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Hepatocellular  carcinoma  (HCC)  is highly  associated  with  chronic  liver  disease.  The  rs738409  genetic
variant  in  the  patatin-like  phospholipase  domain-containing  3 (PNPLA3,  adiponutrin)  gene has  been
implicated  as a genetic  determinant  of  the  entire  spectrum  of  liver  diseases,  ranging  from  steatosis,
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chronic  hepatitis,  cirrhosis  and  ultimately  to HCC.  In this  review,  first we  will examine  the  current  genetic
theories  of  disease  susceptibility.  Next,  we  will  analyze  the  evidences  for the  association  between  PNPLA3
I148M variant  and  HCC.  Moreover,  we  will  exploit  this  association  to  propose  a new  paradigm  in  human
genetics:  a common  genetic  variant  contributing  to a  rare  disease.  Finally,  we  will  examine  the  molecu-
lar genetics  of  PNPLA3  and, specifically,  the  theories  that  have  been  proposed  to  explain  the  function  of
PNPLA3  in health  and  disease.

 Gast
© 2012 Editrice

. Introduction

Hepatocellular carcinoma (HCC) is mostly found in subjects with
irrhosis caused by chronic liver diseases. Chronic hepatitis B virus
HBV) and hepatitis C virus (HCV) infection account for 54% and
1% of cases, respectively, and thus the incidence and geographical
revalence of HCC presently mirror those of infection with hepati-
is viruses [1,2]. Excessive alcohol intake, liver steatosis associated
ith obesity and insulin resistance, hereditary hemochromatosis,

nd other inherited diseases such as alpha-1-antitrypsin deficiency
ccount for the majority of the non-viral-related cases [3–6].

Family history, gender, diabetes mellitus and ethnicity influ-

nce the risk of HCC, and several studies have demonstrated

 role of genetic mutations in the predisposition to HCC [7,8].
ere we focus on the rs738409 genetic variant in the patatin-like
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phospholipase domain-containing 3 (PNPLA3, adiponutrin) gene,
which has been implicated as a genetic determinant of HCC suscep-
tibility (Table 1). This variation is the major genetic determinant
of hepatic fat content and liver enzyme serum levels in the gen-
eral population identified to date [9–11], and is a risk factor for
HCC independently of its effect on the progression of liver fibrosis
[12–17].

In this review, we  present the current model explaining the
influence of genetic variations on determining human disease, the
evidence in support of an association of the PNPLA3 I148M variant
with HCC, and the hypothesized mechanism linking this genetic
variant with hepatic carcinogenesis.

2. Current genetic theories of disease susceptibility

Three models explaining the contribution of genetic variants
to human diseases have been proposed (Fig. 1). These models are
mostly based on the frequency of the genetic variant and the disease
that are simplistically defined as common or rare.

2.1. A rare genetic variant for a rare disease
Rare deleterious alleles that cause a major modification in the
expression/activity of the encoded protein result in monogenic
forms of disease. This is exemplified by mutations in lipoprotein

 Ltd. All rights reserved.
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Table 1
Studies reporting an association between the PNPLA3 I148M variant and HCC.

Author Design Setting Aetiology Subjects evaluated Genetic model HCC risk OR (95% CI)

Valenti et al. [17] Retrospective CHC patients CHC 50 HCC, 275 CHC Recessive 2.2 (1.3–3.6)
Ginanni  Corradini et al. [33] Retrospective Cirrhotic patients CHC 90 HCC, 131 UC Recessive 2.2 (1.4–3.5)
Nischalke et al. [13] Case–control Cirrhotic patients CHC 80 HC, 80 UC Recessive 1.7 (0.5–5.3)

ALD  81 HCC, 81 UC Recessive 2.8 (1.2–6.4)
Falleti  et al. [14] Retrospective Cirrhotic patients Mixed 141 HCC, 342 UC Recessive 1.8 (1.1–2.9)
Trepo  et al. [12] Retrospective Cirrhotic patients ALD 145 HCC, 426 UC Recessive 4.7 (2.6–8.4)
Burza  et al. [15] Prospective Swedish Obese Subjects study Severe obesity 4047 obese Recessive 16.0 (2.3–111)
Guyot et al. [34] Prospective Cirrhotic patients CHC 93 HCC, 160 UC Recessive 1.0 (0.6–1.9)

ALD  66 HCC, 213 UC Recessive 1.9 (1.3–2.8)
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bbreviations: PNPLA3, patatin like phoshoplipase domain-containing; HCC, hepa
ncomplicated cirrhosis; and ALD, alcoholic liver disease.

ipase that are responsible for rare cases of primary hypertriglyc-
ridemia [18,19].

.2. A rare genetic variant for a common disease

Circulating levels of triglycerides are also strongly influenced
y many environmental factors (diabetes mellitus, obesity and
lcohol), and therefore they may  be considered an example of a
ommon (i.e., multifactorial) trait. At a general population level,
irculating triglycerides are influenced by rare (minor allele fre-
uency (MAF) < 0.01) mutations in the angiopoietin-like protein
amily members (3–5), providing an example of a rare genetic vari-
nt influencing a common trait.

.3. A common genetic variant for a common disease

The Human Genome Project [20], which started at 1990, built
 catalogue of all common genetic variants (MAF > 0.05) during
3 years. Based on the hypothesis that common genetic variants
ould explain the susceptibility to common disease [21] in 2005

he genome wide association study era started [22].
In terms of liver disease, two studies that examined two dif-
erent but closely related traits (hepatic triglyceride content and
minotransferase levels) simultaneously pointed to the influence
f the rs738409 genetic variation in PNPLA3 on these common traits
9,10]. PNPLA3 rs738409 is a common genetic variant (MAF ranges

ig. 1. Genetic models explaining the contribution of genetic variants to human
iseases. Three different models explaining the contribution of genetic variants to
uman disease have been proposed (solid arrows) in the past: rare genetic variants
etermine rare diseases/traits (red arrow); rare variants determine a proportion of
he common diseases/traits (yellow arrow); common genetic variants determine
ommon diseases/traits (blue arrow). The susceptibility conferred by the PNPLA3
148M variant to hepatocellular carcinoma is the first example of common genetic
ariants determining a rare disease/trait (dashed green arrow).
lar carcinoma; OR, odds ratio; CI, confidence interval; CHC, chronic hepatitis; UC,

0.18–0.30 in individuals of European descent) [23,24] consisting
of a guanine to cytosine substitution that results in an isoleucine
to methionine substitution at position 148 of the PNPLA3 protein.
The deleterious mutated allele in the homozygous state (148M) is
present in 5–8% individuals of European descent. The PNPLA3 148M
allele associates with the entire spectrum of liver disease, from sim-
ple hepatic fat content variation to increases in aminotransferase
levels [9,10] and advanced liver fibrosis/cirrhosis [17,25–31], as
well as to metabolic traits such as insulin resistance and suscep-
tibility to diabetes mellitus [23].

3. A new paradigm in human genetics: “A common genetic
variant for a rare disease”

We  have recently shown that individuals who are homozygous
for PNPLA3 148M and have long-standing advanced liver disease
and cirrhosis have a 2–16-fold increase risk of developing HCC
[12–17]. In Northern Europe, the average incidence of HCC is lower
than 3 cases per 100,000 inhabitants [2], and from this perspec-
tive HCC can be considered a rare disease at a general population
level. The association between the PNPLA3 I148M genetic vari-
ant and HCC thus represents a new paradigm within the models
explaining the contribution of genes to human diseases, namely a
common genetic variant explaining a rare disease (dashed arrow in
Fig. 1). This model is also supported by the recent observation of a
common genetic variant (rs2305089) substantially increasing the
susceptibility of chordoma, a rare primary bone cancer [32].

3.1. Association between PNPLA3 I148M and HCC: the clinical
evidence

The clinical studies supporting an association between the
PNPLA3 I148M genotype and HCC are shown in Table 1. We  reported
for the first time a predisposing effect of the 148M PNPLA3 variant
on HCC in a retrospectively evaluated cohort of 325 Northern Italian
patients with chronic hepatitis C, showing that homozygosity for
the 148M allele was associated with a 2.2-fold higher risk of HCC at
the end of follow-up, independently of other risk factors [17]. These
results were confirmed in a retrospective series of Italian patients
with chronic hepatitis C-related cirrhosis [33] and also in patients
with cirrhosis of mixed etiologies [14].

In a case–control study where the genetic background of
patients with HCC was  compared with that of patients with uncom-
plicated cirrhosis matched for age and sex, 148M homozygosity
conferred a 2.8-fold higher risk of HCC in patients with alcoholic
liver disease (ALD) [13]. In contrast, the association was  not sig-
nificant in a similar number of subjects with cirrhosis and chronic

hepatitis C, although the wide confidence interval was consistent
with previous results [17,33]. An even stronger predisposing effect
of PNPLA3 genotype on HCC risk in ALD (4.7-fold higher risk for
148M homozygosity) was reported in a retrospectively evaluated
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Fig. 2. The natural history of liver disease. Several different environmental stressors contribute to an overload of lipids in the liver. In carriers of the PNPLA3 148I wildtype
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llele, this results in a mild and uncomplicated accumulation of fat in the liver. Con
rogresses to inflammation and usually ends in cirrhosis. In individuals who  are h
requently either because of a more accelerated course of the disease or through a d

ohort of individuals with cirrhosis [12]; this finding was  recently
onfirmed in a prospective study [34].

We  also examined the association between the I148M polymor-
hism and HCC incidence in a prospective study of obese subjects

ncluded in the Swedish Obese Subjects study (SOS) cohort, consist-
ng of matched individuals who underwent either bariatric surgery
r conventional treatment, and have been followed up for a median
f 15 years [35]. A higher incidence of HCC was observed in obese
ubjects in whom weight loss was not observed, and 148M homozy-
osity was associated with a 16-fold higher risk of HCC [15]. This
ery high relative risk may  be explained by the inclusion of an unse-
ected population of severely obese patients, as PNPLA3 genotype
ot only is a likely risk factor for HCC in patients with cirrhosis, but
lso predisposes to earlier stages of liver disease [9,17,25–27].

In principle, the PNPLA3 genotype could perform as a reliable
oninvasive biomarker of HCC risk at early stages of liver damage
nd in the general population, which is generally at very low risk of
CC. In contrast, the specificity in detecting the disease risk is likely

o be reduced in patients with chronic viral hepatitis and cirrhosis
ecause of the many coexistent carcinogenic factors, particularly
irrhosis itself. A recently reported association between the PNPLA3
148M variant and HCC related to nonalcoholic fatty liver and obe-
ity in Japanese patients also lends support to the hypothesis of
n interaction between increased fat body mass and PNPLA3 in the
athogenesis of HCC [36], as demonstrated for hepatic fat accu-

ulation [37]. Thus, despite current limitations of the studies, we

onclude that PNPLA3 I148M variant is a risk factor for HCC, in
articular in subjects without chronic liver disease related to HBV
nd HCV infections.
ly, in heterozygotes for the PNPLA3 148M mutant allele, an increase in hepatic fat
ygous for the PNPLA3 148M mutant allele, hepatocellular carcinoma occurs more
effect of PNPLA3.

4.  PNPLA3 role in health and hepatocellular carcinoma

4.1. PNPLA3 expression in humans and mice

PNPLA3 expression has been examined in detail in mouse mod-
els, where Pnpla3 mRNA is mostly expressed in adipose tissue [38].
By contrast, PNPLA3 is expressed mostly in the liver in humans
[39,40]. Pnpla3 mRNA levels in mice have been shown to decrease
after fasting and are promptly rescued by refeeding [41]. Con-
sistently, obese rats show higher Pnpla3 mRNA levels than their
congenic lean controls [42]. These findings have been confirmed
in humans by measuring the PNPLA3 mRNA expression in subcuta-
neous adipose tissue of obese and non-obese women after a very
low calorie diet and subsequent refeeding [40]. The nutritional reg-
ulation of PNPLA3 was further clarified when the gene was  found
to be under the control of the sterol regulatory element binding
protein 1c (SREBP-1c) [43], which responds in turn to insulin and
the liver X receptor (LXR).

4.2. PNPLA3 physiological role: lipase or acyltransferase activity?

Human PNPLA3 consists of an N-terminal patatin (calcium-
independent phospholipase A2, iPLA2) homology domain with
triglyceride lipase and acyl-CoA independent transacylase activ-
ities [44]. The lipase activity of PNPLA3 has also been shown in

independent studies by purification of the recombinant protein
from insect (Sf9) cells and by overexpression in human hepatoma
(HuH7) cells [43,45]. In contrast, a recent study found the puri-
fied recombinant PNPLA3 to have a predominant lysophosphatidic
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cid-acyltransferase activity [46]. A possible explanation of these
ndings is that the purified protein is able to catalyze both reac-
ions, depending on the concentration of substrates.

.3. PNPLA3 I148M variant: gain or loss of function?

The effect of the isoleucine to methionine substitution at
osition 148 on the function of PNPLA3 is still controversial. Exper-

ments on purified human PNPLA3 show that the variant promotes
 decrease in the protein activity, suggesting loss of function [47].
owever, a very recent study showed that this variant induces a
ain of function in the lysophosphatidic acid-acyltransferase activ-
ty, leading to increased hepatic triglyceride synthesis [46].

Genetically modified mouse models have not resolved the
onflicting results of in vitro studies on the enzymatic function of
he protein. Indeed, the adenoviral overexpression of the human
rotein in mice does not affect the liver fat content [45], suggest-

ng that the lipase activity is not present in vivo. Furthermore, two
npla3 knockout mouse models do not show any differences in
riglyceride lipase activity or in the extent of fat accumulation in
he liver or adipose tissue [48,49]. However, it is worth noting
hat human and mouse proteins differ at their C termini (mouse
npla3 is shorter than the human protein) and the mRNA expres-
ion pattern differs considerably between human and mice [40].
hese differences suggest that the human and mouse PNPLA3 might
lay different physiological roles.

We recently presented an in vitro model in which stable trans-
ection of the human PNPLA3 mutant protein determines a loss of
unction in the export of triglycerides from the liver [50]. Our data
uggest that wildtype PNPLA3 hydrolyzes triglycerides stored in
ipid droplets to release fatty acids, which are then available for
ew synthesis of triglycerides and their subsequent incorporation

nto very low-density lipoproteins (VLDL). These data are consis-
ent with a study performed in humans after administration of a
igh fructose diet for two  weeks in which the direct relationship
etween changes in de novo lipogenesis and serum triglycerides is
bolished in homozygotes for the 148M variant [51].

We propose that the I148M substitution interferes with this
unction, thus reducing intracellular lipid turnover and export
athways in hepatocytes [50]. These data are consistent with the
riglyceride lipase activity hypothesis, but a lysophosphatidic acid-
cyltransferase activity cannot be excluded.

Furthermore, several alternative models of PNPLA3 protein
ction have been proposed [46,50,52], and additional studies are
equired to clarify which of these is closest to human physiology.

.4. PNPLA3 I148M variant: direct hepatic carcinogenic activity?

The association of the PNPLA3 I148M variant with steatosis has
een confirmed in several studies [9,10,24,27,29,53–59], but the
ffect of the variant is not limited to a modulation of hepatic fat con-
ent (Fig. 2). Indeed, it became evident early on that the 148M allele
redisposes to the development of non-alcoholic steatohepatitis
nd liver fibrosis independently of the presence of other cofactors
f liver damage, leading to advanced liver disease [29,56,60]. More-
ver, clinical studies have shown that the PNPLA3 I148M variant
nfluences HCC risk independently of the presence of cirrhosis
12–17], raising the question as to whether this genetic variant
etermines other key biological alterations involved in hepatic car-
inogenesis.

Interestingly, the predisposing effect of the PNPLA3 I148M vari-
nt on liver disease progression is also independent of the severity

f liver fat accumulation thus suggesting that it influences the
elease of molecules that directly regulate inflammation and fibro-
enesis [28,61,62]. Indeed, the PNPLA3 I148M variant has been
ssociated with increased circulating levels of the proinflammatory
 Disease 45 (2013) 619– 624

mediator intercellular adhesion molecule 1 (ICAM-1) [63], and
reduced levels of the adipokine adiponectin [64], which has anti-
inflammatory, anti-fibrotic, and oncosuppressive activities [65].
When the hepatic microenvironment is then altered by steatohep-
atitis, the liver could become cancer prone even in the absence
of frank cirrhosis [6,66]. Potential mechanisms behind the car-
cinogenic effect of the PNPLA3 I148M variant include low-grade
hepatic inflammation, with increased release of tumour necro-
sis factor � and interleukin-6 [67], altered release of adipokines
influencing insulin resistance and inflammation [68], increased
lipogenesis and cellular availability of fatty acids supporting energy
for rapidly growing cells [69,70], lipotoxicity influencing intracel-
lular signalling pathways [71], and oxidative stress related to lipid
peroxidation and mitochondrial damage [72].

5. Conclusion

The PNPLA3 I148M variant has been associated with HCC clin-
ical presentation, and in particular with a more advanced disease
and a poorer prognosis [36,73]. Thus, although these results need
to be confirmed, it is conceivable that PNPLA3 regulates a spe-
cific pathway involved in HCC pathogenesis, and may  represent a
future noninvasive marker of a specific HCC subtype and a possible
therapeutic target.

In conclusion, we propose for the first time a genetic model of
a common genetic variant (i.e., PNPLA3 I148M) influencing the sus-
ceptibility to a rare disease (i.e., HCC). Further studies are warranted
to assess the potential of using PNPLA3 genotype as a marker to
increase clinical surveillance and whether modulation of PNPLA3
expression/activity could be used to modify susceptibility to hepa-
tocellular carcinoma.
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