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2. Materials and methods 
Abstract Mutations in the outer pore region of Shaker K + 
channels (T 449 and O 447) can influence external Ba 2+ block. 
Substitution of T 449 by A, V or Y differentially reduced Ba 2+ 2.1. Molecular biology and oocyte preparation 

The non-inactivating deletion Shaker H4 (A6-46) [16], also called 
block primarily by decreasing the blocking rate. Substitution of ShH4-IR, was the parental clone from which all mutants were made. 
D 447 by N resulted in a non-conducting channel with apparently RNA was transcribed in vitro with T7 RNA polymerase using un- 
normal  gating currents. External Ba z+ can speed the OFF gating methylated CAP analogue (Pharmacia, Piscataway, NJ) according to 
current of a different non-conducting mutant, W434F; this effect published methods [17]. RNA (2.5-50 ng) was injected into collage- 
was markedly attenuated by the D447N substitution. These nase treated Xenopus laevis oocytes (stage V-VI) in 50 nl of water. 

447 2+ results suggest that D contributes to an external Ba binding Oocytes were maintained at 18°C in amphibian saline supplemented 
449 site while T imposes a barrier to the access of that site. with gentamicin (50 ~g/ml). Voltage clamp recordings were performed 

at room temperature 2-5 days following RNA injection. 

Key words." Bar ium;  Potass ium;  Ga t ing  current ;  2.2. Electrophysiology 
Uni ta ry  cur ren t ;  Pore  Macroscopic ionic and gating currents were recorded using the cut- 

open oocyte vaseline gap (COVG) technique [17]. The external solu- 
tion of the oocyte was exchanged by a manual perfusion system re- 
quiting ~ 5 s for complete solution exchange. Bath solutions were 

1. Introduction made by mixing stock isotonic solutions (240 mOsm) of the main 
cation buffered with 10 mM N-[2-hydroxyethyl]piperazine-N'-[2- 
ethanesulfonic acid] (HEPES) at pH 7.0; methanesulfonate (MES) 

Bar ium ions block a wide variety of  funct ional ly  and  s t rut-  was used as the main anion. The external solution in control experi- 
tural ly dist inct  K + selective ion channels  [1-10]. In m a n y  cases ments was 115 mM sodium methanesulfonate (Na-MES), 2 mM cal- 
Ba 2+ can b lock  these channels  f rom either side of  the mem- cium methanesulfonate [Ca-(MES)2], 2 mM potassium methanesulfo- 
b rane  suggesting tha t  Ba 2+ can  interact  with  a s t ructural  fea- hate (K-MES), 0.1 mM EGTA and 10 mM HEPES. In experiments to 

measure Ba 2+ block of ionic current, isotonic barium methanesulfo- 
ture c o m m o n  to m a n y  K + selective pores [4,11,12]. In fact, it hate [Ba-(MES)2] replaced Na-MES in the following solution: 117 
has  been proposed  tha t  Ba 2÷ blocks these channels  by binding mM Na-MES, 2 mM K-MES, and 10 mM HEPES. Ba 2+ solutions 
at  a K + site within the pe rmea t ion  pa thway  [1-4]. Consis tent  for measurement of gating currents had a constant divalent concen- 
wi th  this idea, K + can act as a competi t ive inhib i tor  of  Ba 2+ tration of 2 mM with Ba-(MES)2 replacing Ca-(MES)2, e.g. the solu- 
b lock [3,4,11,13]. W h e n  added to the internal  side of  the squid tion containing 0.1 mM Ba 2+ was as follows: 0.1 mM Ba-(MES)2, 1.9 

mM Ca-(MES)2, 2 mM K-MES, 117 mM Na-MES. The solution in 
axon  delayed rect ifer ,  Ba 2+ blocks at  a site tha t  can only be contact with the intracellular compartment was 120 mM potassium 
accessed when  the channel  pore  is open,  deep wi th in  the mere- glutamate buffered with 10 mM HEPES, The intracellular microelec- 
b rane  field [2,3]. Molecula r  biological  approaches  have  given trode was filled with 2.7 M Na-MES, l0 mM NaCI, 10 mM EGTA, 
some insight  into  the s t ructural  domains  influencing internal  and 10 mM HEPES. 

Single channel recordings were performed in the cell attached patch 
block of  vol tage-gated K + channels.  Fo r  the Shaker K + c h a n -  clamp configuration. A depolarizing bath solution was used contain- 
nel, b o t h  the $4-$5  loop and  the $6 region cont r ibute  to ing 117 mM K-MES, 2 mM MgC12, 0.1 mM EGTA, and 10 mM 
internal  Ba ~+ sensitivity [14,15]. In  addi t ion,  in ternal  Ba 2+ HEPES. The pipette solution contained 117 mM Na-MES, 2 mM KC1 
sensitivity of  a cloned delayed rectifier can be modified by a and 10 mM HEPES for control measurements or 115 mM Na-MES, 
po in t  m u t a t i o n  in the putat ive  pore  forming region [12]. 2 mM KC1, 2 mM Ba-(MES)2, 10 mM HEPES for Ba 2+ measure- 

Our  previous work  suggests tha t  externally applied Ba 2+ ments. Data were digitized at 100 ~ts/point after low pass filtering at 2 
kHz. Single channel records were corrected off line for linear leak and 

can interact  wi th  at  least two dist inct  and  sequential  b inding capacity currents using customized software. Open and closed transi- 
sites on  the Shaker K ÷ channel ,  result ing in a fast  and  a slow tions were detected by the half amplitude threshold criterion using the 
c o m p o n e n t  of  ionic current  b lock [13]. The  present  work  iden- TRANSIT software (A.M.J. VanDongen, Duke University, Chapel 

Hill, NC). 
titles two amino  acid posi t ions  at  the outer  pore  tha t  appear  
to influence b inding  at the site associated with the slow com- 2.3. Data analysis 
p o n e n t  of  block. One posi t ion (T 449) influences the access of  Ba 2+ block of ionic currents was measured from the outward K + 
Ba 2+ to the slow c o m p o n e n t  b inding site and  can therefore current at the end of sequential 8 ms depolarizing commands to 30 

mV repeated once every 5 s; the holding potential was - 9 0  mV and 
explain the very slow blocking rate  of  this component .  A Ba 2+ was washed out between each application. The slow decaying 
second posi t ion (D 447) appears  to cont r ibute  to the b inding phase was fitted to a single exponential term to derive the initial and 
site associated with the slow c o m p o n e n t  of  b lock as evidenced steady state levels of the slow component of block; the fast blocking 
by  measurements  of  gating current ,  component was taken as the difference between the current amplitude 

in the absence of Ba 2+ and the initial value of the slow component 
[13]. Ba 2+ inhibition data for the individual components were fitted to 
K = 100-[Ba]n/([Ba] n + K ~) where K is the apparent dissociation con- 
stant and n is the Hill coefficient. The slow blocking rate as a function 

*Corresponding author. Fax: (1) (310) 825-6649. of Ba 2+ concentration was fitted to a two site binding scheme as 
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Fig. 1. The slow component  of  Ba 2+ block is influenced by mutat ions at position 449. A: Ionic currents evoked from an oocyte expressing 
ShH4-IR by 8 ms depolarizations to 30 mV before (upper traces) and after the addition of  20 m M  Ba 2+, pulses were given every 5 s. B-E:  
Symbols show the current evoked at the end of  successive 8 ms depolarizations to 30 mY; pulses were repeated once every 5 s. In each case, 
20 m M  Ba 2+ was added to the external solution at time zero and the arrow indicates the time of  wash. B: ShH4-IR, C: T449A, D: T449V, 
and E: T449Y. F: Long exposure of  T449Y to Ba 2+. The depolarizing commands  were given once every 30 s during the application of  Ba2+; 
during the wash-out,  the membrane  was depolarized to 30 mV once every 5 s (note the change in scale along the time axis). 

previously described [13], where Site 1 and Site 2 correspond to the fast and slow components  of  

Ba 2+ + S i te l -S i t e2  ko~]) Ba2+ : S i t e l -S i t e2  k,,_(2) Sitel--Site2 : Ba 2+ macroscopic current block, respectively. The blocking rate (Ill;block) as 
koe(l) kon(2) a function o f  Ba 2+ concentration was fitted to l / ' l ; b l o c k  = kon(2)'([Ba]/ 
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Fig. 2. Dose-response relationships for the slow and fast component of block, A: Dose response of the slow component of block for ShH4-IR 
(filled circles), T449A (filled squares) and T449V (filled triangles). The continuous curves show the fits to a single binding isotherm. The appar- 
ent dissociation constants for the slow components (Ks) were as follows (mean+S.D.): for ShH4-IR, 1.5+0.4 mM (n = 5); for T449A, 
3.5_+ 1.2 mM (n = 8); for T449V, 6.1 +3.0 mM (n = 5). Ks could not be determined for T449Y. B: Dose response of the fast component of 
block for ShH4-IR (filled circles), T449A (filled squares), T449V (filled triangles), and T449Y (open circles). The apparent dissociation constants 
for the fast components (KF) were as follows (mean+S.D.): for ShH4-IR, 23.3-+3.6 mM (n = 5); for T449A, 24.2+_4.3 mM (n = 6); for 
T449V, 20.6-+6.0 mM (n = 6); for T449Y, 11.7-+6.4 (n = 5). C: Blocking rate (l/Xbto~k) of the slow component as a function of Ba 2+ concen- 
tration (for legend, see A). Continuous curves are the fit of the blocking rate to a sequential two site blocking model (see section 2). D: Recov- 
ery rate (l/xre~ove~y) upon removal of Ba 2+ (for legend, see A). 1/x ..... cry obtained from all the experiments were as follows (mean_+ S.D.): for 
ShH4-IR, 0.005_+0.001 s -x (n = 28); for T449A, 0.005_+0.001 s -1 (n = 25); for T449V, 0.005_+0.001 s -1 (n = 18). 

[Ba] + Ki)) + ko~(2), where K1 is the dissociation constant of Site 1 (T 449) in the non- inac t iva t ing  deletion of  Shaker H4 (ShH4 
and the ratio ([Ba]/[Ba] + K1) is the probability that Site 1 is occupied A6-46, also called ShH4-IR)  [16] to determine its influence 
by Ba 2+. Recovery from Ba 2+ block was assayed by an 8 ms depolar- 
izing command to 30 mV repeated once every 5 s following the wash- on external  Ba 2+ sensitivity. The natura l ly  occurr ing tbreonine  
out of Ba 2+ ; the recovery phase was fitted to a single exponential term (T) at  posi t ion 449 (T 449) was subst i tu ted by alanine (A), va- 
to obtain the time constant of recovery (1:recovery). Gating currents line (V), or tyrosine (Y). 
were measured by a 20 ms pulse to 30 mV given once every 5 s. We previously repor ted tha t  external  Ba z+ can reduce Sha- 
Subtraction pulses (P/4) were given from a subtraction holding poten- ker K + current  evoked by a br ief  depolar iza t ion wi thou t  
tial (SHP) of 20 mV. 

changing the kinetics of  the remain ing  current  [13]. We also 
found  tha t  the t ime course of  Ba 2+ block had  a fast and  a 

3. Results slow c o m p o n e n t  and  proposed tha t  these two componen t s  
resulted f rom separate  and  sequential  b inding sites. Fig. 1 

3.1. Mutations at T 44° influence Ba 2+ block i l lustrates the t ime course of  Ba 2+ block, and  the recovery 
Previous studies demons t ra t ed  tha t  an  a romat ic  g roup  at f rom block, for the wild type and  the pore mu tan t s  at  posi t ion 

the posi t ion 449 in Shaker, or its equivalent ,  can play a critical T 449. While  the muta t ions  had  little influence on  the fast  corn- 
role in b lock  of  ionic current  by extracellular t e t rae thy lammo-  ponen t  of  block, they slowed to different degrees the slower 
n ium (TEA) [18-20]. We therefore mu ta t ed  this posi t ion phase  of  block. T449A and  T449V had  relatively modes t  ef- 
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Fig. 3. T449Y reduces the frequency of discrete blocking events. A, C, E: Consecutive sweeps from single channel patches containing (A) 
ShH4-IR in control conditions, (C) ShH4-IR in 2 mM Ba 2+ and (E) T449Y in 2 mM Ba 2+. The membrane was held at -90  mV and stepped 
to 30 mV for 100 ms repeated once per second. B, D, F: Plots of open probability per sweep as a function of sweep number for (B) ShH4-IR 
in control conditions, (D) ShH4-IR in 2 mM Ba 2+ and (F) T449Y in 2 mM Ba 2+. The over bars indicate the region from which the individual 
sweeps shown in the left panels were taken. 

fects (Fig. 1C,D). In contrast, T449Y decreased the blocking level of  block, as estimated by a single exponential fit (see 
rate to the point where exposure times to Ba 2+ of  3 ~ 4 5  min section 2), by about  2- and 4-fold, respectively (Fig. 2A). 
were required to visualize the slow component  of  block and The steady state level of  block for T449Y could not be reli- 
subsequent recovery upon wash-out (Fig. 1E,F). ably estimated due to the extremely slow kinetics and conco- 

The mutations T449A and T449V decreased the steady state mitant  ' run-down'  of  ionic current. None  of  these mutations 
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Fig. 4. D447N reduces the ability of Ba 2÷ to speed the return of gating charge. Gating currents from three non-conducting mutants; A: ShH4- 
IR (W434F), B: ShH4-IR (D447N) and C: ShH4-IR (W434F,D447N). Each panel shows a control trace (open arrow) and a trace recorded in 
the indicated concentration of external Ba 2+ (filled arrow). In some cases, the currents recorded in Ba 2+ superimpose the control records. Gat- 
ing currents were evoked by a depolarizing command to 30 mV from a holding potential of -90 mV. 

significantly altered the dose dependence of the fast compo- pS for ShH4-IR ( + S.D., n = 6) and 9.3 _+ 0.4 pS for ShH4-IR 
nent of block (Fig. 2B). Fig. 2C,D shows that the primary T449Y (+ S.D., n = 4). 
cause for the decreased Ba 2+ sensitivity of T449A and T449V 
was a reduction in blocking rate (1/Xblock) while the unblocking 3.3. Neutralization of  D 447 and the effect of  Ba 2+ on gating 
rate (l/Xr~overy) was practically unaltered. The unblocking rate currents 
for T449Y (~r~overy = 96.3--+ 4.9 S, n = 6; mean + S.D.) was Relative to T 449, an aspartate (D 447) resides two positions 
faster than the wild type but this difference was small com- deeper in the pore and is predicted to face the aqueous lumen 
pared to the reduction in blocking rate (see Fig. IF). These [26]. Neutralization of this highly conserved D has previously 
results suggest that the mutations at T 449 slowed the arrival of been reported to eliminate ionic current [27,28]. However, 
Ba 2÷ to the slow blocking site but had relatively little effect on when this position is substituted by asparagine (D447N), the 
the length of time Ba 2+ occupied that site. In other words, it resulting proteins are still expressed and undergo voltage-de- 
appears that the residue at position 449 can influence the pendent conformational changes as evidenced by the measure- 
access of Ba 2+ to a binding site deeper in the pore. ment of gating current (Seoh and Papazian, personal commu- 

nication) (for review on gating currents, see [29]). 
3.2. Single channel analysis of  T449Y External Ba 2÷ can increase the speed of gating charge re- 

Divalent cations are known to influence the gating proper- turn in the non-conducting mutant ShH4-IR (W434F) [30] but 
ties of voltage sensitive K + channels (e.g. [21-25]). For exam- only at potentials positive to about - 5 5  mV. Since this is near 
pie, external Zn 2+ substantially slows the activation time the threshold for channel activity, this effect can be explained 
course of squid axon [21] and Shaker K + currents [23]. We by a destabilization of the open state by Ba 2+ [Hurst et al. 
therefore investigated the effect of Ba 2+ on single T449Y (1996) Biophys. Soc. Abst.]. Fig. 4A shows that following a 
channels to determine if the decreased slow component re- depolarization to 30 mV, Ba 2+ markedly increased the rate of 
fleeted changes in gating properties. At the single channel OFF gating current (Qoff) in the non-conducting W434F mu- 
level, the slow component of external Ba 2+ block of ShH4- tant. In contrast, Ba 2+ had relatively little effect on the gating 
IR results from discrete blocking events, often observed as currents of the D447N mutant following the same depolariza- 
sweeps which lack channel opening [13]. Consistent with the tion (Fig. 4B). To insure that the effect of Ba 2+ on Qo~ was 
idea that T449Y decreases the access of Ba 2+ to the binding not a result of the W434F mutation, D447N was introduced 
site associated with the slow component, this mutation mark- into the background of ShH4-IR (W434F). This double mu- 
edly reduced the frequency of these long blocked times (Fig. tant, ShH4-IR (D447N,W434F), was also insensitive to Ba 2+ 
3). In contrast, the T449Y mutation had no effect on the (Fig. 4C). Therefore, the most likely explanation for these 
single channel conductance when measured in the absence of results is that the D447N mutation disrupts the site necessary 
Ba2+; the chord between --40 mV and +60 mV was 8.6 + 0.8 for Ba 2+ to speed Qoff. 
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4. Discussion site [13], the simplest interpretation is that the site at D 447 is 
therefore associated with the slow component of ionic current 

4.1. Mutations at position 447 influence the blocking rate o f  block. 
Ba 2+ In summary, this work identifies two positions in the puta- 

We recently proposed that two distinct and sequential bind- tive pore forming region of the Shaker K + channel that ap- 
ing sites on the Shaker K + channel give rise to the fast and pear to influence the binding of external Ba 2+. First, muta- 
slow component of external Ba 2+ block [13]. The deeper of tions at position 449 (T 449) decreased the slow component of 
these two sites, which produces the slow component of block, block primarily by slowing the blocking rate. This suggests 
is preceded by a relatively large energy barrier as evidenced by that position 449 is an important component to an energy 
the very slow blocking kinetics. Substitution of T 44a by A, V, barrier that precedes the narrow pore region. Second, neutra- 
Y reduced the blocking potency of Ba 2+ on the slow compo- lizing a negative charge two positions deeper in the pore 
nent to different degrees primarily by slowing the blocking (D447N) not only eliminated ionic conduction but also mark- 
rate; the same mutations had relatively little effect on the edly reduced the ability of Ba 2+ to speed the return of gating 
unblocking rate. This suggests that the mutations at T 449 in- charge. This suggests that D 447 contributes to the binding site 
creased the energy barrier that precedes the slow blocking site associated with the Ba 2+ facilitation of gating charge return. 
and thereby decreased the likelihood of Ba 2+ reaching that While it is tempting to speculate that D 447 also contributes to 
site. Consistent with this idea, it has been proposed that the binding site associated with the slow component of Ba 2+ 
T 449 resides at the outer edge of the narrow pore region and induced ionic current block, this idea is supported only by 
should therefore be well suited to regulate access of ions into indirect evidence. 
the narrow pore region [31]. 

Another possible explanation for the influence of mutations Acknowledgements." We are grateful to Dr. Dorine Starace for kindly 
providing the double mutant ShH4-IR W434F,D447N and to Dr. 

at T 440 on Ba 2+ block could be that Ba 2+ sensitivity is in some Ramon Latorre for critical comments during the course of this 
way related to slow or C-type inactivation [32]. Previous stud- work. We thank Zhaorong Jiang and Yuguang Jin for preparing 
ies have demonstrated that the amino acid at position 449 in RNA and injecting oocytes. This work was supported by NIH Grant 
Shaker, or its equivalent, can influence the rate of slow inac- GM50550 to E,S. and L.T. and by a National Research Service 
tivation [33,34]. However, any relationship between inactiva- Award to R.H. 
tion and Ba 2+ block seems unlikely because the mutations at 
position 449 differentially affected Ba 2+ sensitivity and slow 
inactivation. For  example, T449A increases the rate of slow References 
inactivation while T449V and T449Y tend to slow this process 
[34] yet all of these mutations decrease the blocking potency [1] Standen, N.B. and Stanfield, P.R. (1978) J. Physiol. 280, 169- 
of external Ba 2+. 191. 

[2] Armstrong, C.M. and Taylor, S.R. (1980) Biophys. J. 30, 473- 
488. 

4.2. D 447 contributes to the site necessary for  Ba 2+ to facilitate [3] Eaton, D.C. and Brodwick, M.S. (1980) J. Gen. Physiol. 75, 727- 
gating charge return 750. 

In their original description, Armstrong and Taylor pro- [4] Vergara, C. and Latorre, R. (1983) J. Gen. Physiol. 82, 543-56. 
posed that Ba 2+ binding stabilized the closed state of squid [5] Grissmer, S. and Cahalan, M.D. (1989) J. Gen. Physiol. 93, 609- 

630. 
axon K + channels [2]. In addition, they proposed that the very [6] Hausdorff, S.F., Goldstein, S.A.N., Rushin, E.E. and Miller, C. 
tight interaction of Ba 2+ implied the existence of negatively (1991) Biochemistry 30, 3341-3346. 
charged groups within the channel pore [2]. Following this [7] Wollmuth, L.P. (1994) J. Gen. Physiol. 103, 45-66. 
idea, we removed the negative charge at position 447 (D 447) [8] Wischmeyer, E., Lentes, K.-U. and Karschin, A. (1995) Pfliigers 

Arch. 429, 809-819. 
to determine its effect on Ba z+ binding. Because neutralization [9] Ransom, C.B. and Sontheimer, H. (1995) J. Neurophysiol. 73, 
of this highly conserved D eliminates K + conduction [27,28], 333-346. 
we compared the effects of Ba 2+ on the gating current of [10] Koh, D-.S., Jonas, P. and Vogel, W. (1994) J. Physiol. 479, 183- 
ShH4-IR (D447N) with a different non-conducting mutant, 197. 
ShH4-IR (W434F). The D447N substitution alone, or when [11] Armstrong, C.M., Swenson, R.P. and Taylor, S.R. (1982) J. Gen. 

Physiol. 80, 663~582. 
introduced into the background of ShH4-IR (W434F), sub- [12] Taglialatela, M., Drewe, J.A. and Brown, A.M. (1993) Mol. 
stantially reduced the ability of  Ba 2+ to speed Qoff (Fig. 4). Pharmacol. 44, 180-190. 
Given the charge on this side chain and its proposed exposure [13] Hurst, R.S., Latorre, R, Toro, L. and Stefani, E. (1995) J. Gen. 
to the aqueous pore [26], the simplest explanation is that Physiol. 106, 1069-1087. 
D447N disrupts the binding site that allows Ba 2+ to speed [14] Slesinger, P.A., Jan, Y.N. and Jan, L.Y. (1993) Neuron 11,739- 

749. 
Qoff. [15] Lopez, G.A., Jan, Y.N. and Jan, L.Y. (1994) Nature 367, 179- 

The question remaining is whether the binding site at D 447 182. 
is associated with the slow component or the fast component [16] Hoshi, T., Zagotta, W.N. and Aldrich, R.W. (1990) Science 250, 
of ionic current block. Since the mutations at position 449 did 533-538. 
not alter the fast component of block, the fast blocking site [17] Stefani, E., Toro, L., Perozo, E. and Bezanilla, F. (1994) Bio- 

phys. J. 66, 996-1010. 
most likely resides external to T 44a, consistent with the relative [18] MacKinnon, R. and Yellen, G. (1990) Science 250, 276-279. 
voltage-dependence of these two components [13]. The widely [19] Kavanaugh, M.P., Varnum, M.D., Osborne, P.B., Christie, M.J., 
accepted topology of this channel places D 447 internal to T 449 Busch, A.E., Adelman, J.P. and North, R.A. (1991) J. Biol. 

Chem. 266, 7583-7587. 
[35]; therefore, D 447 probably does not contribute to binding [20] Heginbotham, L. and MacKinnon, R. (1992) Neuron 8, 483491. 
site associated with the fast component of ionic current block. [21] Gilly, W.F. and Armstrong, C.M. (1982) J. Gen. Physiol. 79, 
In lack of evidence suggesting a third external Ba ~+ binding 965-996. 



R.S. Hurst et al.IFEBS Letters 388 (1996) 59-65 65 

[22] Harrison, N.L., Radke, H.K., Tamkun, M.M. and Lovinger, [29] Almers, W. (1978) Rev. Physiol. Biochem. Pharmacol. 82, 96- 
D.M. (1993) Mol. Pharmacol. 43, 482486. 190. 

[23] Spires, S. and Begenisich, T. (1994) J. Gen. Physiol. 104, 675- [30] Perozo, E., MacKirmon, R., Bezanilla, F. and Stefani, E. (1993) 
692. Neuron 11, 353-35 

[24] Davidson, J-.L. and Kehl, S.J. (1995) Can. J. Physiol. Pharmacol. [31] Lii, Q and Miller, C. (1995) Science 268, 304-307. 
73, 36-42. [32] Yellen, G., Sodickson, D., Chen, T-.Y. and Jurman, M.E. (1994) 

[25] Spires, S. and Begenisich, T. (1995) Biophys. J. 68, 491-500. Biophys. J. 66,1068-1075. 
[26] Kirsch, G.E., Drewe, J.A., Hartmann, H.A., Taglialatela, M., de [33] Busch, A.E., Hurst, R.S., North, R.A., Adelman, J.P. and Ka- 

Biasi, M., Brown, A.M. and Joho, R.H. (1992) Neuron 8, 499- vanaugh, M.P. (1991) Biochem. Biophy. Res. Comm. 179, 1384- 
505. 1390. 

[27] Kirsch, G.E., Pascual, J.M. and Shieh, C-.C. (1995) Biophys. J. [34] Ldpez-Barneo, J., Hoshi, T, Heinemann, S.H. and Aldrich, R.W. 
68, 1804-1813. (1993) Receptors Channels 1, 61-71. 

[28] Goldstein, S.A.N., Pheasant, D.J. and Miller, C. (1994) Neuron [35] Durell, S.R. and Guy, H.R. (1992) Biophys. J. 62, 238-250. 
12, 1377-1388. 


