Two p^{3} Variations of Lucas' Theorem

D. F. Bailey
Department of Mathematics, Trinity University, San Antonio, Texas 78212
Communicated by R. L. Graham
Received August 28, 1989

In 1878 Lucas established a method of computing binomial coefficients modulo a prime. We establish the following variations of Lucas' Theorem. If n, r, n_{0}, and r_{0} are non-negative integers, $p \geqslant 5$ is prime, and n_{0}, r_{0} are less than p, then

$$
\binom{n p}{r p} \equiv\binom{n}{r} \quad\left(\bmod p^{3}\right)
$$

and

$$
\binom{n p^{3}+n_{0}}{r p^{3}+r_{0}} \equiv\binom{n}{r}\binom{n_{0}}{r_{0}} \quad\left(\bmod p^{3}\right) . \quad \text { © } 1990 \text { Academic Press, Inc. }
$$

A theorem of Édouard Lucas [2,4] tells us how to compute binomial coefficients modulo a prime. One statement of Lucas' Theorem is as follows.

Theorem 1. If p is a prime, N, R, n_{0}, and r_{0} are non-negative integers, and n_{0} and r_{0} are both less than p, then

$$
\binom{N p+n_{0}}{R p+r_{0}} \equiv\binom{N}{R}\binom{n_{0}}{r_{0}} \quad(\bmod p) .
$$

In [1] we have shown that one may replace p by p^{2} at various points in the above congruence, but only at the expense of restricting n_{0} and r_{0} more so than would be the case in a true generalization of Lucas' result. In particular we have established:

Theorem 2. If k and r are non-negative integers and p is prime, then

$$
\binom{k p}{r p} \equiv\binom{k}{r} \quad\left(\bmod p^{2}\right) .
$$

Theorem 3. If p is prime, N, R, n_{0}, and r_{0} are non-negative integers, and n_{0} and r_{0} are both less than p, then

$$
\binom{N p^{2}+n_{0}}{R p^{2}+r_{0}} \equiv\binom{N}{R}\binom{n_{0}}{r_{0}} \quad\left(\bmod p^{2}\right) .
$$

We also show in [1] that one cannot replace p^{2} by a higher power of p in either of the above theorems. However, as we now know and will show, p^{2} can be replaced by p^{3} in Theorems 2 and 3 so long as the prime p is greater than 3. Having missed this p^{3} replacement in our earlier paper we emphasize that our proof of Lemma 1 below shows that no further modification along this line is possible. That is, p^{2} cannot be replaced by p^{4}.

Lemma 1. If p is a prime and $p \geqslant 5$, then,

$$
\binom{2 p}{p} \equiv 2 \quad\left(\bmod p^{3}\right)
$$

Proof. Since it is well known that

$$
\binom{2 p}{p}=\sum_{i=0}^{p}\binom{p}{i}^{2}
$$

and since the first and last terms of this sum are 1 , we need only show that

$$
\sum_{i=1}^{p-1}\binom{p}{i}^{2} \equiv 0 \quad\left(\bmod p^{3}\right) .
$$

But it is easy to see that

$$
\sum_{i=1}^{p-1}\binom{p}{i}^{2}=2\left[\binom{p}{1}^{2}+\binom{p}{2}^{2}+\cdots+\binom{p}{(p-1) / 2}^{2}\right]
$$

and hence we need only show that

$$
\begin{equation*}
\binom{p}{1}^{2}+\binom{p}{2}^{2}+\cdots+\binom{p}{(p-1) / 2}^{2} \equiv 0 \quad\left(\bmod p^{3}\right) . \tag{1}
\end{equation*}
$$

Now the left hand side of (1) is equal to

$$
p^{2}\left[\left(\frac{(p-1)!}{(p-1)!1!}\right)^{2}+\left(\frac{(p-1)!}{(p-2)!2!}\right)^{2}+\cdots+\left(\frac{(p-1)!}{(p+1) / 2)!((p-1) / 2)!}\right)^{2}\right] .
$$

Therefore we are through if we can show that

$$
\begin{aligned}
L= & \left(\frac{(p-1)!}{(p-1)!1!}\right)^{2}+\left(\frac{(p-1)!}{(p-2)!2!}\right)^{2}+\cdots \\
& +\left(\frac{(p-1)!}{((p+1) / 2)!((p-1) / 2)!}\right)^{2} \equiv 0 \quad(\bmod p)
\end{aligned}
$$

At this point we note that

$$
\begin{aligned}
\frac{(p-1)!}{(p-k)!k!} & =\frac{(p-1)(p-2) \cdots(p-k+1)}{k!} \\
& \equiv \frac{(-1)(-2) \cdots(-(k-1))}{k!} \quad(\bmod p) .
\end{aligned}
$$

Therefore in the field Z_{p} we have

$$
\frac{(p-1)!}{(p-k)!k!}= \pm \frac{1}{k}
$$

Moreover $1 / k$ is in the set

$$
A=\left\{1,2, \ldots, \frac{p-1}{2}\right\}
$$

or in

$$
B=\left\{\frac{p+1}{2}, \frac{p+3}{2}, \ldots, p-1\right\} .
$$

But if $1 / k$ is in B then $1 / k=p-m$ where $m=1,2, \ldots,(p-1) / 2$. In this case $-1 / k \equiv m(\bmod p)$ where $m \in A$. Hence the elements of

$$
\left\{\left(\frac{(p-1)!}{(p-1)!1!}\right)^{2},\left(\frac{(p-1)!}{(p-2)!2!}\right)^{2}, \ldots,\left(\frac{(p-1)!}{((p+1) / 2)!((p-1) / 2)!}\right)^{2}\right\}
$$

arc congruent in some order to the elements of

$$
\left\{1^{2}, 2^{2}, 3^{2}, \ldots,\left(\frac{p-1}{2}\right)^{2}\right\}
$$

Thus the sum

$$
\begin{aligned}
L & \equiv 1^{2}+2^{2}+\cdots+\left(\frac{p-1}{2}\right)^{2} \\
& =\frac{((p-1) / 2)((p+1) / 2) p}{6} \equiv 0 \quad(\bmod p) .
\end{aligned}
$$

Of course, this completes the proof.
Lemma 2. If p is a prime and $p \geqslant 5$, then

$$
\binom{k p}{p} \equiv k \quad\left(\bmod p^{3}\right)
$$

Proof. First, by comparing the coefficients of x^{n} in the individual expansions of $(1+x)^{(k+1) p}$ and $(1+x)^{k p}(1+x)^{p}$, one can see that

$$
\begin{equation*}
\binom{(k+1) p}{n}=\sum_{i=0}^{n}\binom{k p}{n-i}\binom{p}{i} \tag{2}
\end{equation*}
$$

Now, we establish the lemma by induction on k. The lemma is trivially true for $k=1$, and by Lemma 1 the lemma is true for $k=2$. Thus we make the inductive assumption that $\binom{m p}{p} \equiv m\left(\bmod p^{3}\right)$ for $m=1,2, \ldots, k+1$ where $k \geqslant 1$. We then consider

$$
\begin{aligned}
\binom{(k+2) p}{p} & =\binom{([k+1]+1) p}{p} \\
& =\sum_{i=0}^{p}\binom{(k+1) p}{p-i}\binom{p}{i} \\
& =\binom{(k+1) p}{p}+\sum_{i=1}^{p-1}\binom{(k+1) p}{p-i}\binom{p}{i}+1 .
\end{aligned}
$$

By. the inductive hypothesis and Eq. (2) the last term above is congruent modulo p^{3} to

$$
k+2+\sum_{i=1}^{p-1}\binom{p}{i} \sum_{j=0}^{p-i}\binom{k p}{p-i-j}\binom{p}{j} .
$$

Thus, to complete the induction, we need only show that

$$
S=\sum_{i=1}^{p-1}\binom{p}{i} \sum_{j=0}^{p-i}\binom{k p}{p-i-j}\binom{p}{j} \equiv 0 \quad\left(\bmod p^{3}\right)
$$

But S can be further expanded to
$\sum_{i=1}^{p-1}\binom{p}{i}\binom{k p}{p-i}+\sum_{i=1}^{p-1} \sum_{j=1}^{p-i-1}\binom{p}{i}\binom{k p}{p-i-j}\binom{p}{j}+\sum_{i=1}^{p-1}\binom{p}{i}\binom{p}{p-i}$.
Now by Lucas' Theorem each summand in the middle term in (3) is congruent to 0 modulo p^{3}. Moreover

$$
\begin{aligned}
& \sum_{i=1}^{p-1}\binom{p}{i}\binom{k p}{p-i}+\sum_{i=1}^{p-1}\binom{p}{i}\binom{p}{p-i} \\
& \quad=\sum_{i=0}^{p}\binom{p}{i}\binom{k p}{p-i}-\binom{k p}{p}-1+\sum_{i=0}^{p}\binom{p}{i}\binom{p}{p-i}-2 \\
& \quad=\binom{(k+1) p}{p}-\binom{k p}{p}+\binom{2 p}{p}-3 .
\end{aligned}
$$

But by the inductive hypothesis the last expression above is congruent, modulo p^{3}, to $(k+1)-k+2-3=0$. Thus the proof is complete.

Theorem 4. If k and r are non-negative integers, p is a prime, and $p \geqslant 5$, then

$$
\binom{k p}{r p} \equiv\binom{k}{r} \quad\left(\bmod p^{3}\right) .
$$

Proof. Once again the proof is by induction. Observe that the result is trivially true for $r=0$ and the preceding lemma shows it is true for $r=1$. Therefore we fix $r \geqslant 2$ and assume the result for any smaller value. For this fixed r we then induct on k.
Clearly the result will hold for all $k \leqslant r$ and thus we assume the result for some $k \geqslant r$. To complete the proof we then consider ($\underset{r p}{(k+1) p}$). Since $k \geqslant 2$ we write $k=m+1$ with $m \geqslant 1$. Thus, using Eq. (2), we have

$$
\begin{aligned}
\binom{(k+1) p}{r p} & =\sum_{i=0}^{r p}\binom{k p}{r p-i}\binom{p}{i}=\sum_{i=0}^{p}\binom{k p}{r p-i}\binom{p}{i} \\
& =\sum_{i=0}^{p}\binom{m+1)}{r p-i}\binom{p}{i} \\
& =\sum_{i=0}^{p} \sum_{j=0}^{r p-i}\binom{m p}{r p-i-j}\binom{p}{j}\binom{p}{i} \\
& =\sum_{i=0}^{p} \sum_{j=0}^{p}\binom{m p}{r p-i-j}\binom{p}{j}\binom{p}{i}
\end{aligned}
$$

$$
\begin{aligned}
= & \sum_{j=0}^{p}\binom{m p}{r p-j}\binom{p}{j}+\sum_{i=1}^{p-1} \sum_{j=0}^{p}\binom{m p}{r p-i-j}\binom{p}{j}\binom{p}{i} \\
& +\sum_{j=0}^{p}\binom{m p}{(r-1) p-j}\binom{p}{j} .
\end{aligned}
$$

Now the last term above is clearly

$$
\begin{equation*}
\binom{(m+1) p}{r p}+\sum_{i=1}^{p-1} \sum_{j=0}^{p}\binom{m p}{r p-i-j}\binom{p}{j}\binom{p}{i}+\binom{(m+1) p}{(r-1) p} . \tag{4}
\end{equation*}
$$

As in the proof of Lemma 2 one can show that the middle term in (4) is congruent to 0 modulo p^{3}. Moreover, by the inductive hypothesis we see

$$
\binom{(m+1) p}{r p}+\binom{(m+1) p}{(r-1) p} \equiv\binom{m+1}{r}+\binom{m+1}{r-1} \quad\left(\bmod p^{3}\right)
$$

and it is clear that

$$
\binom{m+1}{r}+\binom{m+1}{r-1}=\binom{m+2}{r}=\binom{k+1}{r}
$$

Thus we have made the inductive step and completed the proof.
It is now an easy corollary that

$$
\binom{k p^{3}}{r p^{3}} \equiv\binom{k}{r} \quad\left(\bmod p^{3}\right)
$$

but we are able to obtain a bit more than this in Theorem 5. Our proof uses the method of Hausner [3].

Theorem 5. Let p be a prime greater than 3. If N, R, n_{0}, and r_{0} are non-negative integers with n_{0} and r_{0} less than p then

$$
\binom{N p^{3}+n_{0}}{R p^{3}+r_{0}} \equiv\binom{N}{R}\binom{n_{0}}{r_{0}} \quad\left(\bmod p^{3}\right)
$$

Proof. (Note that in this proof we denote the cardinality of a set S by $|S|$.) First define

$$
A_{i}=\{(i, 1), \ldots,(i, N)\} \quad \text { for } \quad i=1, \ldots, p^{3}\left(A_{i}=\phi \text { if } N=0\right)
$$

and

$$
B=\left\{(0,1), \ldots,\left(0, n_{0}\right)\right\} \quad\left(B=\phi \text { if } n_{0}=0\right)
$$

Next set $A=A_{1} \cup A_{2} \cup \cdots \cup A_{p^{3}} \cup B$, define $n=N p^{3}+n_{0}$, and note that $|A|=n$. Now define $f: A \rightarrow A$ by

$$
\begin{gathered}
f(i, x)=(i+1, x) \quad \text { if } \quad 1 \leqslant i<p^{3} \\
f\left(p^{3}, x\right)=(1, x) \quad \text { and } \quad f(0, x)=(0, x)
\end{gathered}
$$

so that $f\left(A_{i}\right)=A_{i+1}$ for $1 \leqslant i<p^{3}, f\left(A_{p^{3}}\right)=A_{1}$, and $f(B)=B$. Obviously $f^{p^{3}}$ is the identity mapping on A.

Define $r=R p^{3}+r_{0}$ and let X be the collection of all subsets $C \subseteq A$ such that $|C|=r$. Clearly $|f(C)|=|C|$ since f is one-to-one. Thus $f: X \rightarrow X$ and $f^{p^{3}}$ is the identity on X. For any $C \in X$ we define the orbit of C as

$$
O(C)=\left\{C, f(C), f^{2}(C), \ldots, f^{p^{3}-1}(C)\right\}
$$

Obviously $\{O(C) \mid C \in X\}$ partitions X and each $O(C)$ contains exactly 1 , exactly p, exactly p^{2}, or exactly p^{3} elements. If we denote by X_{i} the collection of elements in X whose orbit contains p^{i} points we see that $|X|=\left|X_{0}\right|+\left|X_{1}\right|+\left|X_{2}\right|+\left|X_{3}\right|$. Since it is clear that $|X|=\binom{n}{r}$ and $\left|X_{3}\right| \equiv 0$ $\left(\bmod p^{3}\right)$ the proof will be complete if we can show $\left|X_{0}\right|=\binom{N}{R}\binom{n_{0}}{r_{0}}$, and both $\left|X_{1}\right| \equiv 0\left(\bmod p^{3}\right)$ and $\left|X_{2}\right| \equiv 0\left(\bmod p^{3}\right)$.

Let us therefore first consider C satisfying $f(C)=C$ and think of C as

$$
C=C_{1} \cup C_{2} \cup \cdots \cup C_{P^{3}} \cup C_{0},
$$

where $C_{i} \subseteq A_{i}$ and $C_{0} \subseteq B$. Since $C_{0} \subseteq B$ we must have $f\left(C_{0}\right)=C_{0}$. Likewise $f(C)=C$ and $f\left(C_{i}\right) \subseteq A_{i+1}$ for $1 \leqslant i<p^{3}$ implies $f\left(C_{i}\right)=C_{i+1}$ for those values of i. From the fact that f is one-to-one we then deduce that

$$
|C|=p^{3}\left|C_{1}\right|+\left|C_{0}\right|=r=R p^{3}+r_{0} .
$$

Thus $\left|C_{0}\right|-r_{0}=\left(R-\left|C_{1}\right|\right) p^{3}$ which implies that $\left|C_{0}\right|-r_{0}$ is divisible by p. But since $\left|C_{0}\right| \leqslant n_{0}<p$ and $r_{0}<p$ this means $\left|C_{0}\right|=r_{0}$ which in turn implies $\left|C_{1}\right|=R$. It follows then that one may choose C_{1} in $\binom{N}{R}$ ways and C_{0} in $\binom{n_{0}}{r_{0}}$ ways. But once C_{0} and C_{1} are chosen, C is completely determined. Thus

$$
\left|X_{0}\right|=\binom{N}{R}\binom{n_{0}}{r_{0}}
$$

as desired.
Next consider C satisfying $f^{p}(C)=C$. Since $f^{p}(C)=C$ we must have

$$
f^{p}\left(C_{1}\right)=C_{p+1}, f^{p}\left(C_{2}\right)=C_{p+2}, \ldots, f^{p}\left(C_{p+1}\right)=C_{2 p+1},
$$

etc., and

$$
f\left(C_{0}\right)=C_{0} .
$$

Therefore C is determined as soon as we determine $C_{1}, C_{2}, \ldots, C_{p}, C_{0}$. Moreover

$$
|C|=p^{2}\left|C_{1}\right|+p^{2}\left|C_{2}\right|+\cdots+p^{2}\left|C_{p}\right|+\left|C_{0}\right|=r=p^{3} R+r_{0}
$$

As before it follows that

$$
r_{0}=\left|C_{0}\right| \quad \text { and } \quad\left|C_{1}\right|+\left|C_{2}\right|+\cdots+\left|C_{p}\right|=p R .
$$

Hence there are ($\left.\begin{array}{c}p N \\ p R\end{array}\right)$ ways to choose $C_{1}, C_{2}, \ldots, C_{p}$ and $\binom{n_{0}}{r_{0}}$ ways to choose C_{0}. Thus C may be chosen in $\binom{p R}{p R}\binom{n_{0}}{r_{0}}$ ways. But this number includes all those C such that $f(C)=C$. Subtracting these out we find that, by Theorem 4,

$$
\begin{aligned}
\left|X_{1}\right| & =\binom{p N}{p R}\binom{n_{0}}{r_{0}}-\binom{N}{R}\binom{n_{0}}{r_{0}} \\
& =\binom{n_{0}}{r_{0}}\left[\binom{p N}{p R}-\binom{N}{R}\right] \equiv 0 \quad\left(\bmod p^{3}\right) .
\end{aligned}
$$

Finally we consider C such that $f^{p^{2}}(C)=C$. Reasoning as above one determines that there are $\left(\begin{array}{l}p_{p}^{2} N\end{array}\right)\binom{n_{0}}{r_{0}}$ such C. But in this number one has counted all C satisfying $f^{p}(C)=C$. Subtracting out such elements we have

$$
\begin{aligned}
\left|X_{2}\right| & =\binom{p^{2} N}{p^{2} R}\binom{n_{0}}{r_{0}}-\binom{p N}{p R}\binom{n_{0}}{r_{0}} \\
& =\binom{n_{0}}{r_{0}}\left[\binom{p^{2} N}{p^{2} R}-\binom{p N}{p R}\right] \equiv 0 \quad\left(\bmod p^{3}\right)
\end{aligned}
$$

Thus the proof is complete.

References

1. D. F. Bailey, Some variations of Lucas' theorem, submitted for publication.
2. N. J. Fine, Binomial coefficients modulo a prime, Amer. Math. Monthly 54 (1947). 589-592.
3. M. Hausner, Applications of a simple counting technique, Amer. Math. Monthly 90 (1983), 127-129.
4. Edouard Lucas, Sur les congruences des nombres eulériens et des coefficients différentiels des fonctions trigonométriques, suivant un module premier, Bull. Soc. Math. France 6 (1878), 49-54.
