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a b s t r a c t

Themethod of Hamiltonian approach and the energy balancemethod are applied to obtain
the periodic solutions of nonlinear oscillations of a punctual charge in the electric field
of charged ring. The obtained approximate frequencies are accurate for the entire range
of oscillation amplitudes. A good agreement of the approximate frequencies and periodic
solutions with the exact ones are demonstrated and discussed. It is also proved that the
results of the energy balance method are better than the Hamiltonian approach for solving
this equation.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, many papers are devoted to the analysis of nonlinear differential equation. Nonlinear vibration has
attracted the attention of many researchers. This might be due to its application in mechanics, electronics and physics.
Currently, a variety of approaches have been invented and modified for solving nonlinear equations, such as the homotopy
perturbation [1–4], variational approach [5–8], energy balance method [9–13], Hamiltonian approach [14,15], and other
methods [16–19]. The Tanhmethod is an effective approach for solving the nonlinear equations. Thismethodwas applied for
solving the Kolmogorov–Petrovski–Piskunov equation [20] and (3+1)-dimensional Kadomtsev–Petviashvili equations [21].
The transformed rational function method provides an analytical approach for solving the nonlinear partial differential
equations. This method appropriately deals with the (3 + 1)-dimensional Jimbo–Miwa equation [22]. The multiple exp
functionmethodwasproposed for exactmultiplewave solutions of nonlinear partial differential equationswhere the (3+1)-
dimensional potential Yu–Toda–Sasa–Fukuyama equation was investigated by this method [23]. This method is an efficient
approach if computer algebra systems are adopted for use. Hirota’s bilinear technique is a useful approach especially for
solving bilinear problems. Indeed, bilinear equations are almost close to linear equations in which some properties are
likely same as linear equations [24]. Recently, the Hamiltonian approach has been invented by He [15]. By means of He’s
new method, a large number of well-known nonlinear equations were solved. Yildirim et al. [25] solved three kinds of
nonlinear equations by this method.
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1.1. Nonlinear oscillator with rational force

ẍ +
x3

x2 + 1
= 0 (1)

ẍ +
x

x2 + 1
= 0. (2)

1.2. Nonlinear oscillator with irrational elastic force

ẍ + x −
λx

√
x2 + 1

= 0. (3)

A generalized nonlinear equation was analyzed by Cveticanin et al. by means of it. Cveticanin et al. [26] solved this equation
and investigated the frequency responses of the system for some special cases.

ẍ + x |x|α−1
= 0. (4)

Nonlinear Vibration of a rigid rod on a circular surfacewas investigated by Khan et al. [27]with the Hamiltonian approach. In
the referred papers, the Hamiltonian approach has valid solutions and simple procedure. The energy balancemethod ismore
well known and has been applied in various types of nonlinear equations; for instance, relativistic oscillator [28], nonlinear
oscillator with fractional elastic force [12], harmonic Duffing oscillator [10] and so on [11,13]. This method was primarily
introduced by He [9] and then developed by Sfahani et al. [29] and Younesian et al. [12]. Although the application of this
method is so simple but the reliability and accuracy of this method is high in comparison with perturbative approaches. In
this paper, the nonlinear oscillations of a punctual charge in the electric field of charged ring [30–32] are analyzed bymeans
of the Hamiltonian approach and the energy balance method. According to the solution procedure, it is also demonstrated
that the energy balance method is much simpler than the the Hamiltonian approach for solving this equation and even the
accuracy of EBM is higher than HA for the first approximation. It is remarkable that EBM without any requirement to the
difficult mathematical procedure can solve this equation with a high reliability.

2. Solution procedure

Assume a ring with radius R in which a charge Q > 0 is spread uniformly around that. The electric field E on the axis of
ring is expressed by [30–32]

E(x) =
1

4πε0

Qx
R2 + x2

3/2 (5)

where x denotes the distance along the axis. Consider a negative punctual charge q = −|q| which is placed at a point on
ring axis. A force F(x) is exerted to the charge as follows:

F(x) = −
1

4πε0

|q|Qx
R2 + x2

3/2 . (6)

Consequently, the equation of motion of the punctual charge with the massm equals to the following nonlinear equation

m
d2x
dt2

+
1

4πε0

|q|Qx
R2 + x2

3/2 = 0. (7)

The initial conditions are

x(0) = x0 (8)
dx
dt

(0) = 0. (9)

Eq. (7) can be written as follows

1
R
d2x
dx2

+ ω2
0


1 +

x2

R2

−3/2 x
R

= 0 (10)

where

ω0 =


|q|Q

4πε0mR3
. (11)
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By defining two dimensionless variables y and τ as follows

x = Ry, t = ω0τ . (12)

Eq. (9) is converted to

d2y
dτ 2

+
y

1 + y2
3/2 = 0. (13)

With initial conditions

y(0) = A,
dy
dτ

(0) = 0. (14)

2.1. Hamiltonian approach

The Hamiltonian form of Eq. (13) can be easily constructed as

H =
1
2
ẏ2 −

1
1 + y2

1/2 . (15)

By integrating Eq. (15) with respect to τ from 0 to T
4 , we have

H̃(y) =

∫ T
4

0


1
2
ẏ2 −

1
1 + y2

1/2

dτ . (16)

We consider the solution y(τ ) = A cos(ωτ). Substituting it into Eq. (16), yields

H̃(A, ω) =

∫ T
4

0

[
1
2
A2ω2 sin2(ωt) −

1
(1 + A2 cos2(ωτ))1/2

]
dτ

=

∫ π
2

0

1
2
A2ω sin2 τ −

1

ω
√
1 + A2

1
1 −

A2
1+A2

sin2 τ
1/2

 dτ . (17)

Using the following formula of the first kind of elliptic integration∫ π
2

0

dτ
1 − m2 sin2 τ

1/2 =
π

2


1 +


1
2

2

m2
+


1 × 3
2 × 4

2

m4
+


1 × 3 × 5
2 × 4 × 6

2

m6
+ · · ·


. (18)

We can reach to

H̃(A, ω) =
π

4
A2ω −

π

2ω
√
1 + A2


1 +


1
2

2  A2

1 + A2



+


1 × 3
2 × 4

2  A2

1 + A2

2

+


1 × 3 × 5
2 × 4 × 6

2  A2

1 + A2

3

+ · · ·


. (19)

Setting

∂

∂A


∂H (A, ω)

∂
 1

ω

 
= −Aω2

−
∂

∂A


1

√
1 + A2


1 +


1
2

2  A2

1 + A2


+


1 × 3
2 × 4

2  A2

1 + A2

2

+


1 × 3 × 5
2 × 4 × 6

2  A2

1 + A2

3

+ · · ·


= 0. (20)

Finally, the natural frequency of the system is obtained as

ωHA =

−
1
A

∂

∂A


1

√
1 + A2


1 +


1
2

2  A2

1 + A2


+


1 × 3
2 × 4

2  A2

1 + A2


+


1 × 3 × 5
2 × 4 × 6

2  A2

1 + A2

3

+ · · ·


.

(21)
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2.2. Energy balance method

The following Hamiltonian is established for Eq. (13) using the semi-inverse method

H =
1
2
ẏ2 −

1
1 + y2

1/2 = −
1

1 + A2
1/2 . (22)

The trial function y = A cos(ωτ) is then employed to determine the angular frequency. The following residual is
consequently obtained as

R(τ ) =
1
2
A2ω2 sin2(ωτ) −

1
1 + A2 cos2(ωτ)

1/2 +
1

1 + A2
1/2 . (23)

Setting

R(τ )
ωτ→

π
4

= 0. (24)

And solving the above equation leads to:

ωEBM =
2
A


1 +

A2

2

−1/2

−

1 + A2

−1/2
. (25)

3. Discussion and numerical results

In this part, the accuracy of the Hamiltonian approach and the energy balance method are discussed for large oscillation
amplitude. The exact angular frequency [20] of Eq. (8) is

ωex = 2π

∫ 1

0

4Adu
(1 + A2u2)−

1
2 − (1 + A2)−

1
2

−1

. (26)

We consider the expression for the exact frequency ωe (Eq. (26)). For large amplitudes we obtain [20]:

ωe (A) ≈ 2π

∫ 1

0

2
√
2u

√
1 − u

1
A3/2

du + · · ·

−1

=

√
2

A3/2
+ · · · . (27)

The power-series expansion of the Hamiltonian approaches for the large oscillation amplitudes is

ωHA(A) =
1

A3/2


1 +


1
2

2

+


1 × 3
2 × 4

2

+


1 × 3 × 5
2 × 4 × 6

2

+ · · ·. (28)

The expression of frequency for large amplitudes by energy balance method is equal to

ωEBM(A) =
2

A3/2


√
2 − 1. (29)

From Eqs. (26)–(28), frequency ratios for large amplitudes are

lim
A→∞

ωEBM

ωex
= 0.9101797. (30)

For three terms of the series in Eq. (23), we have

lim
A→∞

ωHA

ωex
= 0.833854. (31)

Belendez applied the harmonic balance method [30] to this equation and obtained a first approximate to the following
limit

lim
A→∞

ωHBM

ωex
= 0.822267. (32)

According to Eqs. (30)–(32), we can conclude that the EBM is more accurate than HA and HBM in first approximation.
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4. Conclusions

The Hamiltonian approach and the energy balance method were used to determine the frequency amplitude
relationships for nonlinear oscillations of a punctual charge in the electric field of a charged ring. Validity and accuracy of
HA and EBMwere also discussed and demonstrated by comparing with the exact one. According to the results, we conclude
that the EBM is more accurate than HA and HBM for this problem. We also found that for large amplitude of oscillation the
EBM relative error is less than 9% and the relative error of HA is less than 18%.
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