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Abstract

By using parameterized representation of fuzzy numbers, criteria for a lower semicontinuous fuzzy mapping defined on a
non-empty convex subset of Rn to be a convex fuzzy mapping are obtained.
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1. Introduction

Convexity and semicontinuity of fuzzy mappings play central roles in fuzzy mathematics and fuzzy optimization.
The concept of convex fuzzy mappings defined through the “fuzz-max” order on fuzzy numbers were studied by
several authors, including Furukawa [1], Nanda [2], Syau [3,4], and Wang and Wu [5], aiming at applications to fuzzy
nonlinear programming. The concept of upper and lower semicontinuity of fuzzy mappings based on the Hausdorff
separation was introduced by Diamond and Kloeden [6]. Recently, Bao and Wu [7] introduced a new concept of
upper and lower semicontinuity of fuzzy mappings through the “fuzz-max” order on fuzzy numbers, and obtained
the criteria for convex fuzzy mappings under upper and lower semicontinuity conditions, respectively. In an earlier
paper [8], we redefined the upper and lower semicontinuity of fuzzy mappings of Bao and Wu [7] by using the concept
of parameterized triples of fuzzy numbers.

Bao and Wu [7] established the criteria for a lower semicontinuous fuzzy mapping defined on a non-empty closed
convex subset, say C , of Rn to be a convex fuzzy mapping. In this paper, by using parameterized representation of
fuzzy numbers, we give the criteria for a lower semicontinuous fuzzy mapping defined on a non-empty convex subset
of Rn to be a convex fuzzy mapping. In other words, we deleted the requirement of the closed condition on C . That
is, the set C only needs to be a non-empty convex subset of Rn .
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2. Preliminaries

In this section, for convenience, several definitions and results without proof from [3,7–12] are summarized below.
Let Rn denote the n-dimensional Euclidean space. In what follows, let S be a non-empty subset of Rn . For any

x ∈ Rn and δ > 0, let

Bδ(x) = {y ∈ Rn : ‖y − x‖ < δ},

where ‖ · ‖ being the Euclidean norm on Rn .
First, we recall the definitions of upper and lower semicontinuous real-valued functions.

Definition 2.1. A real-valued function f : S → R1 is said to be
(1) upper semicontinuous at x0 ∈ S if ∀ε > 0, there exists a δ = δ(x0, ε) > 0 such that

f (x) < f (x0) + ε whenever x ∈ S ∩ Bδ(x0).

f is upper semicontinuous on S if it is upper semicontinuous at each point of S.
(2) lower semicontinuous at x0 ∈ S if ∀ ε > 0, there exists a δ = δ(x0, ε) > 0 such that

f (x) > f (x0) − ε whenever x ∈ S ∩ Bδ(x0).

f is lower semicontinuous on S if it is lower semicontinuous at each point of S.
The support, supp(µ), of a fuzzy set µ : Rn

→ I = [0, 1] is defined as

supp(µ) = {x ∈ Rn
: µ(x) > 0}.

A fuzzy set µ : Rn
→ I is normal if [µ]1 6= ∅. A fuzzy number we treat in this study is a fuzzy set µ : R1

→ I
which is normal, has bounded support, and is upper semicontinuous and quasiconcave as a function on its support.

Let α ∈ I . The α-level set of a fuzzy set µ : Rn
→ I , denoted by [µ]α , is defined as

[µ]α =

{
{x ∈ Rn

: µ(x) ≥ α}, if 0 < α ≤ 1;

cl(supp(µ)), if α = 0,

where cl(supp(µ)) denotes the closure of supp(µ).
Denote by F the set of all fuzzy numbers. In this paper, we consider mappings F from a non-empty subset of Rn

into F . We call such a mapping a fuzzy mapping. It is clear that each r ∈ R1 can be considered as a fuzzy number r̃
defined by

r̃(t) =

{
1, if t = r;

0, if t 6= r,

hence, each real-valued function can be considered as a fuzzy mapping.
It can be easily verified [9] that a fuzzy set µ : R1

→ I is a fuzzy number if and only if (i) [µ]α is a closed and
bounded interval for each α ∈ I , and (ii) [µ]1 6= ∅. Thus we can identify a fuzzy number µ with the parameterized
triples

{(a(α), b(α), α) : α ∈ I },

where a(α) and b(α) denote the left- and right-hand endpoints of [µ]α , respectively, for each α ∈ I .

Definition 2.2. Let µ and ν be two fuzzy numbers represented parametrically by

{(a(α), b(α), α) : α ∈ I } and {(c(α), d(α), α) : α ∈ I },

respectively. We say that µ � ν if

a(α) ≤ c(α) and b(α) ≤ d(α) for each α ∈ I.

We call � the fuzz-max order on F .
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We see that µ = ν, if µ � ν and ν � µ. We say that µ ≺ ν, if µ � ν and there exists α0 ∈ [0, 1] such that
a(α0) < c(α0) or b(α0) < d(α0).

For fuzzy numbers µ and ν parameterized by

{(a(α), b(α), α) : α ∈ I } and {(c(α), d(α), α) : α ∈ I },

respectively, and each nonnegative real number k, we define the addition µ + ν and nonnegative scalar multiplication
kµ as follows:

µ + ν = {(a(α) + c(α), b(α) + d(α), α) : α ∈ I } (2.1)

kµ = {(ka(α), kb(α), α) : α ∈ I }. (2.2)

It is known that the addition and nonnegative scalar multiplication on F defined by (2.1) and (2.2) are equivalent
to those derived from the usual extension principle, and that F is closed under the addition and nonnegative scalar
multiplication.

Remark 2.1. It is obvious from (2.1) that for each fuzzy number µ parameterized by {(a(α), b(α), α) : α ∈ I } and
each real number r ,

µ + r = µ + r̃ = {(a(α) + r, b(α) + r, α) : α ∈ I }. (2.3)

Now, we recall the concept of convexity and weak convexity of fuzzy mappings defined through the fuzz-max
order on F .

Definition 2.3 ([2,10]). Let C be a non-empty convex subset of Rn . A fuzzy mapping F : C → F is said to be
(1) convex if for every λ ∈ [0, 1] and x, y ∈ C ,

F(λx + (1 − λ)y) � λF(x) + (1 − λ)F(y).

(2) weakly convex, if for all x , y ∈ C , there exists a λ ∈ (0, 1) (λ depends on x , y) such that

F(λx + (1 − λ)y) � λF(x) + (1 − λ)F(y).

We recall Bao and Wu’s definition of upper and lower semicontinuous fuzzy mappings.

Definition 2.4 ([7]). A fuzzy mapping F : S → F is said to be
(1) upper semicontinuous at x0 ∈ S if ∀ ε > 0, there exists a δ = δ(x0, ε) > 0 such that

F(x) � F(x0) + ε̃ whenever x ∈ S ∩ Bδ(x0).

F : S → F is upper semicontinuous if it is upper semicontinuous at each point of S.
(2) lower semicontinuous at x0 ∈ S if ∀ε > 0, there exists a δ = δ(x0, ε) > 0 such that

F(x0) � F(x) + ε̃ whenever x ∈ S ∩ Bδ(x0).

F : S → F is lower semicontinuous if it is lower semicontinuous at each point of S.

Theorems 2.1 and 2.2 for upper and lower, respectively, semicontinuous fuzzy mappings can be easily derived from
(2.3).

Theorem 2.1 ([8]). Let F : S → F be a fuzzy mapping parameterized by

F(x) = {(a(α, x), b(α, x), α) : α ∈ I }, ∀x ∈ S.

The following conditions are equivalent:
(1) F is upper semicontinuous at x0 ∈ S.
(2) a(α, x) and b(α, x) are upper semicontinuous at x0 uniformly in α ∈ I .
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Theorem 2.2 ([8]). Let F : S → F be a fuzzy mapping parameterized by

F(x) = {(a(α, x), b(α, x), α) : α ∈ I }, ∀ x ∈ S.

The following conditions are equivalent:
(1) F is lower semicontinuous at x0 ∈ S.
(2) a(α, x) and b(α, x) are lower semicontinuous at x0 uniformly in α ∈ I .

Finally, we recall two important results concerning convex functions.

Theorem 2.3 ([11]). Let C be a non-empty convex subset of Rn , and let f : C → R1 be a lower semicontinuous
function. If for all x, y ∈ C, there exists a λ ∈ (0, 1) (λ depends on x, y) such that

f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y),

then f is a convex function on C.

Theorem 2.4 ([12]). Let C be a non-empty convex subset of Rn , and let f : C → R1 be an upper semicontinuous
function. If, there exists a λ ∈ (0, 1) such that

f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y) ∀x, y ∈ C,

then f is a convex function on C.

3. Main results

In what follows, let C be a non-empty convex subset of Rn . Motivated by Theorem 2.4 and the concept of weakly
convex fuzzy mappings proposed in [10], we propose the concept of intermediate-point convex fuzzy mappings in
Definition 3.1.

Definition 3.1. Let C be a non-empty convex subset of Rn . A fuzzy mapping F : C → F is said to be intermediate-
point convex if, there exists a λ ∈ (0, 1) such that

F(λx + (1 − λ)y) � λF(x) + (1 − λ)F(y), ∀x, y ∈ C.

We establish a characterization of convex fuzzy mappings in parametric representation in the following result.

Theorem 3.1. Let C be a non-empty convex subset of Rn , and let F : C → F be a fuzzy mapping parameterized by

F(x) = {(a(α, x), b(α, x), α) : α ∈ I }, ∀x ∈ C. (3.1)

Then F is convex on C if and only if for each α ∈ [0, 1],

a(α, x) and b(α, x) are convex with respect to x on C. (3.2)

Proof. Assume that for each α ∈ [0, 1],

a(α, x) and b(α, x) are convex with respect to x on C.

Let α ∈ [0, 1] be given. From (3.2), we have

a(α, λx + (1 − λ)y) ≤ λa(α, x) + (1 − λ)a(α, y)

and

b(α, λx + (1 − λ)y) ≤ λb(α, x) + (1 − λ)b(α, y)

for all x , y ∈ C and λ ∈ [0, 1]. Then, by (3.1), (2.1) and (2.2), we obtain

F(λx + (1 − λ)y) = {(a(α, λx + (1 − λ)y), b(α, λx + (1 − λ)y), α) : α ∈ I }

� {(λa(α, x), λb(α, x), α) : α ∈ I } + {((1 − λ)a(α, y), (1 − λ)b(α, y), α) : α ∈ I }

= λF(x) + (1 − λ)F(y),

for all x , y ∈ C and λ ∈ [0, 1]. Hence F is convex on C .
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Conversely, let F be convex on C . Then for every λ ∈ [0, 1] and x, y ∈ C , we have

F(λx + (1 − λ)y) � λF(x) + (1 − λ)F(y).

From (3.1), we have

F(λx + (1 − λ)y) = {(a(α, λx + (1 − λ)y), b(α, λx + (1 − λ)y), α) : α ∈ I } (3.3)

for every λ ∈ [0, 1] and x, y ∈ C . From (3.1), (2.1) and (2.2), we obtain

λF(x) + (1 − λ)F(y) = {(a(α, λx), b(α, λx), α) : α ∈ I } + {(a(α, (1 − λ)y), b(α, (1 − λ)y), α) : α ∈ I }

= {(λa(α, x) + (1 − λ)a(α, y), λb(α, x) + (1 − λ)b(α, y), α) : α ∈ I },

for all x , y ∈ C and λ ∈ [0, 1]. Then, by (3.3) and the convexity of F , we have for every λ ∈ [0, 1] and x, y ∈ C ,

a(α, λx + (1 − λ)y) ≤ λa(α, x) + (1 − λ)a(α, y)

and

b(α, λx + (1 − λ)y) ≤ λb(α, x) + (1 − λ)b(α, y)

for each α ∈ [0, 1]. Hence, we conclude that

a(α, x) and b(α, x) are convex with respect to x on C.

This completes the proof. �

Theorem 3.2. Let C be a non-empty convex subset of Rn , and let F : C → F be a lower semicontinuous fuzzy
mapping. If for all x, y ∈ C, there exists a λ ∈ (0, 1) (λ depends on x, y) such that

F(λx + (1 − λ)y) � λF(x) + (1 − λ)F(y), (3.4)

then F is a convex fuzzy mapping on C.

Proof. Let

F(x) = {(a(α, x), b(α, x), α) : α ∈ I }, ∀x ∈ C, (3.5)

be the parametric representation of the fuzzy mapping F : C → F . Since F : C → F is lower semicontinuous, by
Theorem 2.2, we have for each x ∈ C , both

a(α, x) and b(α, x) are lower semicontinuous at x uniformly in α ∈ I. (3.6)

In view of (3.4) and (3.5) it can be written as for all x , y ∈ C , there exists a λ ∈ (0, 1) (λ depends on x , y) such that

a(α, λx + (1 − λ)y) ≤ λa(α, x) + (1 − λ)a(α, y) (3.7)

and

b(α, λx + (1 − λ)y) ≤ λb(α, x) + (1 − λ)b(α, y) (3.8)

for each α ∈ [0, 1]. Combining (3.6), (3.7), and Theorem 2.3, we have

a(α, x) is convex with respect to x on C. (3.9)

Similarly, combining (3.6), (3.8), and Theorem 2.3, we have

b(α, x) is convex with respect to x on C. (3.10)

From (3.9), (3.10), and Theorem 3.1, it follows that F is a convex fuzzy mapping on C . �

Similarly, by Theorems 2.1 and 2.4, we obtain an analogous result to Theorem 3.2 for the case of upper
semicontinuous fuzzy mappings:
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Theorem 3.3. Let C be a non-empty convex subset of Rn , and let F : C → F be an upper semicontinuous fuzzy
mapping. If, there exists a λ ∈ (0, 1) such that

F(λx + (1 − λ)y) � λF(x) + (1 − λ)F(y) ∀x, y ∈ C,

then F is a convex fuzzy mapping on C.

From Part (2) of Definition 2.3, and Theorem 3.2, we obtain the following result:

Theorem 3.4. Let C be a non-empty convex subset of Rn , and let F : C → F be a lower semicontinuous fuzzy
mapping. Then, F is a convex fuzzy mapping on C if and only if it is a weakly convex fuzzy mapping on C.

Similarly, by Definition 3.1 and Theorem 3.3, we obtain:

Theorem 3.5. Let C be a non-empty convex subset of Rn , and let F : C → F be an upper semicontinuous fuzzy
mapping. Then, F is a convex fuzzy mapping on C if and only if it is an intermediate-point convex fuzzy mapping on
C.

Recall that, the epigraph of a fuzzy mapping F : S → F , denoted by epi(F), is defined as

epi(F) = {(x, µ) : x ∈ S, µ ∈ F, F(x) � µ}.

Theorem 3.4, combined with Theorem 3.3 in [10], implies the following result.

Theorem 3.6. Let C be a non-empty convex subset of Rn , and let F : C → F be a lower semicontinuous fuzzy
mapping. The following conditions are equivalent.

(1) F : C → F is a convex fuzzy mapping.
(2) for all (x, µ), (y, ν) ∈ epi(F), with x, y ∈ C and µ, ν ∈ F ,

{γ (x, µ) + (1 − γ )(y, ν)|0 < γ < 1} ∩ epi(F) 6= ∅.

(3) for all x, y ∈ C, there exists a λ ∈ (0, 1) (λ depends on x, y) such that

F(λx + (1 − λ)y) ≺ λµ + (1 − λ)ν

whenever µ, ν ∈ F0, F(x) ≺ µ, F(y) ≺ ν.
(4) for all (x, µ), (y, ν) ∈ G(F) with x, y ∈ C and µ, ν ∈ F ,

{γ (x, µ) + (1 − γ )(y, ν)|0 < γ < 1} ∩ G(F) 6= ∅,

where G(F) = {(x, µ) : x ∈ C, F(x) ≺ µ}.
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