(3) = (2) is obvious. O

In a quasi-pseudometric space, let us denote by B;-1(X) the set of all d~1-bounded sets. Then we consider the asymmet-
ric version TXLW of the upper Attouch-Wets topology generated by the quasi-uniformity L{; 8,100 whose basic entourages
By

are of the form U*’5 ={(A, B) € Po(X) x Po(X): SNB C By(A, e)} where S is d~!-bounded and & > 0.

£,

Corollary 2.7. Let (X, d) be a quasi-pseudometric space and let Fo(X) € M C Po(X). Then T4, = 1:5;1 (x) on M.

Proof. This is obvious since every d—!-bounded set is shielded from M by By-1(X). O
The next example shows that, in general, condition (4) of the above theorem is not true for dense sets.

Example 2.8. Let us consider the following quasi-metric defined on N:
1

o ifn <m,
dn,m)=11 ifn>m,
0 ifn=m.

Let S =Py({4,5,6,...}) and let us consider the pretopology szf—d,s on Po(N). If S € S is 7(d)-dense then ()T =0 so
(§HT e t(NZZ,S)' If S is not t(d)-dense then S is finite so it is easy to see that (S9)*+ = (59" ¢ T(NZZ,S)' This shows
that J\/'Jd‘s is a topology.

However, taking S =1{4,5,6,...} €S, if ANS =7 then d(A, S) =0.

We observe that the above example is T but not Hausdorff. Under this assumption, we can prove the following.

Lemma 2.9. ([6, Lemma 4.1]) Let S be an ideal in a Hausdorff quasi-uniform space (X, U) which contains a dense set. Let Fo(X) €
M C Py(X). Then sz,s is a topology on M if and only if S = Po(X).

Proof. Suppose that sz,s is a topology on M so by Theorem 2.6 every non-dense S € S is shielded from M by S. Let
S €S be a dense set. If S is a singleton then X = S since the space is Hausdorff so S = Py(X) trivially. Suppose that
we can find two different points sq,sy in S. Since (X,{) is Hausdorff there exists U € U such that U(sy) N U(sy) = @.
Then S =S1US; where S; = (5\U(s1)) € S and S; = (S\U(s2)) € S. Furthermore, neither S; nor S, are dense sets so by
assumption they are shielded from M by S. This immediately implies that S is shielded from M by S. Let Sp € S such
that if AN Sy = then AfyS, where A € M. Since S is dense the only possibility is that So = X.

The converse is obvious because we obtain a pretopology compatible with the Hausdorff quasi-uniform topology. O

Definition 2.10. Let S be an ideal in a quasi-uniform space (X, ). We say that:

e S is (almost) closed under &/~1-small enlargements if for each (non-dense) S € S there exists U € U such that
U-1(s)es;

e S is (almost) closed under I/-small enlargements if for each (non-dense) S € S there exists U € U such that U(S) € S;

e S is an E-ideal if S is closed under I/-small enlargements and under ¢/~ !-small enlargements.

Note that if S is an E-ideal, then S € S for each S € S (where the closure can be taken with respect to 7(I{) and also
with respect to T/~ 1)).

Corollary 2.11. Let S be an ideal in a quasi-uniform space (X, ). Then ST -convergence is topological on Py(X) if and only if S is
almost closed under 1/~ -small enlargements.

Proof. It is obvious that if S is almost closed under /~'-small enlargements the condition (4) of Theorem 2.6 holds.
Now, suppose that condition (4) is true. Let S € S non-dense, then there exists U € I/ such that X\U~'(S) # #. Let
AC X\U™!(S). Then A € (S9)™" and since N, is a topology there exists So € S such that A € (S)TF, (S))T < (S9)F
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and (S5)* eNgu(B) for all BC S5 If V71(S) Z Sp for all V el let xy € V™1(S) N SS. Then C = {xy: V eU} < S so
(SHT e./\/'gu(C). Hence C € (S{)™* so W(C)NSo = for some W € U{. However, W (xw) NS # @ so W (xw) N S # @ since
S C So. Of course this is a contradiction, hence we can find V e f with V-1(S) CSgso V- 1(S)eS. O

Corollary 2.12. Let S be an ideal with a closed base in a quasi-uniform space (X, ). Then ST -convergence is topological on Ko(X),
so on Fo(X).

Proof. Given S € S, choose a closed set Sg € S such that S C Sg. Pick up A € Ko(X) verifying ANSyp =0 and for eachae A
let U, € U such that Ug(a) N So = @. Since A is compact then A C U?:1 Ugq,(a;) for a finite subset {aq,...,ap} C A. It is
obvious that Ad;/So so AdyS. The proof follows from Theorem 2.6. O

Corollary 2.13. ([6, Theorem 5.9]) Let S be an ideal in a quasi-uniform space (X, U). Then ST -convergence is topological on CLy(X)
if and only if S is shielded from closed sets by S for every non-dense S € S.

Corollary 2.14. Let (X, U) be a uniform space. Then the upper Fell topology coincides with Ro(X)™-convergence on CLy(X), where
Ro(X) denotes the bornology of all the relatively compact sets.

Corollary 2.15. Let (X, U{) be a quasi-uniform space. Then Fo(X) T -convergence is topological on CLy 1(X), the family of all nonempty
(U~ 1)-closed subsets.

2.2. Lower half

Let S be an ideal in a quasi-uniform space (X,U). For each A € Po(X) define Bg ,,(A) = {MeesU™: SeS, SCA
and U € U} where U(x)™ ={A € Po(X): ANU(X) # @}. It is obvious that Bg,u = {BE,M(AY A € Pyp(X)} is a base for a
pretopology (see [29, Theorem 2.11]) Ng,u = {Ngu(A): A € Po(X)} on Po(X).

Observe that (ycans UX) ™ ={B e Po(X): ANSC U~1(B)} whenever AN S # (. Consequently, this is a different pre-
sentation of the neighborhood system of the pretopology A(S™) introduced in [29]. We have chosen this aspect of the
neighborhoods in order to present S~ -convergence as a certain kind of hit topology [1,37]. In fact, when S = Fy(X) then
N, sy is nothing else but the neighborhood system for the lower Vietoris topology.

We also remark that the above pretopology is a generalization of the lower locally finite topology as defined in [33,38].

The following result, whose easy proof is omitted, reconciles the pretopology N Ssu with S~ -convergence.

Lemma 2.16. (/29, Lemma 2.10]) Let S be an ideal in a quasi-uniform space (X, U) and Fo(X) € M < Po(X). Then the pretopology
N, s.u is compatible with S~ -convergence on M.

Lemma 2.17. Let S be an ideal in a quasi-uniform space (X,U). GivenU el d and S € S

ity ( N U(x)*)

XxeS

= {B € Po(X): there exist Sy € S contained in Band V € U such that if Sg C v-1 (A) then S C u-! (A)}.

Proof. Let B € intNgu (Mxes Ux) 7). Therefore, (e UX)™ eNgyu(B) so there exist V e/ and Sg € S such that Sg € B
and B € MNyes, V(X S Nyes UX) ™. Suppose that So € V-T(A). Then A € Myes, V(X ™ 50 A€N,es UX) ™, ie. SCUTI(A).

Conversely, let B € Po(X) such that there exist Sop € S and V € U verifying that So € B and if Sqg € V~1(A) then
S C U 1(A). Hence B € ﬂxeso V(%)™ S xes UX)~. Therefore, B € intNE.u (MxesU®T). O

Definition 2.18. ([11, Definition 25]) Let (X,l) be a quasi-uniform space and A € X. Given U € U, the U-approximate
projection of A is the multifunction U — Proj, : X = P(X) given by
U —Proj4(x) =U(x) N A.

In the next theorem, we will also use the following notation:

ﬂ U(x)~° = |B € Po(X): there exists So € S such that So € Band S € U~ (So)}.

xeS



J. Rodriguez-Lépez, M.A. Sdnchez-Granero / Topology and its Applications 158 (2011) 101-117 107

Theorem 2.19. (6, Theorem 3.3], [29, Corollary 2.12]) Let S be an ideal in a quasi-uniform space (X,U) and Fo(X) € M C Po(X).
Suppose that S € M. The following statements are equivalent:

. 8™ -convergence is topological on M;
. /\/‘;u is a topology on M;
. imNgu (Myes U 7) is I(Ngqu)—open whenever Se Sand U e U,

. given S € S and U € U there exists V € U such that, if A€ M and S € V~1(A), there exists Sg € S with Sg C Aand S C
U='(So);
5. given S € S and U € U there exists V € U such that if V — Proj,(s) is nonempty for every s € S where A € M then U — Proj,
has a selection f such that f(S) € S;
6. Ng_u(A) is generated by {( e Ux)™S:SeS, SCA, Uel).

AW N -

Proof. (1) < (2). This is obvious since by Lemma 2.16, S~ -convergence is compatible with ./\/'gu.
(2) & (3). As we have commented before, a pretopology forms a neighborhood system for a topology if the interior of
the neighborhoods are open sets. Therefore int Ny, (Nikes U™ is TV, S.)-open.

(3) = (4). Given U e/ and S € S, it is clear that S € intN;u (Nkes U®) 7). Since this set is t(./\/g’u)—open we can
find Vel and S' € S such that '€ S and (),.¢ V(X)~ C intNé.u (MyesU® ). f Ae M and 'S S C V~1(A) then
A€My VX~ C intNé,u (MNyes U®)™) so by Lemma 2.17 there exists Sop € S with So C A and S C U=1(Sp).

(4) = (3). Let B e intN‘;u (Mxes U®) 7). Then there exist Sg € S and V € U such that So € B and ﬂxeso V(x)~ C

(Nxes UX) ™. Let W' e U such that W2 C V. By assumption we can find W € if such that W € W’ and if So € W~1(A)
there exists S’ € S with S’ C A and So € W/~1(S)).

We show that ﬂxeso W(x)~ C intN;M (Nes U ™) which implies that i“t/\f;_u(ﬂxes Uux)) eNg’M(B).

Let A € (Nyes, W(®) ™. Then So € W~'(A) so there exists S’ € S with S’ C A and So € W/'~!(S"). If B € (N9 W(x)~
then S € W~'(B) so So € W'~'(S) € (W' o W)"'(B) € V" !(B), i.e. B € [yes,V® ™ S [yes UX) . Consequently
MNxess WX ™ S Nyes UK ™ 50 Nyes UX) ™ € N5, (A), which finishes the proof.

(4) < (5). This equivalence follows from the following facts: S € V~1(A) is equivalent to assert that V — Proj,(s) is
nonempty for every s € S; the existence of So € S verifying So € A and S € U~(Sp) is equivalent to the existence of a
selection f of U — Proj, such that f(S) € S.

(4) & (6). It is clear that given Ae M, Uell and S €S with S C A then [, Ux)~S c (Nxes UX)™. On the other
hand, by assumption, there exists V € I such that if B € M and S € V~1(B) there exists So € S verifying So € B and
S C U~1(Sp). Therefore, (Nyes V(X) ™ S Nyes UX) ™.

The converse follows also easily. O

Remark 2.20. We observe that the fact that S € M is only used in the implication (3) = (4). This implication is also valid
if SeMforall SeS.

Example 2.21. Let (X,l{) be a quasi-uniform space. A subset A of X is called &/ ~'-separated [16] if there exist U € U and
an ordinal y such that A={ay: @ <y} and ag ¢ U~'(ay) whenever a < 8 < y. Let D be the family of finite unions of
U 1-separated sets. It is easy to see that D is a bornology.

Let Uclf and D € D. Let V e U verifying that V2 C U and suppose that D € V~1(A). Suppose that A = {x,: @ < ¥}
where y is an ordinal. Then define y; = x; and for each 8 < y define by transfinite recursion yg = xg, where o = min{a <
Vi Xy € A\U;\<,3 V=1(y,)}. Then it is easy to see that Do = {yg: B<ylisa V ~l-separated subset of A (so Dg € D) and
that A € V—1(Dg). Then D C V~1(A) C V—2(Dg) CU1(Dyp).

We have shown that O verifies condition (4) of the above theorem so N ou 1S the neighborhood system for a topology.

In the following, we prove that 1:(./\/514) = 7(Uy). Naimpally [38, Lemma 3.4] was the first to prove this equality for

uniformities. Let U € i and A € Py(X). Let V € i with V2 C U and let D be a maximal V~!-separated subset of A.
Then A € (Nyep V()™ S Uy (A). In fact, if B € (yep V()™ then D € V~1(B). Furthermore, AC V(D) so ACV~%(B) C
U~1(B).

Now, let D be a V-separated subset of A and U € Y. Then if A € U~!1(B) we deduce that D € U~(B), ie. B e
(Mxep U ) ™. Therefore, U (A) € yep U™

Corollary 2.22. Let (X, U) be a quasi-uniform space and Fo(X) € M C Py(X). Then Fo(X)~-convergence is topological on M and
coincides with the lower Vietoris topology.

Corollary 2.23. Let S be an ideal in a quasi-uniform space (X, U) closed under U-enlargements. Then S~ -convergence is topological
on Po(X).
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Proof. Let U e and S € S. By assumption, there exists V €{ such that V C U and V(S) € S. Then if S € V~1(A), the set
So=V(S)N A belongs to S and it is obvious that S € V~1(Sg) € U~1(Sg). Therefore, condition (4) of Theorem 2.19 holds
so S~ -convergence is topological. O

Observe that, in general, the reverse implication is not true. It is enough to consider the real line endowed with the
usual metric and with the bornology of all finite subsets. Then by Corollary 2.22, S~ -convergence is topological on Py(R)
but the bornology is not closed under small enlargements.

Corollary 2.24. Let S be an ideal in a quasi-uniform space (X, U) which contains the singletons. Then S~ -convergence is topological
on K5 (X), the family of all nonempty compact subsets of (X, T(U*)).

Proof. Let S S and U €Y. Let V €U such that V> C U and suppose that S € V~1(A) where A is compact. Let F =
{ai,...,an} € A such that A C V5(F). Then S € V—2(F) € U~1(F). This implies that condition (4) of Theorem 2.19 is
verified so the convergence is topological. O

Corollary 2.25. Let S be an ideal in a quasi-uniform space (X,U) such that Fo(X) € S. Then S~ -convergence is topological on
Fo(X) and coincides with the lower Vietoris topology.

2.3. Bilateral results

Let S be an ideal in a quasi-uniform space (X,U). For each A € Py(X) define Bs(A) ={(S)T N Myesg UX)™: A€
(ST, C Aand S,S € S}. It is obvious that Bsy = {Bsy(A): A € Po(X)} is a base for a pretopology Ns i =
{Nsu(A): AePo(X)} on Po(X).

Putting together Lemmas 2.2 and 2.16 we obtain the following.

Lemma 2.26. Let S be an ideal in a quasi-uniform space (X, ). Then the pretopology N's 14 is compatible with S-convergence.

Theorem 2.27. ([6, Theorem 5.16]) Let S be an ideal in a quasi-uniform space (X,U) and Fo(X) € M < Po(X). The following
statements are equivalent:

1. S-convergence is topological on M
2. N5y is a topology on M;
3. e Sisshielded from the family M by S for all non-dense S € S;
e given S € S and U € U there exists V € U such that if A€ M and S € V~1(A) there exists Sg € S with Sg C A and S C
U~1(So).

From the above results, we can obtain a lot of consequences. We only present here two of them.
Corollary 2.28. Let S be an E-ideal in a quasi-uniform space (X,U). Then S-convergence is topological on Py(X).

Corollary 2.29. Let (X, U) be a quasi-uniform space. Then Fo(X)-convergence is topological on CLy 1(X), the family of all nonempty
(U~ 1)-closed subsets.

2.4. Quasi-uniformities compatible with bornological convergences

In [29], the authors introduce a natural family of sets which under some assumptions is the base for a uniform structure
compatible with the bornological convergence. We provide an asymmetric version of those results.
Let S be an ideal in a quasi-uniform space. For each U € U/ and for each S € S let us define:

US ={(A,B) e Po(X) x Po(X): BNSCUA};
Us ={(A, B) e Po(X) x Po(X): ANS S U (B)};
Us=Ulnus.

We set L{;, Us and Us the filters which have as a base {U5+: Uel, SeS}, {Ug: Uel, SeStand {Us: Uel, SeS§},
respectively.
In the following, we characterize when the three above structures are quasi-uniformities.

Proposition 2.30. Let S be an ideal and (X, U) a quasi-uniform space. Suppose that for each S € S there exist U e Y and S’ € S with
S € §"such that (.5 U(x) = 0.
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1 1fu§ is a quasi-uniformity then S is closed under U~ -small enlargements.
2. IfUg is a quasi-uniformity then S is closed under U-small enlargements.
3. IfUs is a quasi-uniformity then S is an E-ideal.

Proof. Suppose that L{;r is a quasi-uniformity and that there exists So € S with U~1(Sg) ¢ S for each U € /. Let U €/ and
S €S with Sg € S and such that (), .5 U(x) = ¢. Since L{; is a quasi-uniformity, there exist W € 4 and S1 € S such that
(W;)z C UL since W1(S) ¢ Sy, there exists ze W1(S) \ Sy, so we can find x € S such that x € W (z). By hypothesis,
there exists y € S such that x ¢ U(y). Let A={x}, B={z} and C ={y}. Then ANS; C {x} S W(B) and BNS; =0 C W(C).
It follows that (C, A) € (W;)2 C U{ and hence A € US(C), that is, x € U(y), a contradiction. Therefore there exists U € U

with U~1(Sg) € S whence S is closed under /~!-small enlargements.
The second item follows similarly and the third item is a consequence of the first and second ones. O

Proposition 2.31. ([29]) Let S be an ideal and (X, U) a quasi-uniform space.

. If S is closed under U-small enlargements then Ug is a quasi-uniformity.

. If S is closed under U/~ '-small enlargements then L{g is a quasi-uniformity.

. If S is an E-ideal then Us is a quasi-uniformity.

- If (X, U) is Hausdorff and Ug is a quasi-uniformity then S is closed under U-small enlargements.

. If (X, U) is Hausdorff and Z/Ig is a quasi-uniformity then S is closed under U ~'-small enlargements.
. If (X, U) is Hausdorff and Us is a quasi-uniformity then S is an E-ideal.

AU A WN =

Proof. Suppose that S is closed under ¢/-small enlargements.

Let Uelf and S € S. Take V U with V2> C U and V(S) € S. Let us prove that (Vy,)? C Ug. Let A,B,C C X with
C€Vy (B) and B eV, g (A). Then BNV (S) C V-1(C) and ANV(S)CV~1(B). Let xe AN S, then x € V~1(B) so there
exists b € B with x e V=1(b). Now b e V(x) N B C V(S) N B € V~1(C), and hence x € V=2(C) C U~1(C). It follows that
ANScUI(0), thatis, C e U (A). Therefore Ug is a quasi-uniformity.

The second item follows similarly and the third item is a consequence of the first and second ones.

The rest of the items follows from the previous proposition. O

3. Precompactness, total boundedness and compactness of bornological structures

This section is devoted to study precompactness, total boundedness and compactness of the filter U{s. Although this
filter is not always a quasi-uniformity, the aforementioned notions can be extended to this setting.

Definition 3.1. Let (X, /) be a quasi-uniform space and B € Py(X). We say that A C X is B-weakly precompact if for every
U eU we can find {B1, ..., By} € B such that A € UL, U(B)).

Definition 3.2. Let (X,U{) be a quasi-uniform space and B € X. We say that A C X is B-precompact if for every U € U we
can find {bs, ..., by} C B such that A € [ J_, U(by).

Proposition 3.3. Let S be an ideal in a quasi-uniform space (X,U) and M a nonempty subset of Po(X) which covers every element
of S. Let B € M be closed under finite unions. Then (M, ng) is B-precompact if and only if S is 3-weakly precompact forall S € S.

Proof. Let S € S and U € 4. Then there exists {Bq,..., By} C B such that M = U?:] U;(Bi). Since S can be covered by
elements of M given s € S there exists A; € M such that s € A5 € U;(BJ-) for some j € {1,...,n}. Therefore, s€ AsNS C
U(Bj) so SCJl, U(B)).

Conversely, if S C B, given U elf and S € S then M = U;(S). Otherwise, suppose that there exists S € S\B. Then
S €U, U(B;) where B; € B for all i € {1,...,n}. It is easy to see that M =UJ (UL Bi). O

Corollary 3.4. Let S be an ideal in a quasi-uniform space (X, U). Then (Po(X), Z/lg) is S-precompact so precompact.

Corollary 3.5. Let S be an ideal in a quasi-uniform space (X, U). Then (PO(X),L@) is Fo(X)-precompact if and only if S is X-
precompact forall S € S.

Recall that given a family F of subsets of X, the grill of F is F*={AC X: ANF #¢ for all F e F}.

Proposition 3.6. Let S be an ideal in a quasi-uniform space (X,U) and M a nonempty subset of Po(X) such that S C M. Let
Fo(X) € B < M. Then (M, Ug) is B-precompact if and only if S is precompact for every S € S N ME,
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Proof. Suppose that (M,Ug) is B-precompact. Let S € S such that AN S # ¢ for all A€ M. Given U €U there exists
{B1,...,Bp} € B such that M C U?:l Ug (Bj). Since BC M then B;NS # ¥ so let by e B;NS for all i € {1,...,n}. Given
s e S, since {s} € M, there exists j e {1,...,n} with {s} € U5 (Bj), i.e. BjNS C U~1({s}). In particular bj e U~1(s) so
ScUL,U.

Conversely, let S €S and U € . If there exists A € M such that ANS =¢ then M = Ug (A). Otherwise, SN A # 0
for all A € M. Since S is precompact we can find a finite subset So of S such that S C UseSg U(s). We show that M =
UFePo(So) Ug (F). Given A€ M then ANS ##. Since ANS C S there exists F € Py(Sg) such that U(x) N (ANS) # ¢ for all
xeF,ie. FNSCU 1 (ANS)CU 1 (A)so AcUs(F). O

Corollary 3.7. Let S be an ideal in a quasi-uniform space (X,U).

1. If X ¢ S then (Po(X),Ug) is precompact.
2. If X € S then (Po(X), Ug) = (Po(X), Uy ) is precompact if and only if X is precompact.

In the following, we prove some bilateral results.

Theorem 3.8. Let S be an ideal in a quasi-uniform space (X,U). Then (Py(X),Us) is precompact if and only if for every S € S and
U € U there exists a finite set So C S such that S C U(Sg) UU(X\S).
If S is closed under U ~-small enlargements, the above condition reduces to S is X-precompact forall S € S.

Proof. Suppose that (Py(X),Us) is precompact and let S € S and U € U. Then, there exists {A1, ..., Ay} € Po(X) such that
Po(X) = U?:l Us(Aj). Let J € {1,...,n} such that there exists s; € A;N S if and only if j e J. Define So = UJ»E] sj. We see
that S C U(So) UU(X\S). Given s € S we can find j e {1,...,n} such that {s} e Us(A;). If je J then se U(sj) and if j ¢ |
then s e U(Aj) CU(X\S).

Conversely, let S € S and U € Y. By assumption, there exists a finite subset So of S such that S C U(Sp) UU(X\S). Let
F ={BU(X\S): B €Po(So)}. We show that Py(X) = Jrz Us(F). In fact, given A € Py(X) we can find B € Fo(Sp) (maybe
empty) such that ANS CU(B)UU(X\S) and Ub)NANS #( for all be B. Then A e Us(BU (X\S)).

Now suppose that S is closed under /~!-small enlargements. It is clear that if S is X-precompact for all S € S then the
above condition holds. Given S € S and U €/ we can find V €/ with V C U and V~1(S) € S. By assumption, there exits
a finite subset Sg of V~1(S) such that S € V=1(S) € V(Sg) U V(X\V~1(S)). Since SNV (X\V~1(S)) =¥ then S C V(Sg) C
U(Sp). O

Our next example shows that, without the assumption of S been closed under Z/~!-small enlargements, the above
condition is not equivalent to X-precompactness.

Example 3.9. Let us consider the real line with the usual uniformity ¢. Let S = Py(Q). It is easy to see that for each S € S
and U e, Po(R) = Us(R\Q). Therefore (Po(R),Us) is precompact. Nevertheless, Q is not R-precompact.

Definition 3.10. ([21,23]) Let (X, U) be a quasi-uniform space.

e We say that (X, i) is point-symmetric if for each x € X and U € I/ there exists V € U such that V~1(x) C U(x).

e If S is an E-ideal in (X,U), we say that (X,U) is closed-symmetric for S if for each closed subset A of X, S € S and
U €U, there exists V eld with V-1(A)NS C U(A).
When S = Py(X), we simply say that (X, /) is closed-symmetric.

We observe that every uniform space is point-symmetric and closed-symmetric.

Proposition 3.11. Let S be an E-ideal and (X, U) a quasi-uniform space. (1) implies (2) and (2) and (3) are equivalent.

1. (Co(X),Ug) is point-symmetric.
2. (X,U) is closed-symmetric for S.
3. Foreach closed S € S and each U € U, there exists V € U with V~1(S) C U(S).

Proof. (1) = (2). Let A€ Co(X), S€ S, U el. By (1) there exist V ef and S1 € S with Vs_ll(A) C Us(A). Let W e {4 with
W2 C V. Then W-1(A) C V- 1(A) so W-1(A) e v;l1 (A) CUs(A) and hence W~1(A) NS C U(A).

2)=(3). Let Se€Co(X)NS, U eld and V el with V~1(S) € S. By (2), there exists W €U/ with W € V and W~1(S)n
V=1(S) C U(S). It follows that W=1(S) C U(S).
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3)=(2). Let AcCp(X), SeS,Uecld and V el with V C U and V(S) € S. By (3) there exists W e with W C V
and such that W—1(ANV(S)) CUANV(S)) (note that V(S) € S and hence ANV (S) € S). Then W—1(ANV(S)) CU(A).

Let x€ W~1(A)N S, then there exists a € A with x € W~1(a) and hence a € W (x) C V(S). It follows that xe W—1(AN
V(S)) € U(A). Therefore W—1(A)nS C U(A). O

Corollary 3.12. Let S be an ideal closed under U~'-small enlargements in a closed-symmetric quasi-uniform space (X,U). Then
(Po(X),Us) is precompact if and only if S is precompact for all S € S.

Proof. Suppose that (Pg(X),Us) is precompact. Let S €S and U,V €U with V2 C U. Then S € S and by assumption we
can find W e such that W €V and W=1(S) C V(S). Also, by the above corollary, there exists a finite subset Sg of X
such that S € W (So). Then So € W~1(5) € V(5) so there exists a finite subset S{, of S such that So € V (S},). Consequently,
S S W(So) S V(V(Sy) S USy.

The converse follows from the above results. O

The following example shows that if the space is not closed-symmetric, the above result could fail.

Example 3.13. Let us consider two countable families {A;: n € N} and {B;;: m € N} of countable disjoint sets where A, =
{ag: ke N} and By = {bg‘: qeN} for all n,meN. Let X ={J,.y(An U By) and endow this set with the following quasi-
metric

a(af. ) = (e, ) =1 ifk<qandnm,
d(ay, af) = d(ay, bfh) = d(by, b)) =k —q ifk>q,
d(bk, afh) =d(bk, b)) = ifk <q,
d(b’,ﬁ,bfn):% ifn#m,
d(b’;,a?,,)=%+k—q ifk>q,
d(x,y) =0 ifx=y

where m,n,k,q € N. Then Ay is a closed set and for all € > 0, B4-1(A1,¢€) € Bg(A1,1/2) = A since if 1/n < ¢ then b,l1 c
By-1(A1, €). Therefore, (X, Uy) is not closed-symmetric.

Now, let us define S = {A C X: A only intersects finitely many A;s and Bj,s} which is an ideal closed under d~1-small
enlargements. It is easy to see that every S € S is X-precompact so (Po(X),Us) is precompact by Theorem 3.8. However,
Ay is not precompact for all n € N.

Corollary 3.14. Let (X, U) be a uniform space and S an ideal closed under U-small enlargements. Then (Po(X), Us) is precompact if
and only if S is precompact forall S € S.

The following result characterizes total boundedness of Us.

Theorem 3.15. Let S be an ideal in a quasi-uniform space (X, U). The following statements are equivalent:

1. (Po(X),Us) is totally bounded;
2. (Po(X),UZ) is totally bounded;
3. (Po(X),Uyg) is totally bounded;
4. S is totally bounded forall S € S.

Proof. (1) = (4). Suppose that (Py(X),Us) is totally bounded and let S €S and U € Y. Then we can find a finite number
{A1,..., Ay} of families of subsets of X such that Po(X) = Ui A; and A; x A; C Us for all i € {1,...,n}. Let us define
Si={seS: {s} e A;}. It is clear that S =J!_; S; and S; x S; C U since given x, y € S; then ({x},{y}) € Ai x A; CUs so
yinS={y} CU{x}, ie (x,y)eU.

The implications (2) = (4) and (3) = (4) follow similarly.

(4)=(1). Let U eld and S € S. Since S is totally bounded we can find a finite number Sy, ..., S, of subsets of S such
that S=(J;S; and S; x S; CU. Let F = Fo({1,...,n}) and Ar ={A € Po(X): ANS;j# W& jeF}forall FeF. Then it
is straightforward to see that Po(X) = Jpcr Ar U Po(X\S). Furthermore, given (A, B) € Ar x Af for some F € F then if
b e BNS there exists j € F such that b € BNS;. Since A € Ar we can find ae ANS;. From S; x S; C U we obtain (a,b) e U
so b € U(A) which proves (A, B) € US+. A similar reasoning shows (A, B) e Ug so (A, B) € Us.

On the other hand, if (A, B) € Po(X\S) x Po(X\S) then ANS =¢ and BN S = ¢ which trivially implies that
(A,B)eUs. O
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Remark 3.16. We observe that the above result is also true if we substitute Py(X) for an arbitrary subset of Py(X) which
contains the singletons.

In the following, we study the compactness of S-convergence beginning with the case when S is a bornology.
Proposition 3.17. Let (X, U) be a compact quasi-uniform space and S an E-bornology. Then S = Py(X).

Proof. Since S is an E-bornology, for each S € S there exists US € I/ such that US(S) € S and US(S) is open. Then X =
J{US(S): S €S}, and since X is compact there exists a finite subcovering. Since S is an ideal, X € S and hence S =
Po(X). O

Corollary 3.18. Let S be an E-bornology in a quasi-uniform space (X, U). If (Po(X),Us) is compact then S = Py (X).

Proof. By the previous proposition, it is enough to prove that X is compact. Let (x4)nca be a net in X, then ({x;})ica is a
net in Py(X) so it clusters to some A € Py(X). Since S is a bornology, let ae€ AN S for some S € S. It easily follows that a
is a cluster point of (x;);c4 in X, and hence X is compact. O

The following corollary follows from the previous ones and the corresponding result for the Hausdorff quasi-uniformity
[26, Corollary 2].

Corollary 3.19. Let S be an E-bornology and (X, U) a T1 quasi-uniform space. The following statements are equivalent:

1. (Po(X),Us) is compact;
2. (X,U) is compact and U~ is hereditarily precompact;
3. (X,U) is compact, U~ is hereditarily precompact and S = Po(X) (and hence Us is the Hausdorff quasi-uniformity Uy ).

Next, we study the compactness of S-convergence for ideals. We also note that if S1, S € S and S; C Sy, then Us, C Us,
for each U e U.

Lemma 3.20. Let S be an E-ideal in a quasi-uniform space (X,U) and let Fo(X) € M C Po(X). If (M, Us) is compact then S is
compact for each S € S.

Proof. Let S € S and suppose that S is closed. Let (x;),ca be a net in S. Then ({x3})rca iS a net in M so there exists
A € M such that ({x;Daea clusters to A. Let U € U such that U~1(S) € S. For each Ao there exists A > Ag such that
{x1} € Us(A). It follows that x; € U(A)N'S and hence U= (S)NA#£@. Let ac U~1(S) N A.

Let us prove that a is a cluster point of (x;),ca. Given V €U and fo, there exists B > o such that {xg} € V-1(5)(A).

Thenae ANU-1(S) C V”(xﬁ), so xg € V(a). Therefore a is a cluster point of (x;),c4 and hence S is compact. O

Lemma 3.21. Let S be an E-ideal in a Ty quasi-uniform space (X,U) and let Fo(X) € M C Po(X). If (M, Us) is compact then
(S, U Yy is precompact for each S € S.

Proof. Suppose that there exist S € S, Up € U/ and points a, € S such that ap41 ¢ Uo_l({m,...,an}) for each n € N. Let
An ={a;: i <n}. Since A, € M and M is compact, the sequence (A,)nen clusters to some A € M.

Let U e U with U> C Up and U~'(S) € S. Let k € N be such that A, € Uy-1(5,(A). By Lemma 3.20, U~1(S) is compact
and hence point-symmetric, so there exists W € &/ with W C U and such that W~1(a,,1) N U=1(S) C U(axs1). Since
W (ag41) SUTI(S), then W1 (ag41) S U(agy1). Let n >k + 1 be such that Ay € Wy-1(5,(A). Then a1 € AyNS S W(A),
so there exists a € A such that ayy; € W(a). Then a € W’](ak_H) C U(akg+1), that is, agy1 € U~1(a). On the other hand,
ae ANW (1) SANUTI(S) C U1 (Ap). It follows that agq € U=2(Ay) € Uy ' (A, a contradiction. Therefore (S,/~)
is precompact for each Se S. O

To prove the following results, we will make use of the following concepts.

Definition 3.22. ([40,44]) A net (x;);c4 is said to be left K-Cauchy if for each U € U there exists 1o € A such that x;, € U(xy,)
whenever Ay > A1 > A.
The quasi-uniformity U/ is called left K-complete provided that each left K-Cauchy net converges.

Lemma 3.23. Let S be an E-ideal which is not a bornology in a quasi-uniform space (X, ). Suppose that S is compact and (S,U~")
is precompact for each S € S. Then (Po(X), Us) is compact.
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Proof. Recall that a quasi-uniform space is compact if and only if it is precompact and left K-complete [25, Remark 2.6.16].
First, note that (Py(X),Us) is precompact by Theorem 3.8.
Let (Aj)xeca be a left K-Cauchy net in Py(X). We consider two cases:

1. For each closed S € S and X there exists A > Ag with A, NS =0.
Since S is not a bornology, there exists x ¢ | JS. Let C = {x}, then (A))xea S-converges to C. Indeed, let U €4, S € S,
Ao and A > A such that A; NS =¢. Since CN S =4, it follows that A, € Us(C). Since (A))xeca is left K-Cauchy, let Ag
be such that A;, € Us(Ay,) for Az > A1 > Ao. Let A > Ao with A, e Us(O). If B> 4, Ag e Us(Ay) € U%(C). It follows
that (A;),ea converges to C.

2. 81 # 0, with S ={S € S: S is closed and there exists Ao with A, NS # @ for each A > Ap}.

Claim. Let S € S be such that for each Ao there exists A > Ao with A, NS # @. Then there exists S’ € S such that SC §'.

In order to prove that claim, let S € S be such that for each Ao there exists A > A9 with A, NS #@. Let U e Y with
U~1(S) € S. Since (Aj)aea is left K-Cauchy, there exists Ag such that A, € Us(A,,) for each A > X1 > Ao. Let A > A9 and
let A1 > A with A;, NS #@, then A;;, NS CU(A,) and hence A, NU~!(S) # @ and this proves the claim with S’ = U~1(S).

Now, let S € S, then (A, N S)yca is a net in the compact quasi-uniform space (Py(S),Uy) (note that it is compact by
Corollary 3.19). Let Cs € Po(S) be its cluster point. Let C = USESl Cs, and let us prove that C is a cluster point of (Aj)ica.

Let Uel, SeS and A9 € A. We consider two cases:

(a) S ¢ S].
(i) CNS =40@. Since S ¢ S, then A, NS =@ cofinally so A; € Us(C) cofinally.
(i) CNS#0. Let xe CNS, and let S; € S; with x € Cs; N'S. Let V e U be such that V(S) € S. Given Aq, since
Cs, is a T(Up)-cluster point of (Ay N S1)sca, there exists A > Ay such that x € Cs, € V~1(A, N Sy). Since x € S,
A; NV (S) # @. By the claim, there exists S’ € S; with SC S,
(b) S€&; (if S¢Sy and CN S # @, we work with any S’ € Sy containing S instead of S).
Let xeCNS and V e with V3 CU. Since CNS eS8, it is precompact with respect to U1, so there exist ¢q,...,cq €
CNS such that CNS<CV~1({cq,...,cn)). Let S; € S; with ¢j € Cs, and let S' =J_; Si. Since (Ap)rea is left K-Cauchy,
let Bo > Ao be such that Ag, € Vs/(Ag,) for each g, > B1 > fBo.
Since Cs;, is a cluster point of (A, NSi)ec4, for each i € {1,...,n} there exists A; > o with Cs; V”(A;H. NS;). Let g1 >
rforie{l,...nLIf =81, CNSCVI(cr,...,an}) SUL; VTHCs,) S UL, V72(As, NS S V3(Ag) CUTT(Ap).
On the other hand, since Cs is a cluster point of (A; NS),c4, there exists A > B1 with A, NS C V(Cs) C V(C). It follows
that A; € Us(C).
We conclude that C is a cluster point of (A;)yca and hence a limit point (a cluster point of a left K-Cauchy net is a
limit point). Therefore Py(X) is left K-complete, and since it is precompact, it is compact. O

Theorem 3.24. Let S be an E-ideal in a T quasi-uniform space (X,U). Then:

e If S is not a bornology: (Po(X),Us) is compact if and only if S is compact and (S,U~") is precompact for each S € S.
e IfSisabornology: (Po(X),Us) is compact if and only if (X, U) is compact, U~ is hereditarily precompact and S = Po(X) (and
hence Ug is the Hausdorff quasi-uniformity Uy ).

Proof. It follows from the previous results. 0O

Corollary 3.25. Let S be an E-ideal in a Hausdorff uniform space (X, ). Then (Po(X), Us) is compact if and only if S is compact for
each S € S.
Note that if S is a bornology the latter condition is equivalent to X being compact (and Us being the Hausdorff uniformity Uy ).

Now, we look for a characterization of the compactness of (Ko(X),Us).
Corollary 3.26. Let S be an E-ideal in a T1 quasi-uniform space (X,U). If (Ko(X), Us) is compact then (Py(X), Us) is compact.
Proof. It follows from Lemmas 3.20 and 3.21 and Theorem 3.24. O
Lemma 3.27. Let (X, U) be a quasi-uniform space, and let K be a compact subspace of (X, U). Then cl, ¢, (K) is compact in (X, U).
Proof. Let {O;: i € I} be an open covering of cl; ;-1 (K). Since K is compact, there exist {Oj,, ..., 0;,} with K € Uk 0j,-

Since K is compact, there exists U € 4 with K CU(K) C UZ=1 0i,, and hence, since cl;z;-1,(K) CU(K), {Oj,..., 04} is a
finite subcovering of cl;z,-1)(K). O
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Proposition 3.28. Let S be an E-ideal and (X,U) a quasi-uniform space. If (Ko(X),Us) is compact then there exists a compact
subspace K of X such that | JS C K.

Proof. By Lemma 3.20, S is compact for each S € S, and hence (S)scs is a net in (Ko(X),Us). Since (Ko(X),Us) is
compact, the net has a cluster point K € Ko(X). For each U e 4 and Sp € S there exists S € S with S 2 S and such that
Se Us, (K). It follows that So = SNSo C U(K) and hence US CU(K) for each U eUd, so | JS < cly g1 (K). This completes
the proof, since cl;g,-1)(K) is compact by Lemma 3.27. O

Proposition 3.29. Let S be an E-ideal in a quasi-uniform space (X,U). If (Po(X),Us) is compact and there exists K € Ko(X) with
US C K then (Ko(X),Us) is compact.

Proof. Let (K;),ca be a net in (Ko(X),Us). Since (Po(X),Us) is compact, let A € Po(X) be a cluster point of the net. It
easily follows that A is also a cluster point of the net, so we can assume that A is closed.

Let us prove that ANK is a cluster point of (Kj)xeca in (Ko(X),Us).

First, note that AN K is a closed subset of K, so it is compact. Let Uy ef, S€ S, Ag€ A and U e Y with U C Uy and
U~1(S) € S. Then there exists A > Ag such that K, € Us(A), that is, K; NS CU(A) and ANS C U~ (Ky). It is clear that
ANKNSCU (K.

In order to prove that K, NS CU(ANK), let xe K; NS. There exists a € A with xe U(a). Thenae U~ 1(x) cU~1(S) C
US CK, so xe U(ANK). Therefore K, NS CU(ANK) and hence ANK is a cluster point of (K;)xea.

Finally, note that if AN K =@, by the previous reasoning it follows that K; NS = @. Then we can take a € A and {a} is a
cluster point of (Ky)yes. O

Theorem 3.30. Let S be an E-ideal in a Ty quasi-uniform space (X,U). Then (Ko(X),Us) is compact if and only if (Po(X),Us) is
compact and there exists K € KCo(X) with | JS C K.

Corollary 3.31. Let S be an E-ideal in a Hausdorff quasi-uniform space (X,U). The following statements are equivalent:

1. (Ko(X),Us) is compact;
2. @(X), Us) is compact and | J S is compact;
3. JS is compact and (S,U~") is precompact for each S € S.

Corollary 3.32. Let S be an E-ideal in a Hausdorff uniform space (X, U). Then (Ko(X), Us) is compact if and only ifm is compact.
The proof of the following result is straightforward (note that A € Us(A) for each U e/ and S € S).
Proposition 3.33. Let S be an E-ideal in a quasi-uniform space (X, U). Then (Co(X),Us) is compact if and only if so is (Po(X), Us).

4. Right K-completeness of bornological convergences

In this section, we study a certain notion of completeness for the quasi-uniformity compatible with a bornological con-
vergence. For quasi-uniform spaces, there exist many notions for completeness [25]. It has been proved [28,27] that the
notion which has a good behavior for hyperspaces is right K-completeness.

Definition 4.1. ([40,44]) A net (x3)).c4 is said to be right K-Cauchy if for each U € U there exists A9 € A such that x;, € U(x;,)
whenever Ay, > A1 > A.
The quasi-uniformity I/ is called right K-complete provided that each right K-Cauchy net converges.

This concept allows to obtain an elegant extension of the characterization due to Burdick [15] of those uniform spaces
which have a complete Hausdorff uniformity to the quasi-uniform setting [28] (see also [7] for a characterization of cofinal
completeness of the Hausdorff metric). Here, we obtain a similar characterization of the quasi-uniformity Us associated
with an E-ideal S.

We also recall some other concepts that will be useful.

Definition 4.2. Let (X, () be a quasi-uniform space.

e A net (X))rea on (X,U) is said to be U/*-Cauchy if for each U € U/ there exists 1o € A such that x,, € U*(x,,) for all
A2, A1 2 Ao;
e (X,U) is said to be half complete if every U/*-Cauchy net converges in (X, ).
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Lemma 4.3. Let S be an E-bornology with X ¢ S in a quasi-uniform space (X,U). Then there exists a Ug-Cauchy net in Fo(X)
without a cluster point in (Po(X),Us).

Proof. For each S € S, let xs € X\ S. If S C Sy then xs, € US(xs). It follows that ({xs})scs is a US-Cauchy net in Fo(X).

Suppose that A € Po(X) is a cluster point of ({xs})scs, and let a € A. Since S is a bornology, there exists S € S with
aeS. Let Ueld with U(S) € S, then there exists Sg 2 U(S) with x5, € Us(A). Therefore ae ANS C U‘l(xso) and hence
Xs, € U(a) CU(S) € So, a contradiction. O

Proposition 4.4. Let S be an E-bornology in a quasi-uniform space (X,U) and Fo(X) € M C Po(X). If (M, Us) is half complete
then S = Po(X).

Corollary 4.5. Let S be an E-bornology in a quasi-uniform space (X,U) and Fo(X) € M C Py(X). If (M, Us) is complete then
S =Po(X).

Corollary 4.6. Let S be an E-bornology in a quasi-uniform space (X,U) and Fo(X) € M C Py(X). If (M, Us) is compact then
S =Po(X).

Definition 4.7. We say that a filter F is stable in an ideal S of a quasi-uniform space (X, ) if:

o there exists S’ € S with S’N F # @ for each F € F, and
e for each U €/ and S € S there exists Fyo € F such that FoNS C U(F) for each F € F.

The following two results and their proofs are based on [28, Lemma 6 and Proposition 6].

Lemma 4.8. Suppose that (X, U) is a quasi-uniform space in which each stable filter in S has a cluster point. Let F be a stable filter in
S and C its set of cluster points. Then for each U e U and S € S there exists F € F with FN'S C U(C).

Proof. Suppose that there exist Up €/ and S € S such that EN S\ US(C) # () for each E € F. In particular, note that
ENS # for each E € F.

Let Hyg = {a € X: there is V € such that V2 C U, V2@ NUy(C)=¢ and ac EN Nrer V(F)} for each E € F and
Uel.

First note that Hyg # . To check this, let V € U with V2 C U NUyp. Since F is stable in S, there exists Fg € F with
FoNS S (per V(F). Then Fy = FgNE € F, so there exists ae SN Fy \ U(Z)(C). It follows that a € Hyg N S.

On the other hand, it is clear that Hy, g, € Hy,r, whenever Uy, Uy e with Uy C U, and Eq, Ex € F with Eq C Ea.

Thus {Hyg: U €U, E € F} is a base for a filter H on X. Let us prove that H is stable in S. First, note that we have
already proved that Hyp NS+ foreach Ueclf and E€c F. Let U,V eUd, E€c F and S’ € S.

Let us prove that Hyx NS’ C U(Hyg). Let ae Hyx N'S’, then there is W € U such that W=1(S") e S, W2 C U, W2@)n
Uo(C) = and a € (g W(F). Let Z €U with Z2 C VNW. Since F is stable in S, there exists Fo € F with FonW ~1(S") €
Mrer Z(F). Define Fz = FoNE € F. Since a € W (Fz), there exists y € Fz N W~1(a). It follows that Z~2(y) € W~2(a) and
hence Z=2(y)NUy(C) = @. Finally y € F,nW~(a) € FonW~1(§") C Nrer Z(F), and henceae W(y) CU(y) and y € Hyg,
soaeU(Hyg).

Therefore H is stable in S, so, by hypothesis, it has a cluster point x € X. Since Hyr C F for each U €/ and F € F, then
JF C'H and x € C. But this is a contradiction, since Hyg NUp(C) =@ for each U el and E€ F. O

Theorem 4.9. Let S be an E-ideal in a quasi-uniform space (X, U). Then (Po(X), Us) is right K-complete if and only if any stable filter
in S has a cluster point in (X, U) and (S is not a bornology or X € S).

Proof. If S is a bornology and X ¢ S, then (Po(X),Us) is not half complete by Corollary 4.5. If X € S, then Ug is the
Hausdorff quasi-uniformity I/ and the result follows from [28, Proposition 6] (note that if X € S, a filter is stable in S if
and only if it is stable).

So we can assume that S is not a bornology.

Suppose that (Pp(X),Us) is right K-complete, and let F be a stable filter in S. It easily follows that (F)pc# is a right
K-Cauchy net in (Py(X),Us), so it S-converges to some C € Py(X).

Let S €S with SNF ¢ for each F € F, and let V e U with V—1(S) € S. Then there exists Fo € F such that F € V(C)
for each F C Fg, so FNS C V(C). Since F NS @, it follows that C NV ~1(S) # @. Choose x e CNV~1(S).

Now we will prove that x is a cluster point of F. Let U € Y and W = U N V. Then there exists F; € F such that
F € Wy-1(5,(C) for each F C Fy. Hence xe CNV~1(S) CW~1(F) CU~!(F) for each F C Fy. Therefore x is a cluster point
of F.

Conversely, suppose that any stable filter in S has a cluster point in (X, ), and let (A;)ca be a right K-Cauchy net in
Po(X).
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For each A € A, let F; = Uﬂ% Ap and define F as the filter generated by the filter base {F;: A € A}. Now we consider
two cases:

1. For each S € S there exists Ag such that A; NS =@ for each A > Ag.
Since S is not a bornology, we can take x ¢ | JS. It easily follows that (A;),ca converges to {x}.

2. There exists Sop € S such that for each Ag there exists A > Ao with A, N Sy #@.
Let us prove that F is stable in S. It follows that F, N Sg # ¥ for each A € A, and hence F N Sg # @ for each F € F.
Let U e/ and S € S, then there exists Ag such that A, € Us(A;) for each A > A1 > A¢. Then A;, NS S U(A;) for each
A = A1 2 Ao. It follows that F;, NS S U(Fp) for each B € A, and hence F is stable in S.
By hypothesis F has a cluster point x € X. Let C € Pp(X) be the set of cluster points of F and let us prove that C is a
cluster point of the net (A;)yc4.
Let U,W €U and S € S such that W2 C U and W(S) € S. There exists Ag such that Ay, € Ww(s)(Ay,) for each
X2 = A1 > Ao. We prove that SN C C U1 (A;) for each A > Ao. Let xe SN C and A > Ag. Then x € W~I(F;). Let a € F;
with x € W~ 1(a), then a Apg for some B > X. It follows that a € Ag N W(x) € Ag N W(S) € W-1(A,) and hence
x€ W™2(A,) CU~1(Ay). Therefore SNC C U~1(A,) for each A > Ao.
On the other hand, by Lemma 4.8 there exists A with F; NS C U(C), and hence AgNS C U(C) for each g > A.
We conclude that (A;).ca converges to C. O

Corollary 4.10. Let S be an E-ideal in a uniform space (X, U). Then (Po(X), Us) is complete if and only if any stable filter in S has a
cluster point in (X, U) and (S is not a bornology or X € S).
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