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In 1878 Lucas established a method of computing binomial coefficients module 
a prime. We establish the following variations of Lucas’ Theorem. If n, r, n,, and 
rO are non-negative integers, p L 5 is prime, and no, r. are less than p. then 

( > 0 
nP = n 
rp - r 

(mod ~‘1 

and 

A theorem of l?douard Lucas [2,4] tells us how to compute binomial 
coefficients modulo a prime. One statement of Lucas’ Theorem is as 
follows. 

THEOREM 1. If p is a prime, N, R, n,, and rO are non-negative integers, 
and n, and rO are both less than p, then 

In [ 11 we have shown that one may replace p by p2 at various points 
in the above congruepce, but only at the expense of restricting n, and r. 
more so than would be the case in a true generalization of Lucas’ result. 
In particular we have established: 

THEOREM 2. Zf k and r are non-negative integers and p is prime, then 

(z) = (“;) (mod p2). 
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THEOREM 3. If p is prime, N, R, n,, and r. are non-negative integers, and 
no and r. are both less than p, then 

We also show in [ 11 that one cannot replace p2 by a higher power of 
p in either of the above theorems. However, as we now know and will 
show, p2 can be replaced by p3 in Theorems 2 and 3 so long as the prime 
p is greater than 3. Having missed this p3 replacement in our earlier paper 
we emphasize that our proof of Lemma 1 below shows that no further 
modification along this line is possible. That is, p2 cannot be replaced 
by p4. 

LEMMA 1. If p is a prime and p 3 5, then, 

E 2 (mod p3). 

Proof. Since it is well known that 

and since the first and last terms of this sum are 1, we need only show that 

(mod p3). 

But it is easy to see that 

and hence we need only show that 

(Tr+(:r+ ... +((pp1),2~=0 (modp3). (1) 

Now the left hand side of (1) is equal to 
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Therefore we are through if we can show that 

(mod PI. 

At this point we note that 

(P- 1Y Jp--l)(P-W4P--k+ 1) 
(p-k)! k! k! 

J-N-2)4+-1)) - 
k! (mod ~1. 

Therefore in the field ZP we have 

(p-l)! 1 
(p-k)! k! 2 *k’ 

Moreover l/k is in the set 

A = 
{ 

P-l 1, 2, . ..) - 
2 1 

or in 

B= 

i 

P+l P+3 2’ 2’ . ..) p - 1 
I 

. 

But if l/k is in B then l/k = p -m where m = 1,2, . . . . (p - 1)/2. In this case 
- l/k=m (mod p) where m EA. Hence the elements of 

{( (:;I!‘:!)‘9 ((:$):,)‘= (((p+ l);;)!(t:- 1),2)!)‘} 

are congruent in some order to the elements of 
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Thus the sum 

L=12+22+ . . . + p ! !  

( 1 

2 

JP--1)/2MP+ WPso 
6 (mod PI. 

Of course, this completes the proof. 

LEMMA 2. If p is a prime and p > 5, then 

(mod p3). 

Proof. First, by comparing the coefficients of xn in the individual 
expansions of (1 + x)(~ + ljp and (i + x)~~( 1 + x)~, one can see that 

(2) 

Now, we establish the lemma by induction on k. The lemma is trivially 
true for k = 1, and by Lemma 1 the lemma is true for k = 2. Thus we make 
the inductive assumption that (7) = m (mod p3) for m = 1,2, . . . . k + 1 
where k 2 1. We then consider 

= (‘k+pl)p) +;;I (‘“,‘_‘;“)(g + 1. 

By. the inductive hypothesis and Eq. (2) the last term above is congruent 
modulo p3 to 

Thus, to complete the induction, we need only show that 

64113512.8 
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But S can be further expanded to 

Now by Lucas’ Theorem each summand in the middle term in (3) is 
congruent to 0 modulo p3. Moreover 

But by the inductive hypothesis the last expression above is congruent, 
module p3, to (k + 1) - k + 2 - 3 = 0. Thus the proof is complete. 

THEOREM 4. Zf k and r are non-negative integers, p is a prime, and p B 5, 
then 

(z) = (5> (mod p3). 

Proof: Once again the proof is by induction. Observe that the result is 
trivially true for r = 0 and the preceding lemma shows it is true for r = 1. 
Therefore we fix r > 2 and assume the result for any smaller value. For this 
fixed r we then induct on k. 

Clearly the result will hold for all k < r and thus we assume the result for 
some k > r. To complete the proof we then consider ( (k:j’p). Since k z 2 
we write k = m + 1 with m 2 1. Thus, using Eq. (2), we have 

p CC (m+l) P = 
i=O >( > rp-i i 

P rp - i 

= 
c cc 

v 

>( 

P P 
i=o i=o rp-i-j >( > j i 
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Now the last term above is clearly 

As in the proof of Lemma 2 one can show that the middle term in (4) is 
congruent to 0 modulo p3. Moreover, by the inductive hypothesis we see 

and it is clear that 

Thus we have made the inductive step and completed the proof. 

It is now an easy corollary that 

(z:)-(f) (mod p3) 

but we are able to obtain a bit more than this in Theorem 5. Our proof 
uses the method of Hausner [3]. 

THEOREM 5. Let p be a prime greater than 3. If N, R, n,, and r,, are 
non-negative integers with n, and r. less than p then 

Proof: (Note that in this proof we denote the cardinality of a set S by 
IS/.) First define 

A, = {(i, I), . . . . (6 NJ} for i= 1, . . . . p3 (Ai= if N=O) 

and 

B = { (0, l), . . . . (0, no) > (B=fj if n,=O). 
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Next set A=A,uA,u .-. u Ap3 u B, define n = Np3 + n,, and note that 
IAI=n. Now definef:A+A by 

f(i, x) = (i+ 1, x) if l<i<p3, 

f(P3, xl = (1, xl and f(0, X) = (0, x) 

so that f(Ai) = A,, 1 for 1 < i < p3, f(A,3) = A,, and f(B) = B. Obviously 
f”’ is the identity mapping on A. 

Define r = Rp3 + r,, and Iet X be the collection of all subsets C G A such 
that I Cl = r. Clearly I f(C)1 = ICI since f is one-to-one. Thus f: X+ X and 
f p3 is the identity on A’. For any C E X we define the orbit of C as 

O(C) = {c,f(af’(q ..*,f”‘-‘(a}. 

Obviously {O(C) I CE X} partitions X and each O(C) contains exactly 1, 
exactly p, exactly p2, or exactly p3 elements. If we denote by X, the 
collection of elements in X whose orbit contains pi points we see that 
[Xl= IX,1 + IX,1 + IX21 + [X31. Since it is clear that 1x1 = (F) and IX,1 -0 
(mod p3) the proof will be complete if we can show IX,1 = (z)(:;), and both 
/TX’,/ = 0 (mod p3) and j/I’,/ = 0 (mod p3). 

Let us therefore first consider C satisfying f(C) = C and think of C as 

c=c,uc,u ... ucp3uco, 

where Ci c Ai and Co c B. Since Co E B we must have f( C,) = Co. Likewise 
f(C) = C and f(C,) E Ai+ 1 for 1 < i < p3 implies f (CJ = Ci+ 1 for those 
values of i. From the fact that f is one-to-one we then deduce that 

ICI =p31Cll + JC,I =r= Rp3+ro. 

Thus 1 CO( - y0 = (R - 1 C1 I ) p3 which implies that I Co1 - r0 is divisible by p, 
But since IC,,l <no < p and r. < p this means IC,l = r. which in turn 
implies IC,/ = R. It follows then that one may choose C, in (i) ways 
and C, in (7;) ways. But once Co and C1 are chosen, C is completely 
determined. Thus 

as desired. 
Next consider C satisfying f”(C) = C, Since f J’( C) = C we must have 

f”~~~~=~,+,~f”~~*~=~,+,,...,f”~c,+,)=c,+,, 

etc., and 

f(G) = co. 
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Therefore C is determined as soon as we determine C, , C,, . . . . C,, C,,. 
Moreover 

ICI =p21CJ +p21C2J + .a. +p*IC,( +(C,( =r=p3R+ro. 

As before it follows that 

ro= lCol and (Cl1 + lC21 + ... + IC,l =pR. 

Hence there are ($) ways to choose Cr, C2, . . . . C, and (T;) ways to choose 
C,. Thus C may be chosen in ($)(:;o) ways. But this number includes all 
those C such that f(C)= C. Subtracting these out we find that, by 
Theorem 4, 

Finally we consider C such that j”(C) = C. Reasoning as above one 
determines that there are ($g)(:;) such C. But in this number one has 
counted all C satisfying fP( C) = C. Subtracting out such elements we have 

Thus the proof is complete. 
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