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Abstract

Recently, Shparlinski proved several results on the interpolation of the discrete logarithm in
1nite prime 1elds by Boolean functions. In the 1rst part of the paper, these results are extended
to arbitrary 1nite 1elds of odd characteristic. More precisely, we prove some complexity lower
bounds for Boolean functions representing the least signi1cant bit of the discrete logarithm in a
1nite 1eld.

In the second part of the paper we obtain lower bounds on the sparsity and the degree of
polynomials over Fq in several variables computing the discrete logarithm modulo a prime divisor
of q− 1. These results are valid for even characteristic, as well.
? 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

This paper deals with one of the hard problems in cryptography: 1nding complex-
ity lower bounds on the discrete logarithm. It continues the work of several authors
[1,7,13,14,20], in particular of Igor Shparlinski [17].
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Let G be a (multiplicatively written) 1nite cyclic group of order g with generator �
and �∈G. The discrete logarithm (or index) of � to the base �, denoted ind� �, is the
unique integer l with 06 l¡g such that �= �l.
In public-key cryptography the discrete logarithm has gained increasing interest as a

one-way function. The DiCe–Hellman key exchange, the El Gamal cryptosystem, and
their derivatives (see e.g. [5,6,12]) depend on the intractability of the discrete logarithm.
Two interesting choices of G used in practice are the multiplicative group of a 1nite
1eld and a cyclic subgroup of the group of points of an elliptic curve de1ned over a
1nite 1eld. Menezes et al. [11] reduced the elliptic curve discrete logarithm problem
to the discrete logarithm problem in a 1nite extension 1eld. In this article we consider
the discrete logarithm problem in arbitrary 1nite 1elds.
Let Fq denote the 1nite 1eld of order q= pr with a prime p and an integer r¿ 1.

Except for the last section we assume p¿ 2. For many practical purposes it would be
suCcient to have an easily computable function which represents the discrete logarithm
for almost all nonzero elements of Fq. For several kinds of polynomials it was shown
that the complexity of the discrete logarithm is high in several measures as degree and
sparsity [1,7,13,14,17,20]. In the 1rst part of the present paper we investigate Boolean
functions, i.e. multilinear polynomials over F2, and in the second part we consider
multivariate polynomials modulo a prime divisor of q − 1. We prove bounds which
show how hard the discrete logarithm problem is at least, choosing these kinds of
attack.
In the sequel we make use of a special ordering of the elements of Fq. Let {�1; : : : ; �r}

be a basis of Fq over Fp and de1ne �k for 06 k ¡q by

�k = k1�1 + k2�2 + · · ·+ kr�r

if

k = k1 + k2p+ · · ·+ krpr−1; with 06 ki ¡p for 16 i6 r: (1)

For 16K6p put

KK = {k = k1 + k2p+ · · ·+ krpr−1|06 ki ¡K for 16 i6 r}:
Recently, in [7] we considered Boolean functions B of rs, s = �log2 (p)�, p¿ 2,
variables producing the least signi3cant bit of ind� �k from the bit representation of k
for any �k with k ∈K2s , i.e.

B(u11; : : : ; u1s; : : : ; ur1; : : : ; urs) =

{
0 if �k is a square in Fq;

1 if �k is a nonsquare in Fq;
(2)

where

ki = ui1 + ui22 + · · ·+ uis2s−1 with uij ∈{0; 1} (3)

for 16 j6 s, 16 i6 r, and k ∈K2s \ {0}.
The sparsity spr(B) (or weight) of B is the number of nonzero coeCcients of

B. In [7] we extended and improved slightly results of Coppersmith and Shparlinski
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[1, Section 3] and Shparlinski [17, Chapter 6] showing that (2) implies

spr(B)¿ (2−3=2(31=r + r)−1=2p1=4)r − 1:

Thereby we obtained estimates on the degree of B and the complexity of bounded
fan-in circuits representing B.
Another important characteristic value of a Boolean function B is the average sen-

sitivity �av(B), a measure on how the value of B changes on average if the nth bit of
the argument is Hipped, i.e.

�av(B) = 2−rs
∑
u∈Brs

rs∑
n=1

|B(u)− B(u(n))|;

where Brs={u=(u11; : : : ; u1s; : : : ; ur1; : : : ; urs)∈{0; 1}rs} and u(n) is the vector obtained
from u by Hipping the nth coordinate. In Section 2 we show

�av(B)¿ 0:5rs+ o(rs); s → ∞
if B satis1es (2).
For a Boolean function B its Fourier coe6cients B̂(a), where a∈Brs, are de1ned

as

B̂(a) =
∑
u∈Brs

(−1)B(u)+〈a;u〉;

where 〈a; u〉=a11u11 + · · ·+arsurs for a=(a11; : : : ; ars) and u=(u11; : : : ; urs). In Section
3 we show that (2) yields

max
a∈Brs

|B̂(a)|6 2(2r+3)=4q7=8(ln(p) + 1)r=4 + 1:

Now we introduce a further characteristic value concerning Boolean functions. A
Boolean function B of rs variables is said to belong to the class Prs

x;y, if for any
choice of x bits there are at least y distinct functions obtainable by making all 2x

possible assignments to these 1xed bits. Thus, it is a measure on how many of the
variables are independent in some sense. Since y6 2x, the following result obtained
in Section 4 shows for which positive integer x this maximal value is attained. Let B
be de1ned as in (2). Then

B∈Prs
x;2x for 16 x6 �0:25r log2 (p)− r − 1�:

The methods producing the above results and the results in [7] do not work for even
characteristic. Since, in practice, this is the most important occurrence of nonprime
1elds, we need a compensation: we consider multivariate polynomials F computing the
discrete logarithm modulo a prime divisor d of q− 1, i.e. F ∈Z[X1; : : : ; Xr] such that

F(k1; : : : ; kr) ≡ ind�(�k)mod d for 16 k ¡q; (4)

where k is of the form (1). We investigate characteristic values of these polynomials
in Section 5. In detail we derive lower bounds on the sparsity

spr(F)¿ 0:3
q1=4

p1=2 − 1
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and the degree of F . These results hold true for any characteristic but are of major
importance for even characteristic.

2. A bound on the average sensitivity

We recall that q=pr with an odd prime p, s=�log2 (p)�, and the Boolean function
B computes the least signi1cant bit of the discrete logarithm in Fq. By de1nition the
average sensitivity does not exceed the number of variables rs of B. Now, we prove
the following lower bound.

Theorem 1. Let B be de3ned as in (2). Then we have

�av(B)¿ 0:5rs+ o(rs); s → ∞:

Proof. Put M = �s1=2�, H = 2M + 1, J = �s − s1=2�, and K = 2s − H2J . We 1x the
notation

B′(k) = B(u11; : : : ; u1s; : : : ; ur1; : : : ; urs)

if k ∈K2s is of the form (1) and (3). (Note that k runs through K2s as (u11; : : : ; urs)
runs through Brs.) For any 1xed 06 j6 J and any k ∈KK we consider the following
rH -array:

((B′(k + h2jpi−1))Hh=1)
r
i=1:

Now we are interested in the number N (T ) of times we obtain any possible binary
rH -array T = ((ti;h)Hh=1)

r
i=1 by varying k. Since (−1)B

′(k) = %(�k) we have

N (T ) = 2−rH
∑

k∈KK

r∏
i=1

H∏
h=1

(%(�k + h2j�i)(−1)ti; h + 1);

where % denotes the quadratic character of Fq. Expanding the products we get one
term of value Kr2−rH and 2rH − 1 terms of the form

±2−rH
∑

k∈KK

%((�k + h12j�i1 ) · · · (�k + hv2j�iv));

where v6 rH and the pairs (hv′ ; iv′) are distinct. (For 1xed v there are ( rhv ) such sums.)
Applying an extension of the Polya-Vinogradov bound [19, Theorem 2] we get

N (T ) =Kr2−rH +O

(
2−rH

rH∑
v=1

(
rH

v

)
vq1=2(ln(p) + 1)r

)

=Kr2−rH +O(2−rH2rH rHq1=2(ln(p) + 1)r)

=Kr2−rH +O(rH2rs=2sr) = Kr2−rH + o(Kr2−rH ):
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Among the 2rH possible binary rH -arrays there are 2rH + o(2rH ) ones satisfying both
of the following statements:

ti;2h �= ti;2h+1 for 0:5rM + o(rM) values of 16 h6M and 16 i6 r; (5)

ti;2h �= ti;2h−1 for 0:5rM + o(rM) values of 16 h6M and 16 i6 r: (6)

In short, let us denote by k(ij) the integer obtained from k by Hipping the jth bit of
ki, i.e. uij. If ((B′(k + h2jpi−1))Hh=1)

r
i=1 equals an array T satisfying (5) and (6) then

since

B′((k + h2jpi−1)(ij)) = B′(k + (2h± 1)2j−1pi−1)

about half of the rM values B′(k + h2jpi−1) for 16 h6M , 16 i6 r, diLer from
B′((k + h2jpi−1)(ij)). This leads to the following estimate:

J∑
j=1

∑
k∈KK

r∑
i=1

M∑
h=1

B′(k+h2jpi−1)�=B′((k+h2jpi−1)(ij))

1

¿ J (Kr2−rH + o(Kr2−rH ))(2rH + o(2rH ))(0:5rM + o(rM))

= 0:5JKrrM + o(JKrrM):

For every 16 i6 r, every 16 j6 J , and every 16 h6M we 1nd∣∣∣∣∣∣∣∣∣
∑

k∈KK

B′(k+h2jpi−1)�=B′((k+h2jpi−1)(ij))

1−
∑

k∈K2s

B′(k)�=B′(k(ij))

1

∣∣∣∣∣∣∣∣∣
6 r2(r−1)sH2J = o(2rs):

Therefore,

�av(B) = 2−rs
r∑

i=1

s∑
j=1

∑
k∈K2s

B′(k)�=B′(k(ij))

1

¿ 2−rs
r∑

i=1

J∑
j=1

∑
k∈K2s

B′(k)�=B′(k(ij))

1

= 2−rsM−1




r∑
i=1

J∑
j=1

M∑
h=1

∣∣∣∣∣∣∣∣∣
∑

k∈KK

B′(k+h2jpi−1)�=B′((k+h2jpi−1)(ij))

1
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−
∑

k∈K2s

B′(k)�=B′(k(ij))

1

∣∣∣∣∣∣∣∣∣
+

r∑
i=1

J∑
j=1

∑
k∈KK

M∑
h=1

B′(k+h2jpi−1)�=B′((k+h2jpi−1)(ij))

1




= 0:5rs+ o(rs):

Remark. Theorem 1 and Parberry and Yan [15, Theorem 4.7] yield a lower bound on
the CREW PRAM (concurrent read exclusive write parallel random access machine)
complexity of B (for a complete de1nition see e.g. [18, Chapter 13]).

3. A bound for the maximum Fourier coe cient

In this section we prove an upper bound for maxa∈Brs |B̂(a)|. Moreover, from the
bound on the maximum Fourier coeCcient we get information on the complexities of
unbounded fan-in circuits and the size of a decision tree computing B.

Theorem 2. Let B be de3ned as in (2). Then we have

max
a∈Brs

|B̂(a)|6 2(2r+3)=4q7=8(ln(p) + 1)r=4 + 1:

Proof. As (−1)B(u11 ; :::; urs) = %(�k), where % is the quadratic character of Fq, we have
for any a∈Brs,

B̂(a) =
∑

k∈K2s\{0}
%(�k)(−1)〈k;a〉 + (−1)B(0; :::;0);

where 〈k; a〉= 〈(u11; : : : ; u1s; : : : ; ur1; : : : ; urs); a〉 and ki = ui1 + · · ·+ uis2s−1. Put

S(a) =
∑

k∈K2s

%(�k)(−1)〈k;a〉

using the convention %(0) = 0. Then,

|B̂(a)|6 |S(a)|+ 1:

Put

x = �0:5 log2 (21=rp3=2(ln(p) + 1))�:

We obtain

S(a) =
∑

y∈K2x

∑
z∈K2s−x

%(�y + �2xz)(−1)〈y;b〉+〈z; c〉;



T. Lange, A. Winterhof /Discrete Applied Mathematics 128 (2003) 193–206 199

where

〈y; b〉= 〈(y11; : : : ; y1x; : : : ; yr1; : : : ; yrx); (a11; : : : ; a1x; : : : ; ar1; : : : ; arx)〉;
〈z; c〉= 〈(z11; : : : ; z1(s−x); : : : ; zr1; : : : ; zr(s−x)); (a1(x+1); : : : ; a1s; : : : ; ar(x+1); : : : ; ars)〉;

and the obvious meaning of the bit representations. Therefore,

|S(a)|6
∑

y∈K2x

∣∣∣∣∣∣
∑

z∈K2s−x

%(�y + �2xz)(−1)〈z; c〉

∣∣∣∣∣∣ :
By the Cauchy–Schwarz inequality we get

|S(a)|26 2rx
∑

y∈K2x

∣∣∣∣∣∣
∑

z∈K2s−x

%(�y + �2xz)(−1)〈z; c〉

∣∣∣∣∣∣
2

= 2rx
∑

y∈K2x

∑
z1 ;z2∈K2s−x

%((�y + �2xz1 )(�y + �2xz2 ))(−1)〈z1 ; c〉+〈z2 ; c〉

6 2rx
∑

z1 ;z2∈K2s−x

∣∣∣∣∣∣
∑

y∈K2x

%((�y + �2xz1 )(�y + �2xz2 ))

∣∣∣∣∣∣ :
There are 2r(s−x) pairs (z1; z2) with z1 = z2. For the remaining

2r(s−x)(2r(s−x) − 1)

pairs we make use of [19, Theorem 2],∣∣∣∣∣∣
∑

y∈K2x

%((�y + �2xz1 )(�y + �2xz2 ))

∣∣∣∣∣∣6 2q1=2(ln(p) + 1)r :

Using

(21=rp3=2(ln(p) + 1))1=26 2x ¡ 2(21=rp3=2(ln(p) + 1))1=2;

we get

|S(a)|26 2rx(2× 22r(s−x)q1=2(ln(p) + 1)r + 2r(s−x) × 2rx)

6 (21=r × 2−xp2p1=2(ln(p) + 1))r + (2xp)r

6pr
(

21=rp3=2(ln(p) + 1)
(21=rp3=2(ln(p) + 1))1=2

)r
+ (2p(21=rp3=2(ln(p) + 1))1=2)r

¡ 2r+3=2q7=4(ln(p) + 1)r=2;

hence the claim of the theorem.
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The theorem can be used to obtain a bound on the class UBC(d; S) of unbounded
Boolean circuits of B. An unbounded Boolean circuit of class UBC(d; S) consists of
a special starting level and d levels each of which contains at most S unbounded
fan-in gates. That means that each gate accepts any number of inputs obtained in the
previous levels and produces one bit of output. The 1nal level contains only one gate
and produces the value of B(u11; : : : ; urs).

Theorem 3. Assume that there is an unbounded fan-in circuit C ∈UBC(d; S) such
that it computes the least signi3cant bit of the discrete logarithm of �k given the bit
representation of k ∈K2s . Then we have

d log2(log2(S))¿ (1 + o(1)) log2(rs):

Proof. The proof is a direct generalization of [17, Theorem 6.5] based on an inequality
of Linial et al. [9] (see also [10, Theorem 11.7]), the Parseval identity, and Theorem
2, respectively.

A further model used in the theory of Boolean functions is the decision tree, i.e.
a branching program based on a tree. This means that the value of B(u11; : : : ; urs) is
computed following the unique path in a binary tree determined by choosing at the
node labeled ij the edge denoted by uij. The value is the label of the 1nal node, i.e.
the leaf, which is ∈{0; 1}. By its size DT(B) we mean the minimal number of leaves
needed to compute B.

Corollary 1. Let B be de3ned as in (2). Then we have

DT(B)¿ 2rs=8+o(s):

Proof. The proof is a direct generalization of [17, Theorem 6.7] based on Jukna et al.
[3,4, Lemma 2.2], the Parseval identity, and Theorem 2, respectively.

4. A bound on the combinatorial complexity

In this section we consider the number of distinct functions obtained by 1xing x bits
of the input. This knowledge is used to give a bound on the combinatorial complexity.

Theorem 4. Let B be de3ned as in (2). Then

B∈Prs
x;2x for 16 x6 �0:25r log2(p)− r − 1�:

Proof. Fix x positions at

16 il;1 ¡ · · ·¡il;xl 6 s; 16 l6 r
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for any partition x =
∑r

l=1 xl of x. In addition put il;0 = 0 and il; xl+1 = s + 1 for
16 l6 r. Let

U=


u1 + · · ·+ urpr−1

∣∣ ul =
xl∑

j=0

yj2il; j with 06yj ¡ 2il; j+1−il; j−1

for 06 j6 xl; 16 l6 r}
be the set of integers u with 06 u¡ 2rs and zero bits at the 1xed positions il; xl . Put

hl; j = �2il; j+1−il; j−2� for 06 j6 xl; 16 l6 r;

b= b1 + · · ·+ brpr−1 where bl =
xl∑

j=0

hl; j2il; j

and

V=


v1 + · · ·+ vrpr−1

∣∣ vl = xl∑
j=0

yj2il; j where 06yj ¡ �2il; j+1−il; j−2�

for 06 j6 xl; 16 l6 r} :
Then we have b+ v − w∈U and �b+v−w = �b + �v − �w for all v; w∈V. Let a1 and
a2 be two distinct integers with prescribed bits at the x 1xed positions and zero bits
at all other positions, i.e.

an = an;1 + · · ·+ an;rpr−1; an; l =
xl∑

j=1

an;l; j2il; j−1

for an;l; j ∈{0; 1}, 16 j6 xl, 16 l6 r, and 16 n 6 2. Then put b1 := a1 + b and
b2 := a2 + b. We have �bn−v+w = �bn − �v + �w for 16 n6 2. Now the claim follows
once we have shown that∣∣∣∣∣

∑
v;w∈V

%((�b1 − �v + �w)(�b2 − �v + �w))

∣∣∣∣∣¡ |V|2 − 2|V|:

Let  denote the additive canonical character of Fq. Then by Weil’s theorems [16,8,
Theorem 2G; Theorem 5.41] we get∣∣∣∣∣

∑
v;w∈V

%((�b1 − �v + �w)(�b2 − �v + �w))

∣∣∣∣∣
=

1
q

∣∣∣∣∣∣
∑
�∈Fq

%((�b1 + �)(�b2 + �))
∑

v;w∈V

∑
.∈Fq

 (.(�+ �v − �w))

∣∣∣∣∣∣
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6
1
q

∑
.∈Fq



∣∣∣∣∣∣
∑
�∈Fq

%((�b1 + �)(�b2 + �)) (.�)

∣∣∣∣∣∣
∣∣∣∣∣
∑
v∈V

 (.�v)

∣∣∣∣∣
2



¡
1
q

∑
.∈Fq

2q1=2
∣∣∣∣∣
∑
v∈V

 (.�v)

∣∣∣∣∣
2

6 2q1=2|V|:
Now since

|V|¿
r∏

l=1

xl∏
j=0

2il; j+1−il; j−2 =
r∏

l=1

2s−2xl−1 = 2rs−2x−r ;

we have

2q1=26 |V| − 2

for x6 0:25r log2(p)− r − 1.

Theorem 4 can be used to obtain a result for the combinatorial complexity CC(B) of
B, i.e. the minimal number of gates needed to compute B by a bounded fan-in Boolean
circuit of fan-out 1. In [2, Theorem 6.2] (see also [17, Lemma 3.19]) it was shown
that B∈Prs

3;5 implies CC(B)¿ (7rs− 4)=6.

Corollary 2. Let B be de3ned as in (2). Then

CC(B)¿
7rs− 4

6
for p¿ 2(4r+16)=4:

5. Interpolation of the discrete logarithm by polynomials modulo a divisor of q − 1

In this section we derive complexity lower bounds on the discrete logarithm for
arbitrary 1nite 1elds (especially p = 2 is allowed). For polynomials F in r variables
computing the discrete logarithm modulo a prime divisor d of q − 1 we estimate the
sparsity and the degree of F .

Theorem 5. Let d be a prime divisor of q− 1 and F ∈Z[X1; : : : ; Xr] satisfy (4). Then
we have

spr(F)¿ 0:3
q1=4

p1=2 − 1:

Proof. Let px ¿ spr(F) + 1¿px−1 and Mpx−1 ¿ spr(F) + 1¿ (M − 1)px−1 with
M¿ 2. For each 16m¡Mpx−1 we consider the function

Fm(X1; : : : ; Xr−x) = F(X1; : : : ; Xr−x; m1; : : : ; mx);
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where m=m1 +m2p+ · · ·+mxpx−1 with 06mi ¡p for 16 i¡ x and 06mx ¡M
is the p-adic expansion of m. The number of diLerent monomials occurring in some
Fm cannot exceed the sparsity of F . Hence, we can 1nd a vanishing linear combination
modulo d of the form

Mpx−1−1∑
m=1

cmFm(X1; : : : ; Xr−x) ≡ 0mod d; cm ∈Z;

where cm �≡ 0mod d for some 16m¡Mpx−1. By the condition of the theorem we
have

%(�k) = 2F(k1 ; :::; kr) for 16 k ¡q

for a dth root of unity 2 and a character % of Fq of order d. Hence, for 06y¡pr−x

we have
Mpx−1−1∏

m=1

%(�y + �pr−xm)
cm = 2

∑Mpx−1−1
m=1 cmFm(y1 ;:::;yr−x) = 1; (7)

where

y = y1 + y2p+ · · ·+ yr−xpr−x−1 with 06yi ¡p for 16 i6 r − x

is the p-adic expansion of y. Summing (7) over y yields

pr−x =
pr−x−1∑
y=0

%


Mpx−1−1∏

m=1

(�y + �pr−xm)
cm


¡ 2:2p(r−x)=2M 1=2p(x−1)=2q1=4:

The latter inequality follows from [14, Theorem 3.1] if pr−x¿ 4:84q1=2 and it is trivial
otherwise. Hence,

Mp2x−1 ¿ 0:2q1=2

and thus

(spr(F) + 1)2p¿ (M − 1)2p2x−1¿ 0:5Mp2x−1 ¿ 0:1q1=2:

Remark. (1) For r6 2 Theorem 5 is trivial.
(2) Since we consider the polynomial F modulo d, the maximum possible sparsity

of F is dr . Therefore, this result shows the nonexistence of such a function if d is
small compared to p.
For d¡p this nonexistence is evident since otherwise the discrete logarithm has

to satisfy strong linearity conditions. We had for each pair k = k1 + · · · + krpr−1,
l= l1 + · · ·+ lrpr−1 with ki + dli ¡p for 16 i6 r,

ind� (�k) ≡ ind� (�k + d�l)mod d:

Since d cannot be identi1ed with an element of Fp if d¿p the linear properties of
F mod d do not imply linear properties of ind� in this case.

Using the bound of the theorem we obtain information on the degree of F . Like in
the theorem we assume that r is suCciently large, i.e. r¿ 3.
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Corollary 3. Under the conditions of Theorem 5 we can 3nd for any j¿ 0 and any
integer r a p0(j; r) such that

degF ¿
(
r − 2
4

− j
)
log2(p)

holds for any p¿p0(j; r).

Proof. Put n= degF . As the local degree in any Xi is also bounded by n we have

spr(F)6
n∑

i=0

(
r + i − 1

i

)
¡

n∑
i=0

(
r + n− 1

i

)
6 2(r+n−1):

Hence,

log2(0:3) +
r − 2
4

log2(p)6 r + n− 1

and

n¿
(
r − 2
4

− r + 0:74
log2(p)

)
log2(p):

Using p0(j; r)¿ 2(r+0:74)=j the claim follows.

For d¿p further improvement on Theorem 5 and Corollary 3 can be gained if we
choose a polynomial basis

{�1; : : : ; �r}= {1; 3; : : : ; 3r−1}: (8)

Additionally, we assume that 3 is not a dth power in Fq. Furthermore, we restrict
ourselves to polynomials of local degree at most p− 1 in each variable.

Theorem 6. Let d¿p be a prime divisor of q− 1, and let Fq = Fp(3) be such that
3 is not a dth power in Fq. Let F ∈Z[X1; : : : ; Xr] satisfy (4) and (8) and let F be of
local degree at most p− 1. Then we have

deg(F)¿ (p− 1)(r − 1)

and

spr(F)¿

{
2r−2 if p= 2;

3r−1−1
2 if p¿ 2:

Proof. W.l.o.g. we assume ind�(3) ≡ 1mod d. De1ne F ′ ∈Z[X1; : : : ; Xr−1] by

F ′(X1; : : : ; Xr−1) =−F(X1; : : : ; Xr−1; 0) + F(0; X1; : : : ; Xr−1)

and consider �k �= 0; k ¡pr−1. If F(k1; : : : ; kr−1; 0) ≡ c ≡ ind�(�k)mod d then
F ′(k1; : : : ; kr−1) ≡ −c + (c + ind�(3)) ≡ 1mod d, since (0; k1; : : : ; kr−1) corresponds
to 3�k . Thus, for any 16 k ¡pr−1, the function F ′ mod d evaluates to 1. Note that
however we de1ne F(0; : : : ; 0), we obtain F ′(0; : : : ; 0)= 0. Hence, we know the values
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of F ′ on a complete (r − 1)-dimensional grid and can thus interpolate (variable by
variable) the polynomial. For p= 2 we obtain

F ′(X1; : : : ; Xr−1) ≡ (−1)r
r−1∏
i=1

(Xi − 1) + 1mod d

and for p¿ 2

F ′(X1; : : : ; Xr−1)

≡ −((p− 1)!)1−r
r−1∏
i=1

((Xi − 1) · · · (Xi − (p− 1))) + 1mod d:

From the corresponding product and by the construction of F ′ we obtain

deg(F)¿ deg(F ′) = (p− 1)(r − 1)

and

spr(F)¿ �0:5 spr(F ′)�:
Since the coeCcients of the monomials X n1

1 · · ·X nr−1
r−1 with ni ∈{0; p−1} in F ′ are prod-

ucts of integers incongruent to zero modulo d (and thus nonzero modulo d) we have

spr(F ′)¿ 2(r−1) − 1:

For p¿ 2 the coeCcients of the monomials X n1
1 · · ·X nr−1

r−1 with ni ∈{0; p − 2; p − 1}
are nonzero modulo d since the coeCcient of Xp−2

i in (Xi − 1) · · · (Xi − (p − 1)) is
(p − 1)p=2 �≡ 0mod d. Hence, spr(F ′)¿ 3r−1 − 1 if p¿ 2 which yields the lower
bound on spr(F).

Remark. (1) In the most interesting case p=2 the restriction on the local degree of F
is unnecessary since each polynomial F∗ of higher local degree satisfying the remaining
conditions of Theorem 6 de1nes a unique multilinear polynomial F by substituting X ni

i
by Xi if ni ¿ 0. Obviously, we have spr(F∗)¿ spr(F), F∗(k1; : : : ; kr) = F(k1; : : : ; kr)
for any binary vector (k1; : : : ; kr), and F satis1es the conditions of Theorem 6.
Moreover, d¿p is no restriction for p= 2.
(2) For a diLerent approach to represent the discrete logarithm by polynomials in

several variables modulo d see [17, Chapter 5; 20, Section 4].
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