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Abstract 

A (d, D, D’, s)-digraph is a directed graph with diameter D and maximum out-degree d such 
that after the deletion of any s of its vertices the resulting digraph has diameter at most D’. Our 
concern is to find large, i.e. with order as large as possible, (d, D, D’, s)-bipartite digraphs. To this 
end, it is proved that some members of a known family of large bipartite digraphs satisfy 
a Menger-type condition. Namely, between any pair of non-adjacent vertices they have s + 1 
internally disjoint paths of length at most D’. Then, a new family of (d, D,D’, s)-bipartite 
digraphs with order very close to the upper bound is obtained. 

1. Introduction 

Interconnection networks are usually modeled by graphs, directed or not, in which 

the vertices represent the switching elements or processors. Communication links are 

represented by edges if they are bidirectional and by arcs if they are unidirectional. We 

are concerned here with directed graphs only, called digraphs for short. A &graph 

G = ( V, A) consists of a set V of uertices and a set A of ordered pairs of vertices called 

arcs. The cardinality of V is called the order of the digraph. The set of vertices which 

are adjacent from (to) a given vertex u is denoted by r +(u) (r - (u)) and its cardinality 

is the out-degree d+(v) = Ir’(u))j (’ -d g m e ree d-(u) = )r -(u)l). The length of a shor- 

test path from u to u is the distancefrom u to u and is denoted by d(u, u) . Its maximum 

value over all pairs of vertices is the diameter of the digraph. The reader is referred to 

Chartrand and Lesniak [6] for additional graph concepts. 

In the design of large interconnection networks several factors have to be taken into 

account: each processor can be connected just to a few others, communication delays 

between processors must be short. These requirements lead to the following optimiza- 

tion problems: find digraphs of given maximum out-degree d and diameter D which 

have large order (the (d, D)-digraph problem) and find digraphs with given order and 
maximum out-degree which have small diameter. These problems have been widely 
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studied, for graphs (see [2]) as well as for digraphs (see [S]). The case of bipartite 
graphs (see [4]) and digraphs (see [7]) have been also considered. 

An interconnection network must be fault-tolerant. If some processors or commun- 
ication links cease to function, it is important that the remaining processors can still 
intercommunicate with reasonable efficiency. One can demand, for example, that the 
message delay does not increase too much. This means that the (di)graph obtained 
after deletion of some vertices or edges (arcs) still has a small diameter. 

The problem we study in this paper is the (d, D,D’,s)-digraph problem, that is, to 
find large digraphs with maximum out-degree d and diameter D such that the 
resulting digraph after the deletion of s vertices has diameter at most D’. This problem 
has been studied in [lo] in the case D’ = D = 2 and in [l I] for D’ = 3. The analogous 
problem for graphs has been considered in [S, 9,121. This paper concentrates upon the 
case of bipartite digraphs. In Section 2 we present an upper bound for the order of 
a (d,D,D’,s)-bipartite digraph. We recall some facts of the line digraph method in 
Section 3. A theorem which relates the line digraph method and the (d,D,D’,s)- 

digraph problem is presented. Most of the large (d, D, D’, s)-bipartite digraphs we have 
found are members of a family of bipartite digraphs, called BD(d, n) , constructed in 
[7]. In Section 4 we recall some properties of these digraphs. Finally, in Sections 5-7 
large (d, D, D’, s)-bipartite digraphs with order very close to the bound (optimal in 
some cases) and 3 < D’ < 6 are given. 

Computer explorations have been made in order to find more digraphs BD(d,n) 

which are large (d, D, D’, s)-bipartite digraphs. If D’ 3 7, it seems that there are no 
good (d, D, D’, s)-bipartite digraphs in this family. 

2. A bound for the order of (d, D, D’,s)-bipartite digraphs 

A digraph with maximum out-degree d and diameter D is called a (d,D)-digraph. 

A (d, D, D’,s)-digraph is a (d, D)-digraph such that the subdigraphs obtained by 
deleting any set of s vertices have diameter less or equal than D’. 

If a (d, D)-digraph verifies that between any pair of non-adjacent vertices there are 
s + 1 internally disjoint paths of length at most D’ (D’ 3 D 3 2), then it is 
a (d, D, D’, s)-digraph. The existence of s + 1 disjoint paths is not necessary, but, of 
course, there must be at least s + 1 paths of length at most D’ (disjoint or not) between 
any pair of non-adjacent vertices of a (d,D)-digraph to be a (d, D, D’, s)-digraph. 

A Moore-like bound for the number of vertices of a (d, D, D’, s)-digraph is given in 
[lo]: 

M(d, D, D’, s) = min 
dD+l -1 

,l+d+ 
d2 + d3 + ... + dD’ 

d-l s+l 

We can find in [7] a Moore-like bound on the order of (d, D)-bipartite digraphs: 
M,(d, D) = 2(dD+ l - d)/(d’ - 1) if D is even and Mb(dr D) = 2(dD+ ’ - l)/(d’ - 1) if D is 
odd. 
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Proposition 1. The order of a (d, D, D’, s)-bipartite digraph, D’ > 3, is upper bounded by 

the Moore-like bound M,(d, D, D’, s), where 

if D’ is even and 

if D’ is odd. 

Proof. Let G = (V, A) be a (d, D, D’, s)-bipartite digraph with V = VO u V1. Let n be 
the order of this digraph. Since G is a (d, D)-bipartite digraph, n d M,(d, D). 

Besides, if D’ is even, for any x0 E V. and x1 E V, such that (x0, x1) is not an arc, 
there are s + 1 paths of length at most D’ - 1 from x0 to xi. There are 
d + d3 + d5 + ... + dD’-’ paths of length less or equal than D’ - 1 from u. to the 
vertices of Vi. Therefore, we have 

IV-11 < d + 1 d3 + d5 + . . . + dD’-’ 

s+l 

Similarly, we have the same inequality for 1 V,l, so 

n=lVo/,+IV1162 
d3 + d5 + . . . + d-1 

s+l 

If D’ is odd, there are s + 1 paths of length at most D’ - 1 between any pair of 
different vertices of I’, (or Vi). Analogously to the case when D’ is even, we have 

[Vii< l+ 1 dz+d4Sf;.;+d 
D’- 1 

1 

for i = 0, 1, and then 

n<2 l+ ( 1 

d2+d4+ . . . +dD’-’ 

s+l 1). 
0 

3. Line digraph method and (d, D, D’, s)-digraphs 

The line digraph method is a well-known technique which has been used in the study 
of the (d, D)-digraph problem (i.e., to find large digraphs with maximum out-degree 
d and diameter D). See, for example [l, 8-J. 

We recall here that in the line digraph LG of a digraph G each vertex represents an 
arc of G, that is, V(LG) = (uv 1 (u, v) E A(G)}. A vertex uv is adjacent to a vertex VW if 
v = w, that is, whenever the arc (u, u) of G is adjacent to the arc (w, z). If G has 
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maximum out-degree d, then LG has also maximum out-degree d. Moreover, if G is 
d-regular with order n, then LG is d-regular and has order dn. If G is a strongly 
connected digraph different from a directed cycle, then the diameter of LG is the 
diameter of G plus one (see [8]). We finally recall that if G is bipartite with partite sets 
I’,, and Vi, so is LG with partite sets which represent the arcs from VO to I’r and the 
arcs from Vi to V,. 

The next theorem allows us to apply the line digraph method to the (d, D, D’, s)- 

digraph problem. The next two properties will be necessary. 

Property 1. For any pair of different vertices U, v E V there exist s + 1 arc-disjoint 
paths of length lesser than or equal to D’ from u to v. 

Property 2. For any vertex x and for any pair of arcs in the form UX,XV, there are 
s arc-disjoint cycles in x of length at most D’ such that neither ax nor xv belong to any 
of them (see Fig. 2). 

Theorem 1. Let G be a (d, D)-digraph. If G verifies Property 1, then its line digraph LG is 

(d, D + 1, D’ + 1, s). If G verijies Properties 1 and 2, then LG and L2G = LLG are, 

respectively (d, D + 1, D’ + 1, s) and (d, D + 2, D’ + 2, s). 

Proof. We will prove that if G verifies Property 1, then between any pair of non- 
adjacent vertices of LG there are s + 1 disjoint paths of length at most D’ + 1. Let ux 
and yu be non-adjacent vertices of LG (that is, x and y are different vertices of G). 
Then, in G there are s + 1 arc-disjoint paths of length at most D’ from x to y. Each 
path x,ul, . . . . t+r,y of length 16 D’ in G gives in LG a path ux,xur, . . ..ur_iy.y~ of 

length I+ 1 between the vertices ux and yu. So, the s + 1 arc-disjoint paths in G from 
x to y of length at most D’ correspond to s + 1 vertex-disjoint paths in LG of length at 
most D’ + 1 from ux to yu (see Fig. 1). 

We will prove next that if G verifies Properties 1 and 2, then LG is a (d, D + l)- 
digraph which verifies Property 1 and, as a consequence, L2G is a (d, D + 2, D’ + 2, s)- 

digraph. Since G verifies Property 1, there are s + 1 disjoint paths of length at most 
D’ + 1 between any pair of non-adjacent vertices of LG. Let ux and xv be two adjacent 

G LG 

Fig. 1. Disjoint paths in G correspond to disjoint paths in LG. 
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Fig. 2. Disjoint cycles in G correspond to disjoint paths in LG. 

vertices in LG. Each cycle x, ul, . . . , uz_ I, x of length I < D’ corresponds in LG to a path 
IJX,XUl, . ..) ur_ ix, xv of length I+ 1 from ax to xv. There are, in G, s arc-disjoint cycles 
in x of length at most D’ such that do not go through ux nor xv. These cycles 
correspond in LG to s disjoint paths of length at most D’ + 1 from ux to xv such that 
the arc (ux, xu) = uxu does not belong to any of them (see Fig. 2). Adding the arc uxu 
to those s disjoint paths, we have s + 1 disjoint paths of length at most D’ + 1 from ux 
to xv. Then we have, in LG, s + 1 disjoint paths of length at most D’ + 1 between any 
pair of different vertices. 0 

4. Bipartite digraphs BD(d, n) 

Fiol and Yebra [7] constructed a family of bipartite digraphs, called BD(d,n). 

The largest known (d,D)-bipartite digraphs (optimal if D 6 4) belong to this 
family. 

In the following sections we prove that, for some values of n, the digraphs BD(d, n) 

are large (d, D, D’, s)-bipartite digraphs. We recall here the definition and some proper- 
ties of these digraphs. See [7] for proofs. 

For any positive integers d,n with d d n, the bipartite digraph BD(d,n) has set of 
vertices V = Zz x B, = {(a,i);a E Z2,i E Z,} and each vertex (u, i) is adjacent to 
(c(,( - l)“d(i + a) + t) for any t E (0, 1, . . . . d - l}, where, as usual, 0 = 1 and i = 0. 

We can label the arcs of BD(d, n) with the elements of (0, 1, . . . . d - 1). We 
can determine a path in BD(d,n) giving its first vertex and the labels of its 

arcs. 
The digraph BD(d, n) is d-regular and bipartite with partite sets V, = (0) x h, and 

Vi = (1) xz,. 
There is an automorphism 4 of BD(d, n) such that $( V,) = Vi and c$( Vi) = Ve. One 

important fact about this family is that the line digraph LBD(d, n) is isomorphic to 

BD(d,dn) . 
If n = dD-’ + dD-4k-3, with 0 < k < L(D - 3)/4], BD(d,n) has diameter D. If 

n = dD- ’ + dDe3, BD(d, n) is a (d,D)-bipartite digraph with order very close to the 
bound M,(d,D) and it is optimal if D = 3 or D = 4. In general, we have that the 
diameter D of the bipartite digraph BD(d, n) is such that [log, nl< D < [log,, n 1+ 1. 
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For any set A of vertices of a digraph G, let T:(A) be defined recursively by 
T:(A) = r +(rL ,(A)) beginning with 

r:(A) = T+(A) = IJ r’(u). 
EA 

When A = (u} we just write r:(u). 
In BD(d,n) we have: 

l I’:(O,i)={(l,di+t,)It,=O,l,..., d-l}, 
l r:(O,i) = ((0, - d2i - 1 - (tI + t2d)) 1 tl,t2 = O,l, . . . . d - l}, 
l r:(O, i) = ((1, - d3i - 1 - (to + t,d + t2d)) It,,, tl, t2 = 0, 1, . . . . d - l}. 
The values of to, tI, t2 determine a path from (0, i) to any vertex in r:(u): the path 
going through the arcs labeled with t,,d - tl - 1 and d - to - 1. 

The next two lemmas are properties of these digraphs which will be used further. 

Lemma 1. Zf n 2 d2 and x and y are vertices ofBD(d, n) such that d(x, y) = 2, then there 

is a unique path of length 2 from x to y. 

Proof. Using the automorphism 4, we can suppose x = (0, i) E Vo. Then 

r;(x) = ((0, - d2i - 1 - (to + t,d))I to, tl = 0, 1, . . . . d - 1). 

Since n > d2, r:(x) has d2 different elements. This would be impossible if there were 
more than one path between x and a vertex at distance 2 from it. 0 

Lemma 2. If d2 + 1 divides n, then there are no cycles of length 2 in BD(d,n). 

Proof. We suppose that there are in BD(d, n) cycles of length 2, that is, we can find 
a vertex (0, i) E V, such that (0, i) E r :(O, i). Then, there must be to, t 1 E 10, 1, . . . , d - 1 > 

such that 

(d2 + 1)i + 1 + to + t,d = 0 (mod n). 

Since d2 + 1 divides n, 1 + to + t,d must be a multiple of d2 + 1. But that is imposs- 
ible because 1 < 1 + to + t,d < d2. 0 

5. Large (d, 3,3, s)-bipartite digrapbs 

Some (d, 3,3, s)-bipartite digraphs with order close to the bound M,(d, 3,3, s) are 
shown in this section. 

First of all, we are going to construct large (d, 3,3,s)-bipartite digraphs with 
s < d - 1 and s + 1 a divisor of d. Optimal (d, 2,2, s)-digraphs are constructed in [lo] 
in a similar way. Consider the complete symmetric bipartite digraph K,,,, where 
m = d/(s + 1). Let KS,tA be the d-regular bipartite digraph obtained from K,,, chang- 
ing each arc by s + 1 parallel arcs. K,,T;ltnf has diameter 2 and between any pair of 
different vertices of KkTA there are s + 1 arc-disjoint paths of length at most 2. Then, 
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from Theorem 1, its line digraph LK&TA is a (d, 3,3,s)-bipartite digraph of order 
n = 2d2/(s + 1). 

Theorem 2. Let s, d be integers such that s < d and s + 1 divides d2 + 1 and let 

n = (d2 + l)/(s + 1). The bipartite digraph BD(d, n) is (d, 3,3, s). 

Proof. We shall prove that between any pair of non-adjacent vertices x, y of BD(d, n) 

there exist s + 1 disjoint paths of length at most 3. Since there is an automorphism 
4 in BD(d, n) which transforms V, in V,, we can assume that x E V,. 

First we prove that there are s + 1 disjoint paths of length 2 from x to any different 
vertex of V,. Let us take x = (0, i) and y = (OJ), i #j. For each k = 0, 1, . . . . s, exist 
t,,(k), t,(k) E (0, 1, . . . . d - l} such that 

j + k(d2 + l)/(s + 1) = i - 1 - (t,(k) + t,(k)d) (modd2 + 1). 

Since j = j + k(d2 + l)/(s + 1) (mod n) for all k, each value of k gives us a path of 
length 2 from (0, i) to (O,j), the path which goes through the arcs labeled with t,(k) and 
d - t,(k) - 1. It is easy to prove that t,(k) # t,(k’) if k # k’. Therefore, these s + 1 
paths from (0, i) to (0,j) are disjoint. 

Finally, we prove that there are s + 1 disjoint paths of length 3 from x to any 
non-adjacent vertex y E Vi. We take s + 1 different vertices vr, v2, . . . , v,+ 1 in r +(x). 
Since ui E V1 and vi # y, there are s + 1 disjoint paths of length 2 from Vi to y. Let 
viwiy be one of the paths from ui to y. At least one of the s + 1 disjoint paths from 
u2 to y does not go through wl. Then, there is a path v2w2y such that w2 # wl. In the 
same way, for each i < s + 1, we can find a path ViWiy with Wi # Wj for any j < i. Then, 
there are s + 1 disjoint paths from x to y (see Fig. 3). 

We have found s + 1 disjoint paths of length at most 3 between any pair of 
non-adjacent vertices of BD(d, n) . Besides, BD(d, n) has diameter 3. Therefore, BD(d, n) 

is a (d, 3,3, s) -bipartite digraph. 0 

Fig. 3. s + 1 disjoint paths from x E V,, to a non-adjacent vertex y E VI. 
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6. Large (d, D, 4, s)-bipartite digrapbs 

In this section we prove that the bipartite digraphs BD(d,n), with n = (d3 + d)/ 

(s + l), are (d, D, 4, s)-bipartite digraphs. 

Theorem 3. Let s and d be integers such that s < d and s + 1 is a divisor of d3 + d. Let 

n = (d3 + d)/(s + 1). In the bipartite digraph BD(d,n) there are s + 1 disjoint paths of 

length at most 4 between any pair of non-adjacent vertices. 

Proof. Let x and y be two non-adjacent vertices of BD(d, n). As before, we can suppose 

that x = (0, i) E V,. First we will prove that there are s + 1 disjoint paths of 
length 3 from x to any non-adjacent vertex y = (1,j) E V1. If (1,j) is not adjacent 
from (O,i), for each k = 0, 1, . . . . s, there exist t,(k), t,(k), t,(k) E (0, 1, . . . , d - l} 
such that 

j + k(d3 + d)/(s + 1) = di - 1 - (t,,(k) + t,(k)d + t2(k)d2) (modd3 + d). 

Since j E j + k(d3 + d) /(s + 1) (mod n) for all k, each value of k gives a path of length 
3 from (0,i) to (l,j), the path XUkvky which goes through the arcs labeled with 
t,(k),d - t,(k) - 1 and d - t,,(k) - 1. It is easy to prove that t,(k) # t,(k’) if k # k’ and 
so, uk # uk’ if k # k’. Since n > d2, from Lemma 1 we see that vk # vk’ if k # k’. Finally, 
since (x, y) is not an arc, x # vk and y # uk for all k E (0, 1, . . . , s> (see Fig. 4). Therefore, 
we have s + 1 disjoint paths of length 3 from (0, i) to (1,j). 

We have to prove now that there are s + 1 disjoint paths of length at most 4 from 
x to any vertex y E VO, y # x. 

If d(x, y) = 4, we take s + 1 different vertices vl, . . . , v,+ 1 E r ‘(x). There are s + 1 
disjoint paths of length 3 from each Vi to y (vi E V1 and are not adjacent to y). Let 
vlulwly be one of the paths from v1 to y. At least one of the s + 1 paths from v2 to 
y does not go through wl. Then, there is a path v2u2w2y such that w2 # wl. In the 
same way, for each i < s + 1, we can find a path viuiwiy with wi # wj for any j < i. 

uk 

ukl ok’ 

Fig. 4. Disjoint paths from x E V, to a non-adjacent vertex y E VI. 
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Fig. 5. s + 1 disjoint paths between two vertices of VO at distance 4. 

2 

Fig. 6. 

us+1 ht1 - wit1 

s + 1 disjoint paths between two vertices of V. at distance 2. 

Since d(x, y) = 4, ui # Wj for all i,j and ui # x, y for all i. From Lemma 1, Ui # Uj if i # j. 
Then, there are s + 1 disjoint paths of length 4 from x to y (see Fig. 5). 

If d(x,y) = 2, we take w1 such that xwly is the unique path (see Lemma 1) of length 
2 from x to y and s different vertices v2, . . . , us+ 1 E r ‘(x) - {wl >. Similarly, to the case 

d(x,y)=4,foralli=2 ,..., s + 1, we can find a path xUiUiWiy such that Wi # Wj if i # j. 
From Lemma 1, vi # wj for all i, j, ui # uj if i # j and ui # x, y for all i. There are, then, 
s + 1 disjoint paths of length at most 4 from x to y (see Fig. 6). 0 

If n = (d3 + d)/(s + l), 2n > M,(d, 3) if s c d - 1. Then, the diameter of BD(d, n) is 
4 if s < d - 1 and is 3 if s = d - 1. Therefore, as a consequence of Theorem 3, we 
obtain the result pursued in this section. 
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Theorem 4. Ifs < d and s + 1 divides d3 + d,BD(d,(d3 + d)/(s + 1)) is a (d,D, 4,s)- 

bipartite digraph, where D = 3 ifs = d - 1 and D = 4 otherwise. 

7. Large (d, D, D’, s)-bipartite digraphs with D/=5,6 

In this section we use the results of Section 3 in order to find large (d, D,D’,s)- 

bipartite digraphs with D’ = $6. 

Theorem 5. Let s,d be integers such that s + 1 divides d. Let n = (d3 + d)/(s + 1). The 
bipartite digraph BD(d, n) verijies: 

1. Between any pair of dierent vertices, there are s + 1 disjoint paths of length at 

most 4. 

2. For any vertex x of BD(d,n) and for any pair of arcs in the form ux,xv, 

there are s disjoint cycles in x of length 4 such that none of them goes neither 

through ux nor xv. 

Proof. From Theorem 3, we have s + 1 disjoint paths of length at most 4 between any 
pair of non-adjacent vertices in BD(d, n). We have to prove the existence of s + 1 
disjoint paths of length at most 3 between any pair x,y of adjacent vertices. It is 
enough to prove it for x = (0, i) E V0 and y = (1, j) E r ‘(x). Since (1, j) is adjacent from 
(O,i), j=di+t for some tE{O,l,..., d-l}. For each k=l,..., s, there exist 
t,-,(k), t,(k), t2(k) E (0, 1, . . . ,d - l} such that 

j + k(d3 + d)/(s + 1) = di - 1 - (t,(k) + t,(k)d + t,(k)d’) (modd3 + d). 

Since for all k, j = j + k(d3 + d)/(s + 1) ( mo n , each value of k gives us a path of d ) 

length 3 from (0, i) to (l,j), the path x&&y which goes through the arcs labeled with 
t,(k),d - t,(k) - 1 and d - t,,(k) - 1. It is easy to prove that t,(k) # t2(k’) if k # k’ and 
so, uk # uk,, if k # k’. From Lemma 1 we see that vk # ok’ if k # k’. Since s + 1 divides 

uk vk 

uk’ vk’ 

Fig. 7. Disjoint paths from x E VO to an adjacent vertex y E V,. 
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Fig. 8. Disjoint cycles in a vertex x E VO. 

d, (d3 + d)/(s + 1) is a multiple of d2 + 1. Then, from Lemma 2, x # uk and y # uk for 
all k E (1, . . . . s} (see Fig. 7). Therefore, we have s + 1 disjoint paths of length at most 

3 from (0, i) to (1,j) (one path is the arc xy and the other paths are given by the different 
values of k). 

We are now going to prove that for any vertex x and for any pair of arcs in the form 
wlx,xvl, there are s disjoint cycles in x of length 4 such that any of them goes 
through neither wix nor xui. We suppose x E V, and take s different vertices 
u2,. . . , us+ 1 E r ‘(x) - {ul}. Since x E V,, and ui E I/, are not adjacent to x (see Lemma 
2), there are s + 1 disjoint paths of length 3 from each ui to x. At least one of the s + 1 
paths from o2 to x does not go through wi. Then, there is a path v2u2w2x such that 
~2 # ~1. In the same way, for each i < s + 1, we can find a path UiUiWix with Wi # wj 
for any j < i. From Lemma 2, vi # Wj for all i,j, and ui # x for all i. From Lemma 1, 
Ui # Uj if i fj. Then, there are s disjoint cycles in x of length 4 such that any of them 
goes through neither wlx nor xui (see Fig. 8). 0 

Theorem 6. Let s,d be integers such that s + 1 divides d. Then, the bipartite digraphs 

BD(d,(d4 + d’)/(s + 1)) and BD(d,(d’ + d3)/(s + 1)) are, respectively, (d,D, 5, s) and 
(d, D, 6, s) , where D = D’ - 1 ifs = d - 1 and D = D’ otherwise, 

Proof. From Theorem 4, BD(d,(d3 + d)/(s + 1)) is a (d, D)-digraph with D = 3 if 
s = d - 1 and D = 4 otherwise. Besides, from Section 4, we have 

LBD(d, (d3 + d)/(s + 1)) r BD(d, (d4 + d2)/(s + 1)) 

L2BD(d, (d3 + d)/(s + 1)) z BD(d, (d5 + d3)/(s + 1)). 

Apply Theorems 1 and 5. 0 

In Table 1 we can see the orders of the (d, D, D’, s)-bipartite digraphs found in this 
paper and compare them with the upper bound M,(d, D, D’, s). 
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Table 1 
Orders of the (d, D, D’, s)-bipartite digraphs found in this paper 

(d,D,D’,s) Order 

(4 373, s) 
s < d - l,(s + l)ld 

(d, 373, s) 
(s + l)l(d2 + 1) 

(d, 474. s) 
s < d - l,(s + 1)l(d3 + d) 

(d, 3,4, d - 1) 

(d, 5,5, s) 
s<d-l,(s+l)ld 

(d,45,d - 1) 

(4 66, s) 
s < d - l,(s + l)ld 

(4 56, d - 1) 

2 1+$ 
( > 

2(1+1&l]> 

++lGlJ 
2(d2 + 1) 2(d2 + 1) 

2(I+fg 

2(d + d3) 

,(,+ffg) 
2(1 + d2 + d“) 

2dZ+1 

s+l 

2dJ+d 

s+l 

2 d4 f d2 

s+l 

2(d + d3) 

2 d3 + ds 

s+t 

2(dZ + d4) 
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