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A B S T R A C T  

This paper presents an efficient fuzzy neural system which consists of modular neural 
networks combined by the fuzzy integral with ordered weighted averaging (OWA) 
operators. The ability of the fuzzy integral to combine the results of multiple sources of 
information has been established in seL'eral preL'ious works. The key point of this paper 
is to formalize modular neural networks as information sources, and show the feasibility 
of the fuzzy integral extended by OWA operators in the problem of combining neural 
outputs, especially in the case that the networks differ substantially from each other in 
accuracy. The experimental results with the recognition problem for on-line handwritten 
characters show that the performance of indiL, idual networks is improced significantly. 

KEYWORDS:  fuzzy neural system, modular neural networks, fuzzy integral, 
OWA operators, character recognition 

1. I N T R O D U C T I O N  

In the past several years, there has been tremendous growth in the 
complexity of the recognition, estimation, and control problems expected 
to be solved by neural networks. In solving these problems, we are faced 
with a large variety of learning algorithms and a vast selection of possible 
network architectures. After all the training, we choose the best network 
with a winner-takes-all cross-validatory model selection. However, recent 
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theoretical and experimental work indicates that we can improve perfor- 
mance by considering methods for combining neural networks [1-6]. 

There have been proposed various neural-network optimization methods 
based on combining estimates, such as boosting, competing experts, en- 
semble averaging, metropolis algorithms, stacked generalization, and 
stacked regression. A general result from the previous works is that 
averaging separate networks improves generalization performance for the 
mean squared error. If we have networks of  different accuracy, however, it 
is obviously not good to take their simple average or use simple voting. 

To give a solution to the problem, we developed a fusion method that 
considers the difference of performance of each network on combining the 
networks, and that is based on the notion of fuzzy logic, especially the 
fuzzy integral [7, 8]. This method combines the outputs of separate 
networks with the importance of each network, which is subjectively 
assigned as usual in fuzzy logic. In this paper,  we extend the structure of 
the fuzzy integral with ordered weighted averaging (OWA) operators  [9] 
and apply the method to integrating modular  neural networks. 

O W A  operators have the property of lying between the AND, requiring 
all the criteria to be satisfied, and the OR, requiring at least one of the 
criteria to be satisfied. They are different from the classical weighted 
average in that coefficients are not associated directly with a particular 
attribute, but rather with an ordered position [10]. Furthermore,  the 
structure of these operators  is very much in the spirit of combining the 
criteria under the guidance of a quantifier. The last part  of this paper  will 
demonstrate  the effectiveness of the method by experimental results on a 
difficult optical-character-recognition problem. 

The rest of this paper  is organized as follows. Section 2 formulates the 
problem of combining modular  neural networks, and shows how it might 
generate bet ter  results. In Section 3, we introduce the fuzzy integral for 
combining the modular  neural networks, and extend it with O W A  opera- 
tors. Shown in Section 4 is a simple example to give an account of how the 
proposed method works out. Finally, Section 5 shows the results with the 
recognition of on-line handwritten characters. 

2. F O R M U L A T I O N  OF M O D U L A R  N E U R A L  N E T W O R K S  

In this section, we present the modular  neural network (MNN) which 
combines a population of neural network outputs to estimate a function 

i The outputs of neural networks are not just likelihoods or binary logical values near zero or 
one. Instead, they are estimates of Bayesian a posteriori probabilities of a classifier. 
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Figure 1. A two-layered neural-network architecture. 

f ( x )  defined by f ( x )  = E[y Ix] [11]. l Figure 1 shows a two-layered neural 
network. The network is fully connected between adjacent layers. The 
operation of this network can be thought of as a nonlinear decision-mak- 
ing process. Given an unknown input X = (x I, x2,.--, x r )  and the output 
set ~ = {~o~, wz,-.. , Wc}, each output neuron estimates the probability 
P(~oi I X )  of belonging to this class by 

P ( w i l X ) = f  Wik f ~_,WkjXj , 
J 

where Wkm/ is a weight between the j th  input neuron and the kth  hidden 
neuron, Wi°k m is a weight from the kth  hidden neuron to the ith class 
output, and f is a sigmoid function such as f ( x ) =  1/(1 + e-X). The 
neuron having the maximum value of P is selected as the corresponding 
class. 

The basic idea of the modular  neural network here is to develop n 
independently trained neural networks with relevant features, and to 
classify a given input pattern by obtaining a combination from each copy of 
the network and then deciding the collective classification by utilizing 
combination methods [1, 12] (see Figure 2). In the following, we shall 
sketch how the modular  neural network scheme generates an improved 
regression estimate [6]. 

Suppose that we have two finite data sets whose elements are all 
independent  and identically distributed random variables: a training data 
set A = {(x m, Ym)} and a cross-validatory data set CV = {(x l, Yl)}. Further 
suppose that we have used A to generate a set of functions, F = fi(x), 



362 Sung-Bae Cho 

X 

Figure 2. The modular neural-network scheme. 

each element of  which approximates f(x). We would like to show that the 
MNN estimator, fMNN(X), produces an improved approximation to f(x). 

Define the misfit of the function f~(x), its deviation from the true 
solution, as mi(x) =-f(x) -fi(x). The mean squared error can now be 
written in terms of mi(x) as 

MSE[f i ]  = E[m~]. 

The average mean squared error is therefore 

1 
M S E = -  L E[m~]. 

F / i _  1 

Define the MNN regression function fMNN(X) as 

1 ~ 1 
fMNN(X) ~ -  ,~ f i ( x )=  f ( x ' - -  ~_, mi(x). 

#I i - 1  Fl i - I  
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If we now assume that the mi(x) a re  mutually independent with zero 
mean, we can calculate the mean squared error of fMNN(X) as 

which implies that 

12] MSE[fMnn] = E -- ~ m i 
H i =  1 

- - E  m~ + ~ ~ E [ m i l E [ m  J] 
n "  i i ~ j  

1 _ _  

MSE[ fMn Y ] = -- MSE. 
n 

This is a powerful result because it tells us that by averaging regression 
estimates, we can reduce our mean squared error by a factor of n with 
respect to the population performance.  

3. FUZZY AGGREGATION OF NEURAL NETWORKS 

The fuzzy integral introduced by Sugeno and the associated fuzzy 
measures provide a useful way for aggregating information [13]. The ability 
of the fuzzy integral to combine the results of multiple sources of informa- 
tion has been established in several previous works [9, 14, 15]. In the 
following we shall introduce some definitions of it and present an effective 
method for combining the outputs of multiple networks with regard to 
subjectively defined importances of individual networks. 

DEFINITION 1 A set function g : 2 x --* [0, 1] is called a fuzzy measure if  
(1) g(Q3) = 0, g ( X )  = 1, 
(2) g ( A )  < g ( B )  i f  A c B, 
(3) I f  {Ai} ~ i is an increasing sequence o f  measurable sets, then 

lim g ( A  i) = g(  l im Ai ) .  
i ~  - i ~ c  
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DEFINITION 2 Let  X be a finite set, and h : X --* [0, 1] be a fuzzy subset o f  
X .  The fuzzy  integral over X o f  the funct ion h with respect to a fuzzy 
measure g is defined by 

h(x)o g(.) = max [min(min h(x), g(E))] .  
E G X [  ~ x ~ E  

The following properties o f  the fuzzy  integral can be easily proved [15]. 
1. I f  h ( x )  = c for  all x e X ,  O <_ c < 1, then 

h ( x ) o  g ( ' )  = c. 

2. I f  hl(X) <_ h2(x) for  all x e X ,  then 

h l ( x ) o  g ( . )  < h z ( x ) o  g ( . ) .  

3. I f  {.4i l i = 1,...,n} is a partition o f  the set X ,  then 

h ( x )  o g ( . )  >_ m~ax e i, 
i - 1  

where e i is the fuzzy  integral o f  h with respect to g over A i. 

The calculation of the fuzzy integral with respect to a gA-fuzzy measure 
would only require the knowledge of the density function, where the ith 
density, gi, is interpreted as the degree of importance of the source Yi 
towards the final evaluation. These densities can be subjectively assigned 
by an expert, or can be generated from data. The value obtained from 
comparing the evidence and the importance using the min operator  is 
interpreted as the grade of agreement  between the real possibilities h ( y )  
and the expectations g. Hence fuzzy integration is interpreted as searching 
for the maximal grade of agreement  between the objective evidence and 
the expectation. For further information on the fuzzy integral for network 
fusion, refer to [7, 8]. 

Let f~ = {w 1, oJ2,... , Wc} be a set of classes of interest. Note that each o~ i 
may, in fact, be a set of classes itself. Let Y = {yj, Y2, ' " ,  Yn} be a set of 
neural networks, and A be the object under consideration for recognition. 
Let h k : Y --* [0, 1] be the partial evaluation of the object d for class ~o k, 
that is, hk (y  i) is an indication of how certain we are in classifying the 
object A in class w k using the network y~, where 1 indicates absolute 
certainty that the object .4 is really in class w k, and 0 implies absolute 
certainty that .4 is not in oJ k. 

In [9] Yager extended the fuzzy integral with two special families of 
O W A  operators,  S-OWA-AND and S-OWA-oR. 
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DEFINITION 3 A mapping F f rom 

I n ~ I  (where I =  [0,1]) 

is called an O W A  operator o f  dimension n i f  associated with F is a weighting 
t,ector 

W 1 

W =  Wz 

4 
such that 

(1) W i ~ (0, 1), 
(2) EiW~= 1, 

and where 

F ( a l , a 2 , . . . , a ~ )  = Wlb  I + W2b 2 + ... +Wnbn,  

where b i is the ith largest element in the collection al, a2,. . . ,  a , .  

In [10] Yager shows how different assignments of the weights allow 
implementation of different quantifiers. For example, W*, with W 1 = 1 
and W, = 0, i ~ 1, provides the max operator. W. with W, = 1 and W~ = 0 
or i 4: n gives us the min operator. Finally, W~ = 1 / n  gives us the average 
( l / n )  E ai. This shows that the more weights are near the bottom, the 
more AND-like the aggregation, and the more the weights are near the top, 
the more oR-like the aggregation. 

There are two special families of O W A  operators which are useful for 
extending the fuzzy integral [9]. These are called the S-OWA-AND and 
S-OWA-oR operators. The S-OWA-AND operators are defined by 

1 - c e  
/~(~(a 1 ,-.., an) - -  ~_, a i + a rain a i. 

n i i 

They provide for AND-like aggregations. In the formulation for the fuzzy 
integral we can obtain the effect of S-OWA-AND operators by replacing 
minx ~ E h ( x )  with 

Card E y'~ h ( x )  + amin  h ( x ) .  
x E E  x ~ E  

The parameter a lies in the unit interval. The closer a is to one, the more 
AND-like the aggregation becomes. 
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On the contrary, the S-OWA-oR opera tor  provides for an oR-like 
aggregation. This operator  is defined by 

1 - / 3  
l ~ ( a , , . . . ,  a,,) - - -  ~_, a i + /3max a i. 

n i i 

Here again the pa ramete r /3  lies in the unit interval and the closer/3 is to 
1, the more like a pure OR the operation. This S-OWA-oR operator  can be 
used to provide a further generalization of the fuzzy integral. Let us 
denote min(min,~ u h (x ) ,  g ( E ) )  as H ( E ) .  The advantage of the fuzzy 
integral is in requiring that at least one subset E of X satisfy H ( E ) .  With 
n the cardinality of X we can change the aggregation to 

1 - / 3  
- -  ~_, H ( E )  + /3max H ( E ) .  

2n Y. cX EcX 

With this change, depending on the choice of /3, we are requiring that 
some  or a f e w  of the E satisfy H ( E )  rather than just one. 

4. A SIMPLE EXAMPLE 

To get an idea of how the consensus decision is produced by the fuzzy 
integral, let us consider a simple example of discriminating two class 
patterns. Suppose that we have implemented three different neural net- 
works of gl = 0.34, g2  = 0.32, and g3 = 0.33, and obtained the network 
outputs for an input image as follows: 

NN I : (0.6,  0.8) ,  

NN 2 : (0.7, 0.3), 

NN 3 " (0.1,0.4).  

In the case of using a voting method, the final decision is for class 2, 
because NN I and NN 3 vote for class 2 while only NN 2 votes for class 1. 
The majority voting rule chooses the classification made by more than half 
the networks. When there is no agreement  among more than half the 
networks, the result is considered an error. 

Another  simple approach to combine the results on the same X from all 
three networks is to use the average value as a new estimation of 
combined network: 

1 
P ( o ) i l X ) = -  ~ ~ P k ( w i l X ) ,  where i = 1 , 2 .  

k = l  
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In this example, the average method produces class 2 as the correct class, 
since the output for class 2 is 0.5 [(0.8 + 0.3 + 0.4)/3] while that for class 
1 is 0.47 [(0.6 + 0.7 + 0.1)/3]. On utilizing the weighted-average method, 
class 2 is also chosen as the correct class, because class 2 yields 0.5 
(0.34 × 0.8 + 0.32 x 0.3 + 0.33 x 0.4) whereas class 1 yields 0.46 (0.34 × 
0.6 + 0.32 × 0.7 + 0.33 × 0.1). 

Now consider the case of using the fuzzy integral. First of all, we have to 
calculate the A value from the g values. The Sugeno measure g must have 
a parameter  A satisfying 0.0359A2 + 0 .3266A-  0.001 = 0 (refer to [8]). 
The unique root greater  than - 1  for this equation is A = 0.0305, which 
produces the following fuzzy measure on the power set of Y = {Yl, Y2, Y3}: 

Subset A go.o3os(A) 

O 0 
{Yl} 0.34 
{Y2} 0.32 
{Y3} 0.33 

{Yl, Y2} 0.6633 
{Y2, Y3} 0.6532 
{Yl, Y3} 0.6734 

{Yl, Y2, Y3) 1.0 

As expected, the subset of criteria {Yl, Y3} is more important  for confirm- 
ing the hypothesis than either subset {y~, Y2} or {Y2, Y3}. The following 
table shows how the consensus is formed, where H(E) = min(h(y) ,  g(Ai)). 
In this table h(y~) = 0.6, h(y  2) = 0.7, and h(y 3) = 0.1 for class 1, and 
h(y 1) = 0.8, h(y  2) = 0.3, and h(y  3) = 0.4 for class 2: 

Class h(y i) g(A i) H(E) max[H(E) ]  

0.7 g((Y2}) = g 2  = 0.32 0.32 
0.6 g({Y2, Yl})  = g2 + gl + Ag2gl = 0.66 0.6 u~, 
0.1 g({Y2, Yl, Y3}) = 1.0 0.1 

0.8 g({Yl}) = gl = 0.34 0.34 
0.4 g({Yl, Y3}) = gl + g3 + Aglg3 = 0.67 0.4 
0.3 g({Yl, Y3, Y2}) = 1.0 0.3 

Finally, class 1 is selected as output. This example shows how the small 
differences in gi conspire to dramatically change the performance from 



368 Sung-Bae Cho 

that  of  s imple  averaging.  The  fol lowing tab le  shows how the classif icat ion 
resul t  d e p e n d s  on the values  of  the  gS's: 

Case g 1 g 2 g 3 Classif icat ion 

1 0.1 0.2 0.3 Class 2 
2 0.1 0.3 0.2 Class 1 
3 0.2 0.1 0.3 Class 2 
4 0.2 0.3 0.1 Class 1 
5 0.3 0.1 0.2 Class 1 
6 0.3 0.2 0.1 Class 1 

F u r t h e r m o r e ,  if we ex tend  the fuzzy integral  with the  O W A  opera to r s ,  
we can get  somewha t  d i f ferent  resul ts  f rom the usual  fuzzy integral .  If  we 
a d o p t  the  S-OWA-AND o p e r a t o r ,  min~ ~ E h ( x )  is r ep l aced  with the  follow- 
ing h(yi)'s: 

/?t(y 0) = (1 - c~) × h(yl l)  + ~ × h(yl l )  , 

h ( y ~ )  + h(y~)  
/~(Yl) = (1 - c~) X + c~ × h ( y l )  , 

2 

h(yl l )  + h ( y  l)  + h ( y  2) 
'~(Y2) = (1 - or) × + cr X h(Y2).  

3 

A s s u m e  that  ce = 0.1. Then  we can ob ta in  the  fol lowing result :  

Class  /~(y,) g ( A , )  H ( E )  m a x [ H ( E ) ]  

0.9 × 0.7 + 0.1 × 0.7 = 0.7 0.32 0.32 
0.9 × ((1.7 + 0 . 6 ) / 2  + 0.1 × 0.6 0.66 0.645 t,~ 

= 0.645 
0.9 × (0.7 + 0.6 + 0 . 1 ) / 3  + 0.1 1.0 0.43 

×0 .1  = 0.43 

0.9 × 0.8 + 0.1 × 0.8 = 0.8 0.34 0.34 
0.9 × (0.8 + 0 . 4 ) / 2  + 0.1 × 0.4 0.67 0.58 t,~ 

= 0.58 
0.9 × (0.8 + 0.4 + 0 . 3 ) / 3  + 0.1 1.0 0.48 

× 0.3 = 0.48 

Class 1 is also se lec ted  as the  final ou tpu t  in this case. F u r t h e r  ex tend ing  it 
with the  S -OWA-OR ope ra to r ,  H ( E )  becomes  the following: 

H ( E  o) + H ( E  I) + H ( E  2) 
/ t ( E )  = (1 - f i )  × + 13 max H ( E ) .  

8 
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If /3 = 0, then for class 1, 

/~I(E) = 1 × 
0.32 + 0.645 + 0.43 

+ 0 × 0.645 = 0.174, 

while for class 2, 

/42(E) = 1 × 
0.34 + 0.58 + 0.48 

+ 0 × 0.58 = 0.175. 

Thus, class 2 is chosen as the output. Notice that the classification result 
becomes different from the usual fuzzy integral. However, if /3 = 0.1, for 
class 1 

/41(E) = 0.9 × 
0.32 + 0.645 + 0.43 

+ 0.1 × 0.645 = 0.221, 

whereas for the class 2 

/12(E) = 0.9 × 
0.34 + 0.58 + 0.48 

+ 0.1 × 0.58 = 0.215. 

In this case, class 1 is selected as the output. 
This section has given accounts of the characteristics of the proposed 

method by using a simple example. 

5. EXPERIMENTAL RESULTS 

In the experiment, handwritten characters were input to the computer 
(a Sun workstation) by an LCD tablet of Photron FIOS-6440 which 
samples 80 dots per second. The tasks were to classify Arabic numerals, 
uppercase letters, and lowercase letters which were collected from 13 
writers. An input character consists of a set of strokes, each of which 
begins with a pen-down movement and ends with a pen-up movement. 
Several preprocessing algorithms were applied to successive data points in 
a stroke to reduce quantization noise and fluctuations of the writer's pen 
motion. Data points, representing a single character, were resampled with 
a fixed number of regularly spaced points. Then, a sequence of prepro- 
cessed data points was approximated by a sequence of 8-directional 
straight-line segments- - the  chain code, as used by Freeman [16]. 

To evaluate the performance of the presented method, we implemented 
three different networks, each of which is a two-layered neural network 
having a different number of input neurons and 20 hidden neurons. NN l, 
NN 2, and NN 3 have 10, 15, and 20 input neurons, respectively. In each 
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case, the network makes a decision based on its resolution. For example, 
NN 1 uses sparsely sampled inputs, and in doing so is able to overcome 
variations in input noise. NN 3, by comparison, uses a finer view of the 
input image. 

Each of the three networks was trained by the error back-propagation 
algorithm with 40 samples per class, validated with another 500 samples, 
and tested on 10 sets of additional samples collected from 10 different 
writers. The training process was stopped when the recognition rate over 
the validation set was optimized. This process and early stopping mecha- 
nism were adopted mainly to prevent networks from overtraining. The 
initial parameter  values used for training were: learning rate 0.4 and 
momentum paramete r  0.6. An input vector is classified as belonging to the 
output class associated with the highest output activation. Each of the 
following experiments consisted of 10 trials in which the different data 
were made from different writers. 

We assigned the fuzzy densities gi, the degree of importance of each 
network, based on how well these networks performed on validation data. 
We computed these values as follows: 

• P i  
g '  = - - d  . . . . .  

Ej pj 

where P i  is the performance of network NNi for the validation data and 
d~u m is the desired sum of fuzzy densities. 

Table 1 shows the confusion matrices of the network outputs for the 
numeral recognition task, where the combined result is made by the fuzzy 
integral. The performance for the combined outputs is much better  than 
for either of the individual networks, leading to a significant reduction in 
error rate. We also see a strongly diagonal matrix for the combined output, 
indicating the complementary nature of  the confusions made by the 
individual networks. 

Table 2 shows the recognition rates of numerals, uppercase letters, and 
lowercase letters with respect to the three different networks and their 
combinations by utilizing consensus methods such as majority voting, 
averaging, and the fuzzy integral. All results are averaged over 10 different 
sets of the data. In this table, NN l to NN 3 represent the three individual 
networks, and N N ~  a large network trained with all the features used by 
each network. 

Although the network learned the training set almost perfectly in all 
three cases, the performance on the test sets is quite different. Further- 
more,  we can see that the performance did not improve significantly on 
training a large network that considered all the features used by each 
network. This is a strong evidence that a modular  neural network might 
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Table  1. continued. 

(d) Combined output 

0 1 2 3 4 5 6 7 8 9 

0 32 0 0 0 2 0 10 1 5 0 
1 0 28 0 2 1 0 3 2 0 1 
2 0 1 42 0 0 0 0 0 0 0 
3 2 4 0 43 0 2 0 0 0 0 
4 0 0 1 0 47 0 1 0 2 3 
5 1 0 0 1 0 44 0 0 2 0 
6 1 0 0 0 0 0 41 0 0 0 
7 1 4 0 6 2 0 0 38 0 0 
8 4 1 0 0 0 0 0 0 63 0 
9 0 3 0 3 0 2 0 2 0 46 

Each vertical column is labeled by the target output, and each horizontal row represents an 
output by the network. 

produce  be t te r  results than a convent iona l  single network. The  fuzzy- 
integral  approach has a statistically significant ( p  > 0.999) advantage in 
recogni t ion rate over the individual  neura l  networks and o ther  aggregation 
methods.  The  statistical compar i son  is based on a pa i red-sample  t test with 
10 degrees of f reedom. It is also seen that averaging is bet ter  than voting 
for the p rob lem at hand.  

Figure 3 shows the recogni t ion rates of the presented  me thod  with the 
O W A  operators  for the three tasks. The  results indicate that the perfor- 
mance  of the fuzzy integral  might  be enhanced  if we selected the parame-  
ters cr and  /3 appropriately.  How to de te rmine  the parameters  depends  

Table  2. Means  and Standard  Deviat ions  of Recogni t ion  Rates (%) 

Numeral Uppercase Lowercase 

Nets Mean S.D. Mean S.D. Mean S.D. 

NN I 82.6 6.36 73.2 8.95 73,9 7.73 
NN 2 81.2 7.16 68.6 9.14 71.8 8.86 
NN 3 81.0 7.15 70.8 10.60 72.1 9.30 

NNat I 77.6 6.31 72.1 8.93 74,7 10.01 

Voting 84.9 8.31 74.0 9.28 74,6 7.97 
Average 86.9 7.24 75.2 9.95 78.2 8.85 
Fuzzy 88.1 7.14 76.1 9.85 80,3 7.24 
Fuzzy with OWA 88.9 7.25 76.7 9.92 81.9 7.83 
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largely on the problem at hand, but we can infer the following rules of 
thumb from the experiments: 

• If the recognition rates of individual networks are high, then choose 
large values for the parameters. 

• It is not good to choose c~ and /3 large simultaneously. 

6. CONCLUSIONS 

Modular neural networks aggregated by the fuzzy integral represent a 
powerful recognizer which produces improved performance on real-world 
classification problems, in particular handwritten-character recognition. 
This indicates that even this straightforward, computationally tractable 
approach can significantly enhance pattern recognition. Future efforts will 
concentrate on refining the feature extraction to capture more informa- 
tion, and testing the efficacy of this fuzzy neural system on larger data sets. 
The complementary nature of the neural network and the fuzzy logic lead 
us to believe that a further-refined fuzzy neural system will significantly 
improve the state-of-the-art pattern recognizers, especially in noisy envi- 
ronments. 
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