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Abstract

We study the so-called weakly Koszul modules and characterise their Koszul duals. We show that the
(adjusted) associated graded module of a weakly Koszul module exactly determines the homology modules
of the Koszul dual. We give an example of a quasi-Koszul module which is not weakly Koszul.
© 2007 Elsevier Inc. All rights reserved.
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Let Λ = ⊕
i�0 Λi be a Koszul algebra. Such algebras have nice homological properties and

appear in various combinatorial and geometrical contexts. There is a corresponding notion of
Koszul modules (see Section 1 below for definitions). However, judging from the results in
[MZ1], especially Theorems 4.5 and 5.6 of that paper, for some important theoretical purposes
the class of Koszul modules is too small, and often the larger class of so-called weakly Koszul
modules is needed to complete the picture. Let us briefly recall the definition, a more thorough
discussion will follow in Section 1. Let M be a finitely generated graded Λ-module. We say that
M is weakly Koszul if Ext∗Λ(M,Λ0) = ⊕

i�0 ExtiΛ(M,Λ0) is a Koszul module over the Ext al-

gebra Ext∗Λ(Λ0,Λ0) = ⊕
i�0 ExtiΛ(Λ0,Λ0). This is a property satisfied by the Koszul modules

themselves, so Koszul modules are weakly Koszul.
In the present paper we investigate the behaviour of weakly Koszul modules under the Koszul

duality functor of [BGS], which is a functor on the level of derived categories. We show that
Koszul duals of weakly Koszul modules can be characterised in terms of their homology (The-
orem 3.1). We also show that the Koszul duals of two weakly Koszul modules have isomorphic
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homology modules if and only if the two weakly Koszul modules have isomorphic (adjusted) as-
sociated graded modules with respect to the radical filtration (Corollary 3.7). When investigating
weakly Koszul modules it is therefore relevant to study the objects in the derived category with
given homology modules. The language of A∞-modules [K2] is particularly well suited for this
purpose, and we exploit this in the last section.

Our description of Koszul duals of weakly Koszul modules can be used as a basis for studying
more general classes of modules. We say that M is quasi-Koszul if Ext∗Λ(M,Λ0) is generated
in degree 0. Weakly Koszul modules are quasi-Koszul, and quasi-Koszul modules generated in a
single degree are weakly Koszul. Based on this evidence, one could be led to believe that the two
notions are equivalent. Such speculations can now be laid to rest, as we present a counterexample
(Example 4.2). Generalising in another direction we consider modules M such that Ext∗Λ(M,Λ0)

is weakly Koszul. These modules have a surprising property, compare Theorem 3.9 and Exam-
ple 4.3.

The contents of the different sections are as follows. In Section 1 we give the basic definitions
of Koszul algebras and modules, weakly Koszul modules and other related classes of modules.
We also recall the fundamental dualities and equivalences present in this setting. Section 2 ex-
plains the concept of the “adjusted” associated graded module of M . In Section 3 we give several
results and formulas concerning the homology of the Koszul dual of a weakly Koszul module.
In the two last sections we discuss how to find the object itself, not just its homology. Section 4
gives a method for straightforward computations, and we use this to produce some important
(counter)examples. In Section 5 we take a more systematic approach. We show how to use A∞-
module structures to classify all objects with given homology modules. Via Koszul duality, this
classifies all weakly Koszul modules with a given adjusted associated graded module.

1. Dualities and equivalences

Let k be a field and Λ = ⊕
i�0 Λi be a graded k-algebra. We assume dimk Λi < ∞ for all

i � 0 and Λ0 � k × · · · × k as rings. We denote by J the graded Jacobson radical J = ⊕
i�1 Λi .

We denote by GrΛ the category of graded Λ-modules M = ⊕
i∈Z

Mi with degree 0 morphisms.
By l.f.Λ we denote the full subcategory of locally finite modules, that is modules with dimk Mi <

∞ for all i ∈ Z. Important (full) subcategories of l.f.Λ are the category of finitely generated
modules grΛ and the category of finitely cogenerated modules fcogΛ.

Let M be a graded Λ-module. Its graded dual DM is defined to be the graded Λop-module
with graded parts (DM)−i = Homk(Mi, k) and (graded parts of) module structure maps k-dual
to those of M . Also using k-dual maps on morphisms we can make D into a contravariant func-
tor D : GrΛ → GrΛop. When restricted to locally finite Λ-modules, the functor D is a duality
D : l.f.Λ → l.f.Λop.

The ith graded shift of M , denoted M〈i〉, is the module with graded parts (M〈i〉)n = Mn−i

and module structure inherited from M . If M is a module generated in a single degree i, we
define M = M〈−i〉. So M is generated in degree 0.

The following lemma, which can for instance be found in [NV, 2.4.7], gives a useful connec-
tion between graded and ungraded Ext groups.

Lemma 1.1. Suppose M is a finitely generated graded Λ-module which has a projective resolu-
tion such that all syzygies are finitely generated. Let N be any graded Λ-module.
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Then for every j � 0 we have an isomorphism

ExtjΛ(M,N) �
⊕
i∈Z

ExtjGrΛ

(
M,N〈i〉)

functorial in M and N .

Typical examples of modules M which satisfy the hypothesis of the lemma are finitely gener-
ated graded Λ-modules over a Noetherian algebra Λ.

We say that a graded Λ-module M is a Koszul module if M is finitely generated and
ExtjGrΛ(M,Λ0〈i〉) 	= 0 implies i = j . In particular we require that HomGrΛ(M,Λ0〈i〉) 	= 0 im-
plies i = 0, so M must be generated in degree 0. If M is generated in a single degree and M is
Koszul, we say that M has a linear resolution.

Remark 1.2. If L is a graded Λ-module that is locally finite and bounded below (for instance

if L is finitely generated), then there is a projective cover P
f−→ L → 0, where P is a projective

module which is locally finite and bounded below. It follows that Kerf is also locally finite and
bounded below. Such a module L will therefore have a minimal graded projective resolution.
The Ext condition in the definition of a Koszul module is a condition on the degrees where the
projective modules in the resolution are generated. More precisely a finitely generated module
M is Koszul if and only if M has a graded projective resolution

· · · → Pn → ·· · → P2 → P1 → P0 → M → 0

with Pi finitely generated in degree i for all i � 0.

A locally finite Λ-module M is called a co-Koszul module if DM is a Koszul Λop-module. We
denote the full subcategory of Koszul Λ-modules by K(Λ) and the full subcategory of co-Koszul
Λ-module by cK(Λ). The functor D restricts to dualities on subcategories in the way shown by
the following diagram.

l.f.Λ
D

l.f.Λop

grΛ
D

fcogΛop

K(Λ)
D

cK(Λop)

The algebra Λ is called a Koszul algebra if Λ0 is a Koszul Λ-module. One can prove that Λ

is a Koszul algebra if and only if Λop is a Koszul algebra. Suppose now and for the rest of the
paper that Λ is a Koszul algebra. Let Γ = ⊕

i�0 ExtiΛ(Λ0,Λ0) � ⊕
i�0 ExtiGrΛ(Λ0,Λ0〈i〉).

A fundamental theorem [BGS, 1.2.5] states that Γ is also a Koszul algebra. The algebra Γ is
called the Koszul dual of Λ. The Koszul dual of Γ is isomorphic to Λ as graded algebras.

Another fundamental theorem states that there is an equivalence between certain triangulated
subcategories of the corresponding (unbounded) derived categories. The category D↓(Λop) can
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be viewed as the full subcategory of DGrΛop formed by all objects M with the property that
(H iM)j = 0 when i � 0 or i + j � 0. Similarly, the category D↑(Γ ) is the full subcategory
of DGrΓ formed by the objects N with the property that (H iN)j = 0 when i � 0 or i +
j � 0. The theorem [BGS, 2.12.1] states that there is an equivalence of triangulated categories
G :D↓(Λop) →D↑(Γ ). A concrete description of the functor G is given in [BGS], and we shall
use this description for computations in Section 4. (To avoid confusion we point out that the
functor is called K in [BGS].)

Another description of the functor G follows from the theory of “lifts” in [K1, 7.3,10]. There
is a bigraded Λop-Γ -bimodule complex X, in degree (∗, i) quasi-isomorphic to Λ

op
0 〈−i〉[−i] as

a complex of left Λop-modules, such that the functor R Hom(X,−) :DGrΛop → DGrΓ when
restricted to D↓(Λop) is isomorphic to G. In this paper we will not attempt to describe the
bimodule X further. For a discussion of to which extent the category equivalence determines X,
we refer to [K1, 7].

In the usual way we view modules as stalk complexes concentrated in degree 0. The category
D↓(Λop) contains all finitely cogenerated modules. From the isomorphism G � R Hom(X,−)

we get the following result.

Proposition 1.3. Let M be a finitely cogenerated Λop-module. Then

(a) (HjG(M))i � Exti+j

GrΛop(Λ
op
0 ,M〈i〉).

(b) G(M〈i〉) � (G(M))〈−i〉[−i].

It follows from part (a) that if M is a co-Koszul Λop-module, then G(M) =⊕
i�0 ExtiGrΛop(Λ0,M〈i〉) is a Γ -module. It is possible to show [GM2, 5.1] that in this

case G(M) is a Koszul Γ -module. From Lemma 1.1 we get an isomorphism of Γ -modules⊕
i�0 ExtiGrΛop(Λ0,M〈i〉) � ⊕

i�0 ExtiΛop(Λ0,M) (functorial in M). So when G is restricted

to cK(Λop) it is isomorphic to the functor E = ⊕
i�0 ExtiΛop(Λ0,−). The relation between the

various categories and functors is summed up in the following diagram.

DGrΛop
R Hom(X,−)

DGrΓ

D↓(Λop)
∼
G

D↑(Γ )

K(Λ)
D

cK(Λop)
∼
E

K(Γ )

Let Ě = ED. Then Ě :K(Λ) → K(Γ ) is also a duality and can be described as Ě =⊕
i�0 ExtiΛ(−,Λ0). This functor can be applied to any graded module, so we view Ě with

this description as a functor Ě : GrΛ → GrΓ . Note that this functor forgets the Λ-grading, so
Ě(M) = Ě(M〈i〉) for any graded Λ-module M and i ∈ Z. We have the following lemma con-
cerning local finiteness of Ě(M).

Lemma 1.4. Let M be a finitely generated graded Λ-module.
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(a) Suppose GD(M) has bounded homology and that dimk(H
iGD(M))j < ∞ for all i, j ∈ Z.

Then M has a projective resolution such that all syzygies are finitely generated.
(b) The Γ -module Ě(M) is locally finite if and only if M has a projective resolution such that

all syzygies are finitely generated. Moreover, in this case Ě(M) � ⊕
i∈Z

(H iGD(M))〈i〉 as
graded Γ -modules.

Proof. Suppose M has a minimal graded projective resolution

· · · → Pn → ·· · → P2 → P1 → P0 → M → 0.

(a): From minimality it follows that HomGrΛ(Pj ,Λ0〈l〉) � ExtjGrΛ(M,Λ0〈l〉) �
ExtjGrΛop(Λ

op
0 ,DM〈l〉) � (H l−j GD(M))l for all l ∈ Z, j � 0. For any given j � 0, since GD(M)

has bounded homology, this is non-zero only for a finite number of values of l (and finite-
dimensional in those cases). Therefore Pj is finitely generated.

(b): From minimality of the above sequence it follows that Ě(M)j = ExtjΛ(M,Λ0) �
HomΛ(Pj ,Λ0) for all j ∈ Z.

Suppose Pj is not finitely generated for some j � 0. Since Pj as a graded module is locally fi-
nite and bounded below, we must have dimk(HomGrΛ(Pj ,Λ0)) = ∞. Since HomGrΛ(Pj ,Λ0) ⊆
HomΛ(Pj ,Λ0), the module Ě(M) is not locally finite.

Suppose Pj is finitely generated for all j � 0. Then Ě(M)j � HomΛ(Pj ,Λ0) is finite-
dimensional for all j � 0 (and zero for j < 0), so Ě(M) is locally finite. By Lemma 1.1
we have Ě(M)j � ⊕

i∈Z
ExtjGrΛ(M,Λ0〈i〉) for all j ∈ Z. From Proposition 1.3 we get

(
⊕

i∈Z
(H iGD(M))〈i〉)j = ⊕

i∈Z
((H iGD(M))〈j − i〉) � ⊕

i∈Z
ExtjGrΛop(Λ

op
0 ,DM〈i〉) �

Ě(M)j for all j ∈ Z. Also the module structure is preserved, so Ě(M) � ⊕
i∈Z

(H iGD(M))〈i〉
as graded Γ -modules. �

We are now ready to define weakly Koszul modules.

Definition 1.5. A finitely generated graded Λ-module M is called a weakly Koszul module if
Ě(M) is a Koszul Γ -module.

A slightly weaker condition is that Ě(M) is generated in degree 0. A finitely generated graded
Λ-module M satisfying this condition is called a quasi-Koszul module.

Remark 1.6. There are other equivalent ways of defining weakly Koszul modules. For instance, a
finitely generated graded Λ-module M = ⊕

i∈Z
Mi is weakly Koszul if and only if for all j ∈ Z,

the submodule of M generated by Mj has a linear resolution. Quasi-Koszul and weakly Koszul
(originally under the name strongly quasi-Koszul) modules were introduced in [GM1]. In addi-
tion to the mentioned paper [MZ1], weakly Koszul modules are also studied in the paper [HI].

Suppose M is generated in a single degree. In this case it can be shown that M is quasi-Koszul
if and only if M is weakly Koszul, which is again equivalent to M having a linear resolution. At
the end of Section 4 we give an example of a module M generated in multiple degrees which is
quasi-Koszul but not weakly Koszul.

For which finitely generated modules M is Ě(M) locally finite and indecomposable? The
following proposition gives the answer.
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Proposition 1.7. Let M be a finitely generated graded Λ-module.
The Γ -module Ě(M) is locally finite and indecomposable if and only if M is a graded shift

of an indecomposable Koszul Λ-module.

Proof. If M is a graded shift of an indecomposable Koszul Λ-module, then Ě(M) = Ě(M) is
indecomposable and Koszul, so in particular locally finite.

For the converse assume first that H 0GD(M) � HomGrΛ(M,Λ0) 	= 0. If Ě(M) is locally
finite and indecomposable, then it follows from Lemma 1.4 that Ě(M) � H 0GD(M) as graded
modules and that HiGD(M) = 0 for i 	= 0. Since ExtjGrΛ(M,Λ0〈i〉) � ExtjGrΛop(Λ

op
0 ,DM〈i〉) �

(Hj−iGD(M))i 	= 0 implies i = j , the module M is Koszul. If M is Koszul, then M is indecom-
posable if and only if Ě(M) is indecomposable.

If M is an arbitrary finitely generated Λ-module, then HomGrΛ(M〈i〉,Λ0) 	= 0 for some
i ∈ Z. If Ě(M) = Ě(M〈i〉) is locally finite and indecomposable, then it follows from the argu-
ments above that M is a graded shift of an indecomposable Koszul Λ-module. �

We denote the category of weakly Koszul Λ-modules by wK(Λ). It is closed under direct
summands and finite direct sums. We call a module dual under D to a weakly Koszul module
a weakly co-Koszul module. The corresponding category of weakly co-Koszul Λop-modules we
denote by wcK(Λop).

The essential image of wcK(Λop) under G � R Hom(X,−) we denote by X . In other words
X is the full subcategory of DGrΓ consisting of objects isomorphic to an object of the form
G(L), where L is an object of wcK(Λop). Our aim is to describe this category further. It is a full
subcategory of D↑(Γ ) as we see from the following diagram.

DGrΛop
R Hom(X,−)

DGrΓ

D↓(Λop)
∼

D↑(Γ )

wK(Λ)
D

wcK(Λop)
∼

X

K(Λ)
D

cK(Λop)
∼
E

K(Γ )

2. Associated graded module

In this section we explain some technicalities concerning filtrations of finitely generated mod-
ules and the associated graded modules.

If M is a finitely generated Λ-module, then its associated graded module (with respect to the
radical filtration) is

gr(M) =
⊕

J iM/J i+1M.
i�0
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This is also a finitely generated graded Λ-module. If M is generated in a single degree, then
gr(M) � M .

Suppose M is finitely generated in degrees j0 < · · · < jp . We always assume that the set of
generators is minimal, in other words M is finitely generated and HomGrΛ(M,Λ0〈i〉) 	= 0 if and
only if i ∈ {j0, . . . , jp}. In [MZ1] we find the following result.

Proposition 2.1. (See [MZ1, 2.5].) Suppose M is a finitely generated module generated in de-
grees j0 < · · · < jp . Let K(0) be the submodule of M generated by Mj0 . Then there is a split-exact
sequence of Λ-modules

0 → gr
(
K(0)

) → gr(M) → gr
(
M/K(0)

) → 0.

We define M(0) = M , and in general for all 0 < i � p we define M(i) = M(i−1)/K(i−1) and
let K(i) denote the submodule of M(i) generated in degree ji (the “highest degree”). For each i

the module M(i) is generated in degrees ji < · · · < jp . In particular we have M(p) = K(p).
With this notation we get the following corollary.

Corollary 2.2. If M is a finitely generated module generated in degrees j0 < · · · < jp , then

gr(M) � gr

(
p⊕

i=0

K(i)

)
�

p⊕
i=0

K(i).

Mention should now be made of the following theorem in [MZ1].

Theorem 2.3. (See [MZ1, 2.5].) A finitely generated module M is a weakly Koszul module if and
only if gr(M) is Koszul.

Motivated by Corollary 2.2 we define the following “adjusted” version of the associated
graded module. If M is a finitely generated module, then g̃r(M) is defined to be the module

g̃r(M) �
p⊕

i=0

K(i).

With this definition M and g̃r(M) are generated in the same degrees, but each indecomposable
summands of g̃r(M) is generated in a single degree. We also have

g̃r
(
M(s)

) �
p⊕

i=s

K(i)

whenever 0 � s � p.

3. Homology of the Koszul dual

We now return to the question of describing the objects in X . The following theorem shows
that such objects can be characterised by their homology.
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Theorem 3.1. Let N be an object in DGrΓ .
Then N ∈ X if and only if

(i) N has bounded homology and
(ii) for all i ∈ Z, HiN is generated in degree −i and has a linear resolution.

Proof. If N ∈ X , then N � GD(M) for a weakly Koszul Λ-module M . Also Ě(M) �⊕
i�0(H

iN)〈i〉 is a Koszul Γ -module and in particular it is generated in degree 0. Therefore

for each i ∈ Z, we have that (H iN)〈i〉 is Koszul and HiN is generated in degree −i. We know
Ě(M)0 is finite-dimensional over k, and therefore ((H iN)〈i〉)0 = (H iN)−i is non-zero only for
a finite number of values for i. This means that N has bounded homology.

Let N be an object in DGrΓ with bounded homology and suppose HiN is generated in
degree −i for all i ∈ Z. Choose a representing complex for N , with differential d , such that
Ni = 0 for i � a and i > b, for suitable integers a, b with a < b. For each integer p, the soft
truncation τ�pN of N at p is defined by

(
τ�pN

)i =
⎧⎨
⎩

Ni if i < p,

Kerdi if i = p,

0 if i > p.

Its homology is given by

Hi
(
τ�pN

) =
{

HiN if i � p,

0 if i > p.

We have a filtration of complexes 0 = τ�aN ⊆ · · · ⊆ τ�bN = N . All these objects are in D↑(Γ ).
Consider the triangles in D↑(Γ )

τ�i−1N → τ�iN → Yi → (
τ�i−1N

)[1]

for all i with a < i � b. Here Y(i) has non-zero homology only possibly in degree i and
Hi(Y(i)) � HiN . By assumption, HiN � L(i)〈−i〉 for some Koszul Γ -module L(i). So there
is a Koszul Λ-module K(i) such that GD(K(i)〈−i〉) � G((DK(i))〈i〉) � L(i)〈−i〉[−i] � Y(i).

So for all i we have that Y(i) is isomorphic to G of a finitely cogenerated module (viewed as a
stalk complex). Let F :D↑(Γ ) → D↓(Λop) denote a quasi-inverse of G. By induction (starting
with τ�aN = 0), using the triangles above, we get for all a < i � b that F(τ�iN) is a module
and there are exact sequences

0 → F
(
τ�i−1N

) → F
(
τ�iN

) → F(Y(i)) → 0.

The modules F(Y(i)) are finitely cogenerated and again by induction every F(τ�iN) is finitely
cogenerated. So in particular N = τ�bN is isomorphic to GD(M) for the finitely generated
Λ-module M = DF(N). From Lemma 1.4 we get Ě(M) � ⊕

i∈Z
(H iGD(M))〈i〉 and by as-

sumption this is a Koszul Γ -module. But then M is a weakly Koszul module by definition. �
Remark 3.2. In Example 4.2 we give an example of a graded Λ-module M with the property
that N = GD(M) has bounded homology and HiN is generated in degree −i for all i ∈ Z, but
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there is an i ∈ Z such that HiN does not have a linear resolution. This means that the module M

is quasi-Koszul but not weakly Koszul.

Let M be a weakly Koszul module. We next try to find formulas for the homology of GD(M).
We start with the simple case when the module is a graded shift of a Koszul module.

Proposition 3.3. Let K be a Koszul module. Then

H−nGD
(
K〈i〉) �

{
Ě(K)〈i〉 if n = i,

0 if n 	= i.

Proof. We have

H−nGD
(
K〈i〉) � H−nG

(
(DK)〈−i〉) � H−n(GDK)[i]〈i〉 � H−n+i (GDK)〈i〉

� H−n+i
(
Ě(K)

)〈i〉. �
The following proposition from [MZ1] will help us resolve the general case.

Proposition 3.4. (See [MZ1, 2.4].) Let M be a weakly Koszul module generated in degrees
j0 < · · · < jp . Let K(0) be the submodule of M generated by Mj0 .

Then K(0) has a linear resolution and M(1) = M/K(0) is weakly Koszul.

Keeping the notation from the previous section we have the following obvious corollary.

Corollary 3.5. Let M be a weakly Koszul module generated in degrees j0 < · · · < jp .
Then for each 0 � i � p, the module K(i) has a linear resolution and M(i) is weakly Koszul.

We know that the homology of GD(M) is bounded and in each degree it is of the same form as
in Proposition 3.3. Therefore there must exist a module M̃ , being a finite direct sum of modules
with linear resolutions, such that HnGDM � HnGD(M̃) for all n. But what is this module M̃?
The next proposition shows that the answer is the (adjusted) associated graded module of M .

Proposition 3.6. Let M be a weakly Koszul module. Then

HnGDM � HnGD
(
g̃r(M)

)
for all n ∈ Z.

Proof. We prove HnGDM(s) � HnGD(g̃r(M(s))) for all 0 � s � p by downward induction on
s going from M(p) = K(p) to M(0) = M .

Since M(p) is generated in a single degree, we have M(p) � g̃r(M(p)), so this case is clear.
From each exact sequence

0 → K(s) → M(s) → M(s+1) → 0
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with 0 � s < p we get a triangle

DMs+1 → DMs → DKs → DMs+1[1]

in DGrΛop. Applying G to this triangle we get a triangle

GDMs+1 → GDMs → GDKs → GDMs+1[1]

in DGrΓ . We have a long-exact sequence in homology

· · · → Hn−1GDKs → HnGDMs+1 → HnGDMs

→ HnGDKs → Hn+1GDMs+1 → ·· ·

We assume that HnGDM(s+1) � HnGD(g̃r(M(s+1))) for a given s. The module M(s+1) is gen-
erated in degrees js+1 < · · · < jp and the same is true for g̃r(M(s+1)) � ⊕p

i=s+1 K(i). Since
the K(i) have linear resolutions, Proposition 3.3 says that HnGDM(s+1) is non-zero only for
n ∈ {−jp, . . . ,−js+1}. In particular HnGDM(s+1) = 0 when n � −js . Also by Proposition 3.3
HnGDK(s) 	= 0 if and only if n = −js . Using these facts and the isomorphism

g̃r
(
M(s)

) � K(s) ⊕ g̃r
(
M(s+1)

)
we get

HnGDM(s) � HnGDK(s) � HnGD
(
g̃r

(
M(s)

))
when n � −js and

HnGDM(s) � HnGDM(s+1) � HnGD
(
g̃r

(
M(s+1)

)) � HnGD
(
g̃r

(
M(s)

))
when n < −js . This finishes the induction step. �

As a corollary we have the following.

Corollary 3.7. Let M and M ′ be two weakly Koszul modules. Then

g̃r(M) � g̃r(M ′)

if and only if

HnGDM � HnGDM ′

for all n ∈ Z.

Proof. The modules g̃r(M) and g̃r(M ′) are both direct sums of modules with linear resolu-
tions. From Proposition 3.3 it follows that g̃r(M) � g̃r(M ′) if and only if HnGD(g̃r(M)) �
HnGD(g̃r(M ′)) for all n ∈ Z. But by Proposition 3.6 this is true if and only if HnGDM �
HnGDM ′ for all n ∈ Z. �
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Combining Proposition 3.6 with Proposition 3.3 we get the following formula. Here j−1n is
the number i such that ji = n.

Corollary 3.8. Let M be a weakly Koszul module generated in degrees J = {j0, . . . , jp}. Then

H−nGD(M) �
{

Ě(K(j−1n))〈n〉 if n ∈ J,

0 if n /∈ J.

In [MZ2], the authors ask which finitely generated graded Λ-modules M have the prop-
erty that Ě(M) is weakly Koszul. We present the following proposition as a first step towards
understanding such modules. The case when Ě(M) is indecomposable is also covered by Propo-
sition 1.7.

Theorem 3.9. Suppose M is a finitely generated graded Λ-module such that Ě(M) is weakly
Koszul. Then Ě(M) has a non-zero direct summand which is Koszul.

Proof. Without loss of generality we may assume that M is generated in degrees 0 = j0 < j1 <

· · · < jp . In this case HnGD(M) = 0 for n > 0 and there is a triangle

τ�−1GD(M) → GD(M) → H 0GD(M) → τ�−1GD(M)[1]
in D↑(Γ ). Since H 0GD(M) is a direct summand of Ě(M) by Lemma 1.4, it is weakly Koszul
by assumption. Since (H 0GD(M))i � ExtiGrΛop(Λ

op
0 ,DM〈i〉) � ExtiGrΛ(M,Λ0〈i〉), we

know that (H 0GD(M)) has support only in non-negative degrees. Also (H 0GD(M))0 �
HomGrΛ(M,Λ0) 	= 0.

Let F :D↑(Γ ) → D↓(Λop) denote a quasi-inverse of G. If K is a Koszul Γ -module, then
F(K) is a co-Koszul Λop-module. Let N be a weakly Koszul Γ -module generated in degrees
J = {h0, . . . , hp}. Since F(K〈i〉) � (F (K)〈−i〉)[−i] for all i ∈ Z, by induction using Proposi-
tion 3.4 we get that Hi(F (N)) is cogenerated in degree −i for i ∈ Z. Also Hi(F (N)) 	= 0 if and
only if i ∈ J .

Let N = H 0GD(M). Applying F to the triangle above, we get the triangle

F
(
τ�−1GD(M)

) → DM → F(N) → F
(
τ�−1GD(M)

)[1]

in D↓(Λop). Since N is generated in degrees 0 = h0 < h1 < · · · < hp , we have HiF(N) = 0
for i < 0. Since DM is concentrated in homological degree 0, there is an isomorphism
HiF(N) � Hi+1(F (τ�−1GD(M))) when i > 0. Now τ�−1GD(M) is by assumption obtained
by a finite number of extensions of objects of the form N ′[s] with N ′ weakly Koszul and s > 0.
The module Hi+1(F (N ′)[s]) is cogenerated in degree −i − s − 1, so (H i+1(F (N ′)[s]))−i = 0
for all i ∈ Z when s > 0. By induction (H i+1(F (τ�−1GD(M))))−i = 0 for all i ∈ Z. But
HiF(N) is cogenerated in degree −i, so HiF(N) � Hi+1(F (τ�−1GD(M))) = 0 when i > 0.

So HiF(N) 	= 0 only when i = 0. This means that the weakly Koszul module N is generated
in degree 0 and is therefore Koszul. So Ě(M) has a direct summand N = H 0GD(M) which is
Koszul. �

Surprisingly, this is not the beginning of an inductive procedure. An example in the next
section (Example 4.3) shows that the other direct summands of Ě(M) are not necessarily Koszul
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or shifts of Koszul modules. In other words Ě(M) can have indecomposable direct summands
which are generated in multiple degrees.

4. Computation of the object GD(M)

So far we have found a formula for the homology of the object GD(M) when M is a weakly
Koszul module, but we have not described the object GD(M) itself. Based on the description
of the functor G in [BGS], we give a method for computing GD(M) for any finitely generated
Λ-module when Λ is given as a path algebra (that is an algebra given as a quiver with relations).
We refer to [MS] for more details on a construction that is essentially the same as ours, but there
it is done in an abelian setting.

Suppose Λ is a Koszul algebra given as the path algebra of a quiver with relations. Then Λ0
is the k-linear span of the vertices, while Λ1 is the k-linear span of the arrows. It can be shown
that the relations are quadratic, that is they are given by a Λ0-sub-bimodule R of Λ1 ⊗Λ0 Λ1.
The quiver of Λop is the opposite quiver to the one of Λ. The relations for Λop are similarly
given by a Λ

op
0 -sub-bimodule Ř of Λ

op
1 ⊗Λ

op
0

Λ
op
1 . The Koszul dual Γ = ⊕

i�0 ExtiΛ(Λ0,Λ0)

is isomorphic to the path algebra with the same quiver as Λ (so Γ0 � Λ0, Γ1 � Λ1 and Γ1 ⊗Γ0

Γ1 � Λ1 ⊗Λ0 Λ1) and orthogonal relations R⊥, that is the kernel of the Λ0-bimodule morphism
HomΛ

op
0

(Λ
op
1 ⊗Λ

op
0

Λ
op
1 ,Λ

op
0 ) → HomΛ

op
0

(Ř,Λ
op
0 ) (see [BGS]). For path algebras, the orthogonal

relations can be found with the help of the bilinear form used in [GM2, 2.2].
Now let Q denote the quiver of Λ, let Q̌ denote the quiver of Λop and let Q∗ denote the

quiver of Γ . Here Q∗ = Q, but it is still helpful to keep separate notation. If the vertices of Q are
indexed by {1, . . . , t}, let {1̌, . . . , ť} denote the corresponding vertices of Q̌ and let {1∗, . . . , t∗}
denote the corresponding vertices of Q∗. If a

α−→ b is an arrow in Q, then let ǎ denote the
corresponding arrow ǎ α̌←− b̌ in Q̌, let α∗ denote the corresponding arrow a∗ α∗−→ b∗ in Q∗. If ǎ

is a vertex of Q̌ and let Sǎ denote the corresponding simple Λop-module (and Λ
op
0 -module). Let

Pa∗ denote the projective Γ -module corresponding to the vertex a∗ of Q∗.
Now let M be a finitely generated Λ-module. For the moment we do not assume that M is

weakly Koszul. Then DM is a finitely cogenerated Λop-module. We now try to find a complex
representing GD(M), so we need to know the result of applying G to a finitely cogenerated
module.

The terms of GD(M) we find from the graded parts of DM (or just as easily directly from the
graded parts of M). If (DM)i � (S1̌)

n1
⊕ · · ·⊕(Sť )

nt is a decomposition of (DM)i into simple
Λ

op
0 -modules, then we put GD(M)i = [(P1∗)n1

⊕ · · ·⊕(Pt∗)nt ]〈−i〉.
To describe the differential is slightly more complicated. Suppose ǎ and b̌ are two (not neces-

sarily distinct) vertices in Q̌ with r arrows going from b̌ to ǎ. Denote the arrows by α̌1, . . . , α̌r .

ǎ b̌

α̌1

α̌2
...

α̌r

(There might also be arrows in the other direction.) Suppose x is an element in the summand

(S
b̌
)nb,i of (DM)i and let ǎ

α̌j←− b̌ be an arrow. Then α̌j ·x is an element in the summand (Sǎ)
na,i+1

of (DM)i+1. Choose k-bases for (S
b̌
)nb,i and (Sǎ)

na,i+1 and let A(α̌j ,i) be the (na,i+1 × nb,i)-
matrix with entries in k which represents the map (S ˇ)nb,i → (Sǎ)

na,i+1 induced by α̌j .

b
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For each arrow a∗ α∗
j−→ b∗ and each i ∈ Z we have a map (ᾱ∗

j )i :Pb∗〈−i〉 → Pa∗〈−i−1〉 which

we can view as multiplication with α∗
j from the right. The part of di : GD(M)i → GD(M)i+1

which maps (Pb∗ 〈−i〉)nb,i to (Pa∗〈−i − 1〉)na,i+1 is given by

r∑
j=1

(
A(α̌j ,i) × (

ᾱ∗
j

)
i

)
,

where × means that each entry in the matrix A(α̌j ,i) is to be multiplied by (ᾱ∗
j )i . We illustrate

with an example.

Example 4.1. Let Λ be the path algebra of the quiver

1
α

2 β .

This is a Koszul algebra.
Then Λop is the path algebra of the quiver

1̌ 2
α̌

β̌ ,

and Γ � ⊕
i�0 ExtiΛ(Λ0,Λ0) is isomorphic to the path algebra given by the quiver

1∗ α∗
2∗ β∗

and with relations β∗α∗ = 0 and (β∗)2 = 0.
Let M be the following infinite-dimensional Λ-module generated in degrees 0, 1 and 2. As

Λ0-modules, we have Mi = S2 for i � 3.

S1

S1 S2

S1 S2

S2

Here g̃r(M) � P1 ⊕S1〈1〉⊕S1〈2〉. Since gr(M) � P1 ⊕ (S1)
2 is a Koszul module, the module M

is weakly Koszul.



778 D. Madsen / Journal of Algebra 318 (2007) 765–785
Then DM is the finitely cogenerated Λop-module.

S2̌

S2̌

S1̌ S2̌

S1̌ S2̌

S1̌

From this we can read off the object GD(M):

· · · → P2∗〈4〉 β̄∗−→ P2∗〈3〉
( ᾱ∗
β̄∗

)
−−−→ (P1∗ ⊕ P2∗)〈2〉

( 0 ᾱ∗
0 β̄∗

)
−−−−→ (P1∗ ⊕ P2∗)〈1〉

(
0 ᾱ∗ )

−−−−→ P1∗ → 0.

Here

H 0GD(M) � S1∗ � Ě(P1) � H 0GD
(
g̃r(M)

)
,

H−1GD(M) � P1∗〈1〉 � Ě(S1)〈1〉 � H−1GD
(
g̃r(M)

)
,

H−2GD(M) � P1∗〈2〉 � Ě(S1)〈2〉 � H−2GD
(
g̃r(M)

)

and

HnGD(M) � 0 � HnGD
(
g̃r(M)

)
for n /∈ {−2,−1,0} as expected.

In the next example we compute GD(M) for a module M which is not weakly Koszul but
turns out to be quasi-Koszul.

Example 4.2. Let Λ be the path algebra of the quiver

5

δ

1
α

2
β

3
γ

4

and relation γ δ = 0. This algebra is Koszul.
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Then Γ � ⊕
i�0 ExtiΛ(Λ0,Λ0) is isomorphic to the path algebra of the quiver

5∗

δ∗

1∗ α∗
2∗ β∗

3∗ γ ∗
4∗

with relations β∗α∗ = 0 and γ ∗β∗ = 0.
Let M be the following module generated in degrees 0 and 1.

S1

S2 S5

S3

Let L be the submodule generated by M0. Since gr(M) � L ⊕ S5 is not Koszul, the module M

is not weakly Koszul.
Then GD(M) is represented by the complex

0 → P3∗〈2〉
( β̄∗
δ̄∗

)
−−−→ (P2∗ ⊕ P5∗)〈1〉 ( ᾱ∗ 0 )−−−−→ P1∗ → 0.

Here HnGD(M) = 0 for n /∈ {−1,0}, H 0GD(M) � S1∗ and H−1GD(M) is the module

S5∗

S3∗

generated in degree 1. In this example, although HiGD(M) is generated in degree −i for all
i ∈ Z, the module H−1GD(M) does not have a linear resolution. Therefore the conditions in
Theorem 3.1 are not satisfied. Since Ě(M) � ⊕

i∈Z
(H iGD(M))〈i〉 is generated in degree 0, we

have that M is quasi-Koszul.

In Theorem 3.9 we have shown that if Ě(M) is weakly Koszul, then Ě(M) has a Koszul
direct summand. The following example shows that Ě(M) can have other indecomposable direct
summands which are generated in multiple degrees.

Example 4.3. Let Λ be the path algebra of the quiver

1
α

3
δ

γ

5

ζ

2
β

4
ε

6

and relations εβ = 0 and εγ − ζ δ = 0. This algebra is Koszul.
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Then Γ � ⊕
i�0 ExtiΛ(Λ0,Λ0) is isomorphic to the path algebra of the quiver

1∗
α∗ 3∗

δ∗

γ ∗

5∗

ζ ∗

2∗
β∗ 4∗

ε∗ 6∗

with relations γ ∗α∗ = 0, δ∗α∗ = 0 and ε∗γ ∗ + ζ ∗δ∗ = 0.
Let M be the following Λ-module generated in degrees 0 and 1.

S1

S2 S3

S4

Then GD(M) is represented by the complex

0 → P4∗〈2〉
( β̄∗
γ̄ ∗

)
−−−→ (P2∗ ⊕ P3∗)〈1〉 (0 ᾱ∗ )−−−−→ P1∗ → 0.

Here HnGD(M) = 0 for n /∈ {−1,0}, H 0GD(M) � S1∗ and H−1GD(M) is the Γ -module

S2∗

S4∗ S5∗

S6∗

generated in degrees 1 and 2. Call this module L. Since gr(L) � P2∗ ⊕ S5∗ is Koszul, the mod-
ule L is weakly Koszul. From Lemma 1.4 we get Ě(M) � L〈−1〉 ⊕ S1∗ . So Ě(M) is weakly
Koszul and has an indecomposable summand which is generated in multiple degrees.

5. A∞-modules

In this section we discuss an alternative way of viewing objects in DGrΓ , namely as A∞-
modules. Instead of thinking of objects as complexes, we think of them as homology groups with
some additional structure. If we fix homology groups satisfying the conditions of Theorem 3.1,
then each possible A∞-module structure on that homology gives an object in X . From Corol-
lary 3.7 we know that if two objects in X share the same homology, then the two corresponding
weakly Koszul Λ-modules have isomorphic adjusted associated graded modules. So if we clas-
sify all objects in X with a certain homology, then via Koszul duality we classify all weakly
Koszul Λ-modules with a certain adjusted associated graded module.

Let Γ = ⊕
i�0 Γi be a graded algebra. We consider Γ as an A∞-algebra concentrated in

degree 0. The ordinary grading of Γ gives an additional structure which is also inherited by
our modules. So what we really are considering are graded A∞-modules. This extra grading
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can be introduced more formally by considering A∞-algebras (and their A∞-modules) over the
monoidal base category of graded vector spaces, but we will not take this approach here. For
definitions we follow [L] and [K2].

For us (graded) A∞-module over Γ is a bigraded space

N =
⊕

(i,j)∈Z×Z

Ni
j

with maps

mn :Γ ⊗n−1 ⊗ N → N, n � 1

of bidegree (n − 2,0) satisfying the rules

m1m1 = 0,

m1m2 = m2(1⊗ m1)

and for n � 3

n∑
i=1

(−1)i(n−1)mn−i+1
(
1⊗n−i ⊗ mi

) =
n−2∑
j=1

(−1)j−1mn−1
(
1⊗n−j−2 ⊗ m ⊗ 1⊗j

)

where 1 is the identity map and m is the multiplication of Γ . Some terms are omitted from the
usual definition since there are no higher multiplications in Γ .

We only consider strictly unital modules, that is modules N such that for all a ∈ N , we have
m2(1, a) = a and mn(γ1, . . . , γn−1, a) = 0 if n � 3 and 1 ∈ {γ1, . . . , γn−1}.

Note that if we let Ni = ⊕
j∈Z

Ni
j , then the Ni together with m1 form a complex (N•,m1)

of graded k-modules.
Two special cases are important. The first is when mn = 0 for n � 3, the other is when m1 = 0.

In the second case each Ni is a graded Γ -module, not only a graded k-module. In the first case
N is essentially a complex of graded Γ -modules, and we view complexes of graded Γ -modules
in this way.

A morphism f :L → N between two A∞-modules L and N is given by a family of maps

fn :Γ ⊗n−1 ⊗ L → N, n � 1

of bidegree (n − 1,0) satisfying the rules

f1m1 = m1f1,

f1m2 − f2(1⊗ m1) = m2(1⊗ f1) + m1f2

and for n � 3
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n∑
i=1

(−1)i(n−1)fn−i+1
(
1⊗n−i ⊗ mi

) +
n−2∑
j=1

(−1)j fn−1
(
1⊗n−j−2 ⊗ m ⊗ 1⊗j

)

=
n∑

r=1

(−1)(r+1)nmn−r+1
(
1⊗n−r ⊗ fr

)
.

Note in particular that f1 is a chain map f1 : (L•,m1) → (N•,m1) between complexes of graded
k-modules.

We only consider strictly unital morphisms, that is morphisms f such that fn(λ1, . . . ,

λn−1, a) = 0 whenever n � 2 and 1 ∈ {λ1, . . . , λn−1}.
The identity morphism f :N → N is given by f1 = 1 and fi = 0 for all i > 0. The composi-

tion fg :N → M of two morphisms f :L → M and g :N → L is given by the rule

(fg)n =
n∑

i=1

fn−i+1
(
1⊗n−i ⊗ gi

)
.

We say that f is a quasi-isomorphism if f1 is a quasi-isomorphism. With the definitions we
have made, the quasi-isomorphism classes we get do not differ significantly from the ones we
have for complexes of graded Γ -modules. Each quasi-isomorphism class of A∞-modules over Γ

corresponds to (has as a subclass) exactly one quasi-isomorphism class of complexes of graded
Γ -modules.

An important theorem [L, 3.3.1.7] states that for any strictly unital A∞-module N , there is
a A∞-module structure on H ∗N with m1 = 0 and a strictly unital quasi-isomorphism between
H ∗N with this structure and N . If L and N are two modules, both with m1 = 0, then each
quasi-isomorphism between them is an isomorphism.

Therefore if we want to describe an object in DGrΓ (or strictly speaking an equivalent cate-
gory), it suffices to specify its homology and an A∞-module structure in its quasi-isomorphism
class with m1 = 0. If we want to classify all objects (up to isomorphism) in X with a certain
homology, it suffices to classify all isomorphism classes of possible A∞-module structures with
m1 = 0 on this homology.

Example 5.1. Let Λ and Γ be the same as in Example 4.1. Let t � 1 be a number and let M(t)

denote the following infinite-dimensional Λ-module generated in degrees 0 and t .

S1

S2

S1 S2

S2
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In this example we find an A∞-module structure (with m1 = 0) for GD(M(t)).
Since g̃r(M(t)) � P1 ⊕S1〈t〉 is a Koszul module, the module M(t) is weakly Koszul. Therefore

by Corollary 3.8 we have

H 0GD(M(t)) � Ě(P1) � S1∗ ,

H−tGD(M(t)) � Ě(S1)〈t〉 � P1∗〈t〉

and

HnGD(M(t)) � 0

for n /∈ {−t,0}.
We now look for possible A∞-structures (with m1 = 0) on this homology. Fix a basis

vector v for S1∗ and a basis vector w for the socle of P1∗〈t〉. Due to degree considerations
(and the remark following this example), the only possibly non-zero higher structure is that
mt+2(β,β, . . . , β,α, v) = xw for some x ∈ k. All values of x give permissible A∞-structures.

Again due to degree considerations, all quasi-isomorphisms between such structures must
have fi = 0 for i � 2. It is possible and easy to construct quasi-isomorphisms using only f1
between structures with x 	= 0. We choose x = 1 as a representative for this orbit and denote by
N(t) the corresponding object in DGrΓ . The remaining case is x = 0 and corresponds to the
object

P1∗〈t〉[t] ⊕ S1∗ � GD
(
P1 ⊕ S1〈t〉

)
.

Since M(t) 	� P1 ⊕ S1〈t〉, we must have GD(M(t)) � N(t).
Therefore GD(M(t)) can be described as the homology

H 0GD(M(t)) � S1∗ ,

H−tGD(M(t)) � P1∗〈t〉

with additional A∞-structure

mt+2(β,β, . . . , β,α, v) = w.

Since t can be chosen arbitrarily large and mt+2 	= 0, this example shows that arbitrarily high
module structures are needed to describe all objects in DGrΓ in this way.

The weakly Koszul Λ-modules with adjusted associated graded module P1 ⊕ S1〈t〉 we have
found to be P1 ⊕ S1〈t〉 and M(t).

Remark 5.2. We are assuming that the higher module structure maps mn not only respect the
ordinary grading, but also the grading given by the quiver. This can also be justified by a change
of monoidal base category.

Example 5.3. In this example we show how to find all objects N in DGrΓ with the same
homology as GD(M) in Example 4.1. Each isomorphism class corresponds to a weakly Koszul
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module M̃ over Λ with g̃r(M̃) � g̃r(M). As a result of our computation we also find an A∞-
module structure for GD(M).

The given homology is H 0N � S1∗ , H−1N � P1∗〈1〉, H−2N � P1∗〈2〉 and HnN � 0 for
n /∈ {−2,−1,0}. In total this homology is 5-dimensional. We fix basis vectors

v1 ∈ (
H 0N

)
0,

v2 ∈ (
H−1N

)
1,

v3 ∈ (
H−1N

)
2,

v4 ∈ (
H−2N

)
2,

v5 ∈ (
H−2N

)
3.

The possible higher products are m3(β,α, v1) = xv3, m3(β,α, v2) = yv5 and m4(β,β,α, v1) =
zv5, where x, y and z are elements in k. All triples (x, y, z) give permissible A∞-structures, so
we have a 3-dimensional representation space. We now want to find the isomorphism classes.
The possible quasi-isomorphisms are given by f1(vi) = qivi , 1 � i � 5 and f2(β, v3) = μv5,
where qi,μ ∈ k and qi 	= 0, 1 � i � 5. It follows from the formulas that q2 = q3 and q4 = q5. If
we let a = q2/q1, b = q4/q2 and ρ = μ/q1, then possible quasi-isomorphisms between triples
(x, y, z) and (x′, y′, z′) are given by the formulas

x′ = ax,

y′ = by + ρ,

z′ = abz − aρx.

This divides the representation space into 4 orbits, namely

O1 = {
(0, ρ,0)

∣∣ ρ ∈ k
}
,

O2 = {
(a,ρ,−aρ)

∣∣ a,ρ ∈ k; a 	= 0
}
,

O3 = {
(0, ρ, c)

∣∣ c,ρ ∈ k; c 	= 0
}
,

O4 = {
(a,ρ, c − aρ)

∣∣ a, c,ρ ∈ k; a, c 	= 0
}
.

We choose representatives x1 = (0,0,0), x2 = (1,0,0), x3 = (0,0,1) and x4 = (1,0,1) re-
spectively. The object in DGrΓ corresponding to x1 is

S1∗ ⊕ P1∗〈1〉[1] ⊕ P1∗〈2〉[2] � GD
(
P1 ⊕ S1〈1〉 ⊕ S1〈2〉).

From the previous example we recognise the object corresponding to x2 as

N(2) ⊕ P1∗〈2〉[2] � GD
(
M(2) ⊕ S1〈2〉),

and the object corresponding to x3 as

N(3) ⊕ P1∗〈1〉[1] � GD
(
M(3) ⊕ S1〈1〉).
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Since GD(M) is not isomorphic to any of these, it must correspond to x4.
So GD(M) can be described as the homology

H 0GD(M) � S1∗ ,

H−1GD(M) � P1∗〈1〉,
H−2GD(M) � P1∗〈2〉

with additional A∞-structure

m3(β,α, v1) = v3,

m4(β,β,α, v1) = v5.

The weakly Koszul Λ-modules with adjusted associated graded module P1 ⊕ S1〈1〉 ⊕ S1〈2〉 we
have found to be P1 ⊕ S1〈1〉 ⊕ S1〈2〉, M(2) ⊕ S1〈2〉, M(3) ⊕ S1〈1〉 and M .
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