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Host-directed therapy: tuberculosis vaccine development 
The age-old BCG is the only licensed vaccine for 
tuberculosis despite its extensive and universal use over 
eight decades. Tuberculosis vaccine development is a 
major challenge, with 15 diff erent candidate vaccines in 
phase 1 and 2 trials.1 

In The Lancet Respiratory Medicine, Birahim Pierre Ndiaye 
and colleagues2 assess the safety, immunogenicity, and 
effi  cacy of a candidate tuberculosis vaccine, modifi ed 
vaccinia virus Ankara expressing antigen 85A (MVA85A), 
in adults infected with HIV-1. The authors reported only 
a low incidence of side eff ects (one case of tuberculous 
meningitis possibly related to vaccination). Although 
interferon γ producing CD4-positive T cells specifi c for 
Ag85A peaked after 7 days of vaccination, the authors 
did not observe a signifi cant decrease in Mycobacterium 
tuberculosis infection among vaccinees.

Vaccine effi  cacy is multifactorial, and includes 
the immunological history of previous exposure to 
M tuberculosis; the nutritional status, due to its eff ect 
on T-cell metabolism and functionality;3 age;3 multiple 
co-infections, in particular HIV that aff ects cellular and 
humoral immune responses;4 comorbidity with non-
communicable diseases; and the type of vector used for 
vaccination. The nature of the immunising antigen itself 
plays an important role, because Ag85A is expressed by 
mycobacteria other than tuberculosis, to which exposure 
is generally common. 

Whether a single antigen is able to generate an immune 
response eff ective enough to curb M tuberculosis is 
questionable. Is Ag85A a clinically relevant target antigen 
to contain or kill off  M tuberculosis? M tuberculosis bacteria 
contain about 4500 possible target proteins. Ag85A 
and Ag85B belong to the (secreted) mycolyltransferase 
family of enzymes. Ag85B has been implicated as a decoy 
antigen that deviates anti-M tuberculosis directed immune 
responses. Several studies showed that targeting single 
tumour-associated antigens can be clinically relevant 
because they can refocus the cellular immune response 
and facilitate immune responses directed against 
(unknown) target antigens: the initial driving T-cell 
response (specifi c for the immunising antigen) leads to an 
immunological attack, subsequently resulting in the release 
of immunogenic material that enables the generation of 
novel T-cell epitopes. This mechanism, termed determinant 
spreading, provides the framework of a clinically relevant 

complex immune recognition, initiated by a single T-cell 
epitope in patients responding to cancer vaccines.5 

Perhaps we can learn more from the MVA-initiated 
target responses from other clinical research areas. A 
phase 1 trial involving MVA encoding the Epstein-Barr 
virus antigens EBNA-1 and LMP2 showed that pre-
existing anti-MVA immune reactivity did not aff ect the 
effi  cacy of MVA–Epstein-Barr virus-induced immune 
responses.6 Similarly, expansion of (pre-existing) 
CD8-positive T cells against MUC-1, a protein expressed 
on tumour cells, led to better outcomes in patients with 
non-small-cell lung cancer.7 Antitumour cellular and 
humoral immune responses concomitant with patient 
survival have also been noted for TroVax, an MVA-
vectored vaccine that targets the oncofetal antigen 5T48.8

There are commonalities and diff erences in these 
approaches. First, immune responses against tumour-
associated antigens are low since the vaccination eff orts 
target non-mutated, subdominant antigens. This low 
response is not an issue for Ag85A, which shows a 
strong pre-existing immune reactivity.

Second, CD8-positive T-cell responses seem to be 
elicited after MVA-guided vaccination in patients with 
cancer.6,7 However, in Ndiaye and colleagues’ study2 only 
CD4-positive T-cell-derived interferon γ responses could 
be detected, at least as defi ned by intracellular cytokine 
staining and enzyme-linked immunospot analysis. 
The frequency of CD4 T cells producing interleukin 17, 
interleukin 2, and tumour necrosis factor α was low; the 
dominant T-cell responses were in eff ect monofunctional. 
There might be at least one T-cell parameter missing, 
namely cytotoxic T cells producing the cytolytic molecules 
granzyme and perforin. This omission could be particularly 
relevant in individuals with HIV, since studies showed that 
cytotoxic T-lymphocyte responses in patients with HIV co-
infection can be mutually exclusive (ie, they either produce 
interferon γ or cytotoxic molecules).9,10 Although the 
clinical relevance of cytotoxic T lymphocytes in tuberculosis 
is debated, their clinical signifi cance is underlined by 
the observation that depletion of CD8-positive T-cell 
responses aff ects the onset of active tuberculosis.9,11

Third, a similarly debated topic is the induction 
of humoral immune responses by vaccination. 
Although a cellular immune response is desirable, anti-
tuberculosis antibody responses could help to augment 
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cellular immune responses while enhancing antigen 
cross-presentation.10 This eff ect has been shown for 
(intracellular) cancer antigens, where intravenous 
administration of a monoclonal antibody targeting the 
nuclear antigen NY-ESO-1 displayed clinical benefi t.12 
Ndiaye and colleagues2 did not identify substantial 
humoral immune responses after MVA85A vaccination, 
with only three of 320 vaccinees (about 1%) showing 
raised concentrations of anti-Ag85A serum antibodies. 
At this point, it is unclear whether this weak humoral 
response is related to the nature of the vector, the 
antigen, or a more general impairment of B-cell 
responses in HIV-positive individuals.4

Fourth, the immune cell repertoire available for T-cell 
responses is crucial. Vaccines can only expand specifi c 
T-cell populations present at the time of vaccination. 
This eff ect could be limited by the reduced T-cell receptor 
repertoire in people infected with HIV,13 which might 
be paralleled in patients with cancer-induced and 
chemotherapy-induced lymphopenia. The availability 
of fewer T cells translates to less competition for anti-
apoptotic cytokines (ie, interleukin 7 and interleukin 15), 
enabling antigen-specifi c T cells to expand and acquire 
immune eff ector functions.14

Ndiaye and colleagues2 show that MVA85A vaccination 
in patients with HIV is safe, and induces a predominantly 
monofunctional CD4-positive T-cell response that peaks 
about 7 days after vaccination. However, they state that 
the study was underpowered to assess effi  cacy, and 
the fl avour (ie, the the functional profi le) of MVA85A 
vaccination-induced cellular immune response is one 
of the lessons learned. A pivotal exercise in the art of 
developing vaccines against complex pathogens for 
individuals with a complex immunological background 
(ie, multiple M tuberculosis exposures, co-infections, 
non-communicable disease comorbidity) is to develop 
robust and clinically relevant platforms that capture 
these multifaceted factors. Ndiaye and colleagues2 have 
achieved this, and this work will undeniably aid the 
design of future tuberculosis vaccine trials. Furthermore, 
manipulation of the host immune response at the time 
of vaccination (eg, by removal of regulatory T cells) is 
worthwhile in view of its success in vaccine trials against 
self antigens.15 This approach is just one facet of how 
simple modifi cations can gear vaccine-induced immune 
responses. Therefore, the study by Ndiaye and colleagues2 
provides a valuable starting point to strategically tailor 

the immune response, with the caveat that we are 
still left to our own devices until we can formulate the 
ideal profi le of a clinically relevant and protective anti-
tuberculosis specifi c immune response.
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