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a b s t r a c t

We study 0–1 reformulations of the multicommodity capacitated network design problem,
which is usually modeled with general integer variables to represent design decisions on
the number of facilities to install on each arc of the network. The reformulations are based
on the multiple choice model, a generic approach to represent piecewise linear costs using
0–1 variables. This model is improved by the addition of extended linking inequalities,
derived from variable disaggregation techniques. We show that these extended linking
inequalities for the 0–1 model are equivalent to the residual capacity inequalities, a class
of valid inequalities derived for the model with general integer variables. In this paper, we
compare two cutting-plane algorithms to compute the same lower bound on the optimal
value of the problem: one based on the generation of residual capacity inequalities within
the model with general integer variables, and the other based on the addition of extended
linking inequalities to the 0–1 reformulation. To further improve the computational results
of the latter approach, we develop a column-and-row generation approach; the resulting
algorithm is shown to be competitive with the approach relying on residual capacity
inequalities.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The multicommodity capacitated network design problem (MCND) we consider is defined on a directed network G = (N, A),
where N is the set of nodes and A is the set of arcs. We must satisfy the communication demands between several origin-
destination pairs, represented by the set of commodities K. For each commodity k, we denote by dk the positive demand that
must flow between the origin O(k) and the destination D(k). While flowing along an arc (i, j), a communication consumes
some of the arc capacity; the capacity is obtained by installing on some of the arcs any number of facilities of a single type.
Installing one facility on arc (i, j) provides a positive capacity uij at a (nonnegative) cost fij. A nonnegative routing cost ckij also
has to be paid for each unit of commodity k moving through arc (i, j) ∈ A. The problem consists of minimizing the sum of
all costs, while satisfying demand requirements and capacity constraints. Several applications in transportation, logistics,
telecommunications, and production planning can be represented as variants of this classical network design problem [7,
22,34,47,48].

Defining nonnegative flow variables xkij, which represent the fraction of the flow of commodity k on arc (i, j) ∈ A (i.e., dkxkij is
the flow of commodity k on arc (i, j)) and general integer design variables yij, which define the number of facilities to install on
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arc (i, j), the problem can then be formulated as the following mixed-integer programming (MIP) model, which we denote
I,

min
∑
k∈K

∑
(i,j)∈A

dkckijx
k
ij +

∑
(i,j)∈A

fijyij (1)

∑
j∈N+i

xkij −
∑
j∈N−i

xkji = δ
k
i i ∈ N, k ∈ K (2)

∑
k∈K

dkxkij ≤ uijyij (i, j) ∈ A (3)

0 ≤ xkij ≤ 1 (i, j) ∈ A, k ∈ K (4)

yij ≥ 0 (i, j) ∈ A (5)

yij integer, (i, j) ∈ A (6)

where N+i = {j ∈ N|(i, j) ∈ A}, N−i = {j ∈ N|(j, i) ∈ A}, and δki = 1 if i = O(k), δki = −1 if i = D(k), and δki = 0 otherwise.
Although MCND may appear to be a crude approximation of the complex network design problems that arise in practice,

it is a flexible modeling tool that can be adapted to a large number of application areas. In particular, various extensions have
been studied, most notably in transportation [11,29,38,43] and telecommunications [12,16,18]. One of these extensions is
the unsplittable (or nonbifurcated) variant of the problem, where the flow of each commodity is required to follow one route
between the origin and the destination. These constraints require the flow variables to be binary, substantially increasing
the difficulty of the problem. Another extension is the capacity expansion variant of the problem, where some of the arcs
already have an existing capacity. In this case, the network has to be expanded, rather than designed from scratch.

An important special case of MCND is the network loading problem (NL), where a limited number (generally, one or two) of
facility types, each with given unit cost and capacity, are available on all arcs. Several algorithms have been proposed to solve
NL, in particular heuristic approaches to solve large-scale instances (with more than two facility types) [1,14,35] and branch-
and-cut (B&C) methods based on polyhedral analysis [2,9,15,17,19,39,44–46,49]. These B&C algorithms all make use of the
so-called cutset inequalities, which state that there should be enough capacity installed to satisfy the demands that must be
routed across any cutset. Extensions of these inequalities have also been studied, in particular the metric inequalities, which
specify necessary and sufficient conditions for the feasibility of any multicommodity capacitated network flow problem [21,
32,33]. The latter are especially interesting, as when there are no routing costs, they can be used to project out the flow
variables, thus simplifying the model.

Another interesting variant of MCND occurs when we restrict the design variables to 0–1 values, thus obtaining the fixed-
charge MCND (FMCND). Research on this problem has focused on heuristic methods [24,25,36,37], bounding procedures and
exact approaches [20,23,34,40,42,53]. Some conclusions from these studies are useful as well for the MCND. In particular,
it is noteworthy that the linear programming (LP) relaxation of FCMND provides an extremely weak approximation of the
MIP model. However, by appending the following simple forcing constraints:

xkij ≤ yij, (i, j) ∈ A, k ∈ K, (7)

called strong linking inequalities, we obtain a significantly improved LP lower bound. Also, bounding methods based on the
Lagrangian relaxation of constraints (2) have been shown to perform well in practice. It is interesting to note that the convex
hull of solutions to the resulting Lagrangian subproblem is obtained by adding the strong linking inequalities (7).

These inequalities are obviously valid for the MCND, but they are weak in this case, as they are not forcing constraints.
The residual capacity inequalities, introduced by Magnanti, Mirchandani and Vachani [45] and later studied by Atamtürk and
Rajan [4] and Atamtürk and Günlük [3], generalize the strong linking inequalities, in the sense that they describe the convex
hull of solutions to the subproblem obtained from the Lagrangian relaxation of (2). An alternative to compute the same
bound as the Lagrangian dual resulting from this relaxation is to append the residual capacity inequalities to the model,
obtaining formulation I+, and solve the LP relaxation of I+. One difficulty with this approach is the exponential number of
residual capacity inequalities. Hence, researchers have used residual capacity inequalities within iterative cutting-plane
methods [4,46]. The success of such approaches depends on the ability to solve the separation problem: given a solution to
the current LP relaxation, is it possible to find efficiently violated residual capacity inequalities? Atamtürk and Rajan [4]
provide a positive answer to this question. We recall this result in Section 2, which reviews the state-of-the-art on the
residual capacity inequalities.

An alternative to I, the model with general integer design variables, is to view MCND as a nonlinear nonconvex
minimization problem. In particular, the design costs can be modeled using piecewise linear staircase functions, one
for each arc, the number of facilities installed on the arc corresponding to a “step”, or segment, of this function. One
can attempt to solve directly the resulting nonlinear model [52], or first reformulate it as a 0–1 MIP model [51],
using any of the classical techniques to model piecewise linear functions with 0–1 variables [26,41]. One of these 0–1
reformulations, the multiple choice model, hereafter denoted B, has been studied in the context of multicommodity
network flow problems [6,27,28]. These studies show that, by defining additional flow variables, one can append to the
LP relaxation a class of forcing constraints called the extended linking inequalities to obtain high-quality lower bounds, at the
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expense of solving significantly larger models. Croxton, Gendron and Magnanti [28] also show that these extended linking
inequalities describe the convex hull of solutions to the Lagrangian subproblem obtained after relaxing the flow conservation
equations.

In this paper, we prove the equivalence between the residual capacity inequalities for model I and the extended linking
inequalities for model B, in the sense that the LP relaxations of I+ and B+ (B with the extended linking inequalities added)
provide the same bound. Since B+ has a large number of variables and constraints, we develop a column-and-row generation
procedure to solve its LP relaxation. We show that the resulting approach compares favorably, from a computational point
of view, with the cutting-plane method based on the separation of residual capacity inequalities for solving the LP relaxation
of I+ [2]. Thus, a proper 0–1 reformulation of MCND might allow to improve the performances of exact and approximate
approaches for the problem.

The structure of the paper is as follows. In Section 2, we review the state-of-the-art on the residual capacity inequalities.
In Section 3, we present the 0–1 multiple choice reformulation of the problem and show its relationships with model I,
in particular the equivalence between the extended linking inequalities and the residual capacity inequalities. Then, in
Section 4, we describe the column-and-row generation procedure that we developed to efficiently optimize over the large-
scale 0–1 reformulation. In Section 5, we present the computational results we have performed to compare this method
with the cutting-plane approach based on separating residual capacity inequalities [2]. Finally, in Section 6, we draw some
conclusions and identify avenues for future research.

Throughout the paper, we use the following notation. For any model M, we denote as v(M), F(M), conv(F(M)) and LP(M),
its optimal value, its feasible set, the convex hull of F(M), and its LP relaxation, respectively. In our analysis, we often consider
the Lagrangian relaxation of the flow conservation equations for different models. For any model M, the resulting Lagrangian
subproblem and Lagrangian dual are denoted as LS(M) and LD(M), respectively. Finally, we say that two models are equivalent
if their optimal values are the same, for any values of the costs.

2. Residual capacity inequalities

The residual capacity inequalities apply to any single arc (i, j) and any subset of the commodities P ⊆ K. By introducing
the following notation: dP

=
∑

k∈P d
k, aPij =

dP

uij
, qPij =

⌈
aPij
⌉

, rPij = aPij −
⌊
aPij
⌋

, the residual capacity inequalities can be written
concisely as∑

k∈P

akij(1− xkij) ≥ rPij(q
P
ij − yij), (i, j) ∈ A, P ⊆ K. (8)

Atamtürk and Rajan [4] show that the separation problem for these inequalities can be solved efficiently. If we denote by
(x̄, ȳ) a fractional solution (i.e., ȳij is fractional for at least one arc (i, j)) to LP(I), we first define, for each arc (i, j), the set
Pij = {k ∈ K|x̄kij > ȳij −

⌊
ȳij
⌋
}. Then, given (i, j) ∈ A, if the two following conditions are satisfied:⌊

ȳij
⌋

< a
Pij
ij <

⌈
ȳij
⌉
,∑

k∈Pij

akij(1− x̄kij −
⌈
ȳij
⌉
+ ȳij)+

⌊
ȳij
⌋
(
⌈
ȳij
⌉
− ȳij) < 0,

the residual capacity inequality corresponding to P = Pij is violated by (x̄, ȳ). Otherwise, there is no violated residual capacity
inequality associated to arc (i, j).

The above developments can be summarized in the following proposition [4, Theorem 1]:

Proposition 1. The separation problem for the residual capacity inequalities can be solved in O(|A||K|).

Another important result concerning arc residual inequalities has been proven by Magnanti, Mirchandani and
Vachani [45]: inequalities (8) characterize the convex hull of solutions to LS(I), the Lagrangian subproblem obtained after
relaxing the flow conservation equation (2). Thus, appending all these inequalities to formulation I, which gives model I+,
and performing the Lagrangian relaxation of (2) yields a subproblem LS(I+) having the integrality property. These results
are summarized as follows:

Proposition 2. F(LP(LS(I+))) = conv(F(LS(I))).

By classical results from Lagrangian duality theory (see for instance [31]), LD(I), which is thus equivalent to LD(I+),
provides the same bound as the LP relaxation of I+:

Proposition 3. LP(I+) and LD(I) are equivalent.

We use this result to show the equivalence between the residual capacity inequalities and the extended linking
inequalities for model B, presented in the next section.
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3. Multiple choice 0–1 reformulation

Since we assume that fij ≥ 0 for each (i, j) ∈ A, we have

yij ≤ Tij =


∑
k∈K

dk

uij

 .

If we denote by Sij = {1, . . . , Tij} the set of possible nonzero values of yij, MCND can be reformulated by introducing 2
∑

(i,j)∈A Tij
auxiliary variables, two for each s ∈ Sij and (i, j) ∈ A, with the following intended meaning:

ysij =
{

1 if yij = s,
0 otherwise, zsij =


∑
k∈K

dkxkij, if yij = s

0 otherwise.

We can then rewrite the problem by appending to (1)–(6) the following additional constraints, obtaining model B:

yij =
∑
s∈Sij

sysij (i, j) ∈ A (9)

∑
k∈K

dkxkij =
∑
s∈Sij

zsij (i, j) ∈ A (10)

(s− 1)uijy
s
ij ≤ zsij ≤ suijy

s
ij (i, j) ∈ A, s ∈ Sij (11)∑

s∈Sij

ysij ≤ 1 (i, j) ∈ A (12)

ysij ≥ 0 (i, j) ∈ A, s ∈ Sij (13)

ysij integer (i, j) ∈ A, s ∈ Sij. (14)

Note that we can now remove constraints (5) and (6), but also constraints (3), which are implied by (9) and (11).
Consequently, we can project out variables yij and obtain a formulation expressed only in terms of the auxiliary binary
variables ysij, in addition to the flow variables. This formulation corresponds to the so-called multiple choice model [26],
which can also be derived by interpreting the problem as a multicommodity flow formulation with piecewise linear design
costs, each segment of the corresponding cost function on any given arc representing the number of facilities to install on this
arc [28]. Using this interpretation, one can also derive two other textbook formulations for piecewise linear cost functions,
the so-called incremental and convex combination models [26]. These three formulations are not only equivalent in terms
of MIP, but also their LP relaxations provide the same bound. As in [27,28], we study the multiple choice model, as it lends
itself nicely to the addition of simple valid inequalities derived from variable disaggregation techniques.

These techniques are based on the addition of the following extended auxiliary variables:

xksij =

{
xkij if yij = s,
0 otherwise, s ∈ Sij, k ∈ K, (i, j) ∈ A.

Thus, the original variables in the model can be expressed in terms of these new (and extremely many) variables, through
the following definitional equations:

xkij =
∑
s∈Sij

xksij (i, j) ∈ A, k ∈ K, (15)

zsij =
∑
k∈K

dkxksij (i, j) ∈ A, s ∈ Sij. (16)

It is easy to see that the LP relaxation of the model obtained from B by adding Eqs. (15) and (16) gives the same bound as
that provided by (the more compact) LP(B). However, the following extended linking inequalities:

xksij ≤ ysij (i, j) ∈ A, k ∈ K, s ∈ Sij (17)

are redundant in model B but not in its LP relaxation, LP(B). We denote as B+ the model obtained from B by adding (15)–(17).
Note that constraints (9)–(17) are redundant for model I, which implies that I and B+ are equivalent models.

We now prove, by establishing several intermediate results, that the LP relaxation of B+, LP(B+), provides the same bound
as LP(I+). The first result follows immediately from the equivalence between models LS(I) and LS(B+), which itself can be
established in a similar way as the equivalence between formulations I and B+, since constraints (9)–(17) are redundant for
LS(I). As both Lagrangian subproblems, LS(I) and LS(B+), are obtained by relaxing the same constraints, we thus have:

Proposition 4. LD(I) and LD(B+) are equivalent.
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We can now compare the LP relaxations of the two formulations with the Lagrangian relaxation of the flow conservation
equations, by using the following result, which can be derived from the proof of Theorem 5 in [28]:

Proposition 5. F(LP(LS(B+))) = conv(F(LS(B+))).

Proof. We first note that LS(B+) decomposes into |A| subproblems, one for each arc. Hence, we focus on any of these arc-
based subproblems and, for convenience, we drop the index (i, j) corresponding to the arc. Let x = (xks) and y = (ys) denote
vectors of extended auxiliary flow variables and auxiliary design variables, respectively. The associated polyhedron P for the
arc-based subproblem is therefore defined by the following constraints:

(s− 1)uys ≤
∑
k∈K

dkxks ≤ suys s ∈ S

0 ≤ xks ≤ ys s ∈ S, k ∈ K∑
s∈S

ys ≤ 1

ys ≥ 0 s ∈ S.

To obtain the desired result, we now show that for every extreme point of P, ys ∈ {0, 1} for all s ∈ S. If not, then let (x̂, ŷ) be an
extreme point of P with at least one fractional component. Assume that 0 < ŷr < 1, for r ∈ R 6= ∅. Define the following |R|+1
points in P: (x(0), y(0)) = (0, 0) and (x(r), y(r)), for r ∈ R, with xkr(r) = x̂kr/ŷr , xks(r) = 0, s 6= r, yr(r) = 1 and ys(r) = 0, s 6= r.
Then (x̂, ŷ) = (1−

∑
r∈R ŷ

r)(x(0), y(0))+
∑

r∈R ŷ
r(x(r), y(r)) is a representation of (x̂, ŷ) as a convex combination of |R|+1 ≥ 2

distinct points in P, contradicting the hypothesis that it is an extreme point of P. �

From standard Lagrangian duality theory, we then immediately obtain:

Proposition 6. LP(B+) and LD(B+) are equivalent.

We now only need to recall the result of Proposition 3 to obtain, as an immediate consequence of Propositions 4 and 6:

Theorem 7. LP(B+) and LP(I+) are equivalent.

Thus, the improvement in the LP relaxation bound provided by formulation B+ is equivalent to the addition of the residual
capacity inequalities to formulation I. This result implies that there are two different ways for achieving the same lower
bound:

1. Solve model LP(I+), with a polynomial number of variables (O(|A||K|)), but exponentially many constraints;
2. Solve model LP(B+), which has a pseudo-polynomial number of both variables and constraints.

While the first alternative can be computed by a standard cutting-plane (or row generation) procedure [4], the second
option requires to generate both rows and columns; this contrasts with standard column- or row-generation approaches,
which customarily assume the other dimension of the problem to be fixed. However, in our case the same pricing problem
can be used to generate both columns and rows, with the procedure illustrated in the next section.

4. Column-and-row generation method

In the following, we consider a slightly simplified (but equivalent) form of model B+, using only the ysij and xksij variables,
obtained by projecting out the original variables xkij and yij, as well as zsij, from the formulation using constraints (9), (15) and
(16); this boils down to

min
∑
k∈K

∑
(i,j)∈A

dkckij
∑
s∈Sij

xksij +
∑

(i,j)∈A

fij
∑
s∈Sij

sysij (18)

∑
j∈N+i

∑
s∈Sij

xksij −
∑
j∈N−i

∑
s∈Sji

xksji = δ
k
i i ∈ N, k ∈ K (19)

(s− 1)uijy
s
ij ≤

∑
k∈K

dkxksij ≤ suijy
s
ij (i, j) ∈ A, s ∈ Sij (20)

0 ≤ xksij ≤ ysij (i, j) ∈ A, k ∈ K, s ∈ Sij (21)

with the additional constraints (12)–(14). Since this formulation has far too many variables and constraints to be solved at
once, we use a standard active set strategy: the vast majority of the variables being likely to assume value zero at optimality,
we select a (small) subset of them, allowed to be positive, and we fix all the other variables to zero. In particular, the forcing
constraints (21) ensure that all xksij corresponding to some ysij = 0 also assume value zero. We can thus consider a set B of
segments, i.e., pairs ((i, j), s) identifying a (small) subset of the y variables. We then define model B+B , obtained from B+ by
removing all variables ysij (and therefore all xksij ) corresponding to all segments not in B.
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Clearly, B+B is a restriction of B+. We assume that LP(B+B) is always feasible: this assumption can be easily satisfied,
provided we ensure that in the restricted network, there exists at least one path connecting the origin to the destination
for each commodity. Consequently, v(LP(B+B)) provides a finite upper bound on v(LP(B+)). We are interested in determining
whether this upper bound is exact, and if not, in revising B in such a way that it eventually becomes so.

Achieving these goals is surprisingly simple. Indeed, we need only to consider the Lagrangian subproblem LS(B+), which
can be solved efficiently, as we will see shortly, by the algorithm presented in Section 4.1. Assuming the restricted master
problem LP(B+B) has been solved, we denote by (x∗, y∗) its optimal primal solution and by λ∗ the optimal values of the
dual variables associated to constraints (19). Using λ∗ as the values of the Lagrangian multipliers, consider the Lagrangian
subproblem LS(B+), and let (x̄, ȳ) be an optimal solution to this subproblem. We then have the following result:

Theorem 8. Either (x∗, y∗) is optimal for LP(B+), or there must be at least one segment ((i, j), s) 6∈ B such that ȳsij > 0.

Proof. By Proposition 6, the Lagrangian subproblem LS(B+) provides a lower bound on the optimal value of LP(B+), i.e.,

v(LS(B+)) ≤ v(LP(B+)) ≤ v(LP(B+B)).

Clearly, if v(LS(B+)) = v(LP(B+B)), then (x∗, y∗) is optimal for LP(B+). Otherwise, we have v(LS(B+)) < v(LP(B+B)), and we wish
to prove there must be at least one segment ((i, j), s) 6∈ B such that ȳsij > 0. It is well-known that (x∗, y∗) is also an optimal
solution of its Lagrangian subproblem LS(B+B) using the optimal dual variables λ∗ as Lagrangian multipliers [31, Theorem 1.1].
The latter is a restriction of the “true” Lagrangian subproblem LS(B+) (using the same values for the Lagrangian multipliers).
Let us assume that there is no segment ((i, j), s) 6∈ B such that ȳsij > 0. This implies that (x̄, ȳ) is feasible for LS(B+B). Since (x̄, ȳ)

is the optimal solution of a relaxation of LS(B+B), (x̄, ȳ) is another optimal solution of LS(B+B). But, since v(LS(B+B)) = v(LP(B+B)),
this contradicts v(LS(B+)) < v(LP(B+B)). �

Thus, we can set up an iterative approach that alternates between solving a restricted master problem and a Lagrangian
subproblem, similar to the standard Dantzig-Wolfe approach [31]: at each step, LP(B+B) is solved, the optimal dual variables
λ∗ associated to the “complicating” constraints (19) are collected, the corresponding Lagrangian relaxation LS(B+) is formed,
and one optimal solution (x̄, ȳ) is found. Either all segments ((i, j), s) such that ȳsij > 0 are already in B, and therefore the
algorithm terminates, providing an optimal solution to LP(B+), or a new segment has been found that can be added to B. Note
that adding a segment ((i, j), s) amounts to adding the variable ysij, all the variables xksij and all the corresponding constraints
to the formulation. Thus, at each iteration, both variables and constraints are found that can be added to the restricted master
problem. Clearly, after a finite number of iterations the algorithm has to terminate with an optimal solution; in the worst
case, all segments will be collected, and B+B will simply be the whole B+.

We call the above a column-and-row generation method. It can be seen as a special case of the generic “B&C” paradigm,
which from the very beginning [50] has advocated the possibility to increasing both dimensions of the underlying
formulation. Indeed, generation of both columns and rows has been used with success, under the name “branch-and-cut-
and-price”, in several applications, often related to network optimization (see for instance [10]). The typical situation is that
generation of rows and columns are two independent processes, which require the solution of two independent subproblems,
one for pricing (generation of columns) and one for separation (generation of rows). This is also the case of some of the
very few other applications where the “column-and-row (or row-and-column) generation” paradigm has been proposed,
such as [56]. Our approach is more reminiscent (although independently conceived) of that in [5] for a time-constrained
routing problem, since in both cases one single subproblem can be used to generate rows and columns. At least qualitatively,
however, our application is different in that our model is constructed for the purpose of improving the LP bound of an existing
formulation. More similar in spirit (although, again, independently conceived) is the approach in [54,55] for the Gilmore-
Gomory formulation of the cutting stock problem. In that case, a pseudo-polynomial formulation is obtained in a “classical”
way by means of the shortest path reformulation of a knapsack problem, while in our case it emerges from an entirely
different pattern. In all the cases (such as the present one) where columns and rows can be generated “simultaneously”
with only one subproblem, the form of the valid inequalities is so simple that the separation problems for these, once the
columns are generated, is straightforward. Developing a formulation where this feature can be exhibited is clearly nontrivial,
as the present example shows, nor it is making it effective. In the next two subsections, we examine the implementation
issues related to the solution of the Lagrangian subproblem and the restricted master problem, respectively.

4.1. Solving the Lagrangian subproblem

As pointed out in Section 3, LS(I) and LS(B+) are equivalent. Therefore, instead of solving LS(B+), we consider the more
compact formulation LS(I), which is obtained from I by the Lagrangian relaxation of the flow conservation equations (2). The
corresponding Lagrangian subproblem decomposes into |A| subproblems, one for each arc, having the following form, once
we drop the indices corresponding to the arc [4,45]:

min
∑
k∈K

c̄kxk + f̄ y (22)

∑
k∈K

dkxk ≤ uy (23)
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0 ≤ xk ≤ 1 k ∈ K (24)
l ≤ y ≤ v (25)
y integer. (26)

In (22), c̄k and f̄ indicate Lagrangian costs, whose specific dependence on the original data and on the Lagrangian multipliers is
omitted for the sake of clarity and generality. Indeed, we purposely avoid to even assume f̄ ≥ 0, which is true when relaxing
constraints (2) (as in that case f̄ = f ). In this way, we also covet the case where other constraints (e.g. valid inequalities
involving the y variables) are relaxed as well, which might produce negative f̄ . We also assume general lower and upper
bounds l ≥ 0 and v ≤

⌈∑
k∈K dk/u

⌉
on y; this slight generalization could be useful when the bound is computed within a

branch-and-bound (B&B) algorithm where branching is performed on the y variables.
Two observations allow to solve this problem easily. First, for any fixed value of y, the problem reduces to the LP relaxation

of a 0–1 knapsack problem, which can be solved in O(|K|) [8] (although in practice we might prefer solving it in O(|K| log |K|)
through a sorting algorithm). Second, if we relax the integrality constraint on y and allow the continuous variable y to vary,
the optimal value of the corresponding subproblem, Z(y), defines a convex function of y when f̄ > 0.

As a first step in the solution method, we can eliminate the variables xk such that c̄k ≥ 0. Then, if f̄ ≤ 0, it is clearly
optimal to set y = v and to solve the corresponding LP knapsack problem to obtain an optimal solution. Otherwise, if f̄ > 0,
we exploit the convexity of Z(y) to derive an optimal integral solution from an optimal solution to the problem obtained by
relaxing both the bounding constraints (25) and the integrality constraints (26). The optimal solution to this relaxation is
easily obtained by setting xk = 1 if−c̄k ≥ f dk/u, and xk = 0 otherwise. The optimal value for y is then given by

B =
1
u

∑
k∈K:−c̄k ≥ f dk/u

dk.

By convexity of Z(y), it follows that an integral optimal solution is either y1
= min{dBe , v} or y2

= max{bBc , l}. It then
suffices to solve the LP knapsack problem for each of these two values to obtain an optimal solution. Actually, the two LP
knapsack problems can be solved simultaneously to further improve the efficiency of the procedure. The above discussion
proves the following:

Proposition 9. The Lagrangian subproblem LS(I) can be solved in O(|A||K|).

This improves on the complexity, O(|A||K| log |K|), of the original algorithm suggested in [4, Proposition 1]. We should
point out, however, that this is a theoretical bound; our implementation rather solves the LP knapsack problem with a
sorting algorithm, and thus attains the complexity O(|A||K| log |K|), which is preferable in practice (at least for small values
of |K|) due to the large constants in the linear-time algorithm of [8].

4.2. Solving the restricted master problem

An initial restricted master problem is obtained by simply solving the LP relaxation of model I and generating the
variables associated to the segments corresponding to positive flow values on all arcs; this extremely simple initialization
step ensures that the restricted master problem is feasible, since the initial set of segments corresponds to a feasible
solution.

After solving the Lagrangian subproblem, a new set of candidate segments is identified; we could then add to the
restricted master problem all the extended linking inequalities corresponding to the newly added segments at once. Clearly,
this is not necessary, since for each newly added segment, only a subset of the associated extended linking inequalities need
to be generated. Hence, after adding the variables corresponding to the segments identified by the solution of the Lagrangian
subproblem, we solve the restricted master problem by a cutting-plane method, verifying violations of the extended linking
inequalities for all existing segments, including those generated at the previous iterations. This justifies the “column-and-
row” name we have given to our approach, since the generation of new elements in the restricted master problem, which
could conceivably be performed simultaneously, is actually subdivided into two separate phases: first columns are generated,
then valid inequalities are separated.

Feasibility of the restricted master problems, after the first one, can be easily ensured by avoiding to removing segments
entirely. Since this may lead to the restricted master problem containing a large set of segments (clearly an unwelcome
situation), a periodical cleanup of the restricted master problem where segments are eliminated can be a worthy addition
to the method. This is actually possible e.g. by employing a classical trick that has been replicated in many contexts (see for
instance [30, Section 5.3] for application to Bundle-type algorithms):

Proposition 10. The column-and-row generation method finitely terminates even if segments are deleted from B , provided
that the following simple rule is followed: each time v(LP(B+B))strictly decreases, all segments can be eliminated, except those
corresponding to nonzero entries in the current optimal solution of the restricted master problem.
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Table 1
Description of instances

Class |N| |K|

Small 20 40
Medium 30 100
Large 20 200
Huge 30 400

Table 2
Results for small instances

Problem IMP (%) I+ B+

|A| C CUTS GAP (%) CUTS GAP (%)

230 1 16.63 114 0.00 189 0.00
4 14.21 114 0.00 193 0.00
8 11.71 110 0.29 195 0.29

16 7.82 98 0.40 185 0.40

230 1 50.70 252 0.03 289 0.03
4 39.52 231 0.03 272 0.03
8 30.01 216 0.55 286 0.69

16 18.03 162 0.83 255 1.16

230 1 8.67 91 0.00 168 0.00
4 7.61 89 0.00 169 0.00
8 6.59 85 0.13 176 0.33

16 4.74 85 0.27 172 0.27

230 1 29.76 159 0.00 220 0.00
4 24.94 140 0.01 205 0.01
8 19.86 145 0.88 214 1.34

16 13.31 126 0.69 236 0.69

289 1 18.05 126 0.00 196 0.00
4 14.94 117 0.00 197 0.00
8 11.21 116 0.00 199 0.00

16 6.73 104 0.34 204 0.34

289 1 47.77 242 0.00 294 0.00
4 37.15 220 0.00 272 0.00
8 26.81 205 0.10 264 0.10

16 15.04 145 0.35 275 0.35

289 1 9.57 99 0.00 175 0.00
4 8.20 92 0.00 167 0.00
8 6.44 89 0.00 167 0.00

16 4.10 78 0.55 162 0.59

289 1 32.17 179 0.00 251 0.00
4 26.01 162 0.00 231 0.00
8 19.34 153 0.31 226 0.31

16 11.98 133 0.50 249 0.50

Proof. Let B ′ be the subset of B where all segments for which ysij = 0 in the optimal solution to LP(B+B) are discarded.
Clearly, the optimal solution to LP(B+B) is still feasible, hence optimal, to LP(B+B′). Thus, feasibility of the restricted master
problem is conserved throughout the execution of the algorithm. Furthermore, the sequence of objective function values of
the restricted master problems is strictly decreasing (at least if restricted to iterations where removal is performed); together
with finiteness of the set of possible B, this guarantees finite termination. �

To the best of our knowledge, this possibility has not been pointed out before in the context of column-and-row
generation methods.

Finally, we note that we could have avoided projecting out the original flow variables. Instead, we could have worked
with the variables xkij and xsij, and generate xksij by adding the definitional equations (15) and (16), only when the current
solution satisfies xsij > 0 and xkij > 0. For all variables generated in this way, it is then possible to verify violations of the
corresponding extended linking inequalities and add only the violated ones to the restricted master problem. In the next
section, we present computational experiments with a “straighforward” implementation of our approach, that does not
include the last two features (eliminating segments and working with the original flow variables). Since this implementation
is already competitive, when compared to a similar “straightforward” implementation (not including row cleanup schemes,
for instance) of the cutting-plane method to solve LP(I+), we did not implement these refinements, which could potentially
further improve the performances of the approach.
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Table 3
Results for medium instances

Problem IMP (%) I+ B+

|A| C CPU CUTS GAP (%) CPU CUTS GAP (%)

517 1 72.93 25 1189 0.14 15 1296 0.14
4 65.17 41 1146 0.14 18 1264 0.14
8 56.04 31 1047 0.14 22 1211 0.14

16 41.79 38 888 0.49 28 1084 0.49

517 1 185.43 5425 4630 7.32 4820 4565 6.60
4 139.13 4872 4260 7.78 4882 4131 6.81
8 102.97 4791 3539 7.16 5266 3523 7.09

16 63.88 4430 2308 5.71 5351 2549 5.86

517 1 53.48 8 817 0.06 6 941 0.06
4 48.92 8 758 0.06 6 885 0.06
8 43.16 8 712 0.06 5 862 0.06

16 33.79 6 626 0.35 7 821 0.35

517 1 152.75 4340 3533 4.75 4305 3566 3.73
4 122.42 4238 3368 4.64 4621 3391 3.55
8 94.83 4433 2985 4.22 4631 3012 4.61

16 63.40 4170 2079 3.78 4698 2300 3.59

669 1 78.90 44 1708 0.35 27 1810 0.00
4 69.72 36 1618 0.00 29 1700 0.00
8 59.46 38 1484 0.00 26 1566 0.00

16 43.44 30 1161 0.01 46 1367 0.01

669 1 124.12 4271 3275 0.60 799 3285 0.30
4 103.80 2245 3122 0.30 1350 3062 0.37
8 83.27 1204 2710 0.29 755 2739 0.36

16 56.99 939 2071 0.61 735 2263 0.63

669 1 58.96 23 1145 0.43 10 1251 0.01
4 53.51 14 1091 0.01 8 1133 0.01
8 46.85 16 986 0.01 12 1101 0.01

16 36.24 13 842 0.09 13 994 0.09

669 1 94.69 52 2082 0.00 39 2177 0.00
4 82.26 47 2002 0.00 67 2060 0.00
8 68.84 44 1779 0.00 64 1827 0.00

16 49.00 67 1395 0.10 119 1504 0.10

5. Computational results

In this section, we report our computational experiments aimed at comparing the two different approaches we have
studied to compute the same lower bound on the optimal value of MCND:

• apply a cutting-plane algorithm to solve LP(I+), that is, solve by row generation an LP model with exponentially many
constraints and “few” variables, the separation problem for the class of constraints being solvable in O(|A||K|);
• apply the column-and-row generation approach to formulation LP(B+), an LP with a pseudo-polynomial number of both

variables and constraints, the Lagrangian subproblem being solvable in O(|A||K|).

All experiments are performed on an AMD Opteron 250 operating at 2.4 GHz and equipped with 16 Gb RAM (the operating
system is Centos 4.2, Linux). The LP formulations are solved with CPLEX (version 10.0). To solve LP(I+), we have implemented
the separator described in Section 2, while to solve LP(B+), we use the restricted master problem formulations and the
Lagrangian subproblem solution procedure presented in Section 4. In both cases, the initial LP relaxation is LP(I), so that the
two methods have the same starting point.

In order to obtain feasible solutions to MCND, we use the final formulations obtained after solving LP(I+) and LP(B+),
hereafter denoted UB(I+) and UB(B+): for each of these two MIP models, the heuristic B&B algorithm of CPLEX is performed
at the root node, followed by the execution of the polishing option of CPLEX, for a limit of one hour, to further improve the
quality of the feasible solutions (see the reference manual of CPLEX 10.0 for more details on this option). It is interesting to
note that formulation UB(B+) might not contain the optimal solution to the problem, as some segments corresponding to
positive flow values in an optimal solution might have been “forgotten” when solving the LP relaxation. Clearly, this is not
the case for model UB(I+), which necessarily contains an optimal solution to MCND. Hence, if the two formulations were
solved to optimality, we would have v(UB(I+)) ≤ v(UB(B+)). However, because we are seeking heuristic solutions, we might
have v(UB(I+)) > v(UB(B+)) (in fact, this happens more often than not).

To compare the two bounding methods, we use the following performance measures: CPU, the CPU time required to
compute the lower bound; CUTS, the number of cuts generated for each method (residual capacity inequalities when solving
LP(I+), extended linking inequalities when solving LP(B+)); GAP, the gap (in %) between the upper bound, v(UB(I+)) or
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Table 4
Results for large instances

Problem IMP (%) I+ B+

|A| C CPU CUTS GAP (%) CPU CUTS GAP (%)

229 1 171.99 16 756 6497 18.90 4970 5456 6.59
4 119.97 18 286 6153 11.71 5254 4889 5.43
8 81.44 13 577 5176 7.97 6110 3886 5.04

16 46.35 6 428 3174 5.45 5110 2730 4.65

229 1 217.98 69 712 9552 25.31 5939 7312 10.37
4 130.29 61 596 8836 22.42 6495 6026 12.30
8 81.88 36 318 6780 16.77 6214 4427 9.68

16 43.25 6 976 3165 5.23 6734 2724 6.03

229 1 157.04 11 953 5633 14.06 4788 4815 4.63
4 115.20 13 682 5394 5.53 4998 4436 5.11
8 80.98 10 423 4599 5.67 5802 3758 5.03

16 47.33 6 001 3088 4.03 5711 2705 4.33

229 1 196.29 38 100 8047 25.83 5738 6476 8.84
4 127.29 39 952 7550 18.31 6187 5481 6.74
8 83.23 23 483 5950 15.20 6043 4207 6.84

16 45.99 7 631 3382 6.99 5847 2749 4.92

287 1 153.58 13 860 5874 13.53 5312 5178 5.59
4 116.90 15 095 5753 10.12 5859 4871 5.62
8 86.27 10 707 5057 7.11 5952 4204 6.29

16 54.50 6 535 3475 5.81 5792 3021 4.20

287 1 199.78 38 899 8720 23.36 6425 7180 9.31
4 133.87 33 748 8315 18.30 6844 6231 8.81
8 91.38 29 183 6639 17.54 7828 4993 7.92

16 50.67 8 172 3686 8.46 5747 3045 6.70

287 1 145.78 12 912 5439 9.65 5423 4908 5.62
4 113.30 11 471 5377 9.38 5396 4630 5.23
8 84.88 9 243 4844 9.21 5723 4118 5.18

16 54.51 6 816 3212 3.87 5808 2944 3.65

287 1 191.80 36 166 8400 22.27 6751 6859 8.22
4 131.80 35 676 7913 16.65 7015 6114 8.79
8 91.50 22 752 6391 11.44 7449 4845 7.30

16 51.96 8 988 3660 7.40 5402 3029 6.28

v(UB(B+)), and the lower bound v(LP+) = v(LP(I+)) = v(LP(B+)): 100 × (v(UB(M)) − v(LP+))/v(LP+), with M = I+, B+.
For each instance, we also measure the improvement, IMP, between the initial lower bound, v(LP(I)), and the final lower
bound: 100× (v(LP+)− v(LP(I)))/v(LP(I)).

In the absence of appropriate real data available, we perform our experiments on 120 problem instances obtained from
a network generator similar to the one described in [23] for the FCMND. When provided with target values for |N|, |A|,
and |K|, this generator creates arcs by connecting two randomly selected nodes (no parallel arcs are allowed). It selects
commodities by choosing uniformly at random one origin and one destination for each commodity. It also generates the
variable costs, capacities, and demands as uniformly distributed over user-provided intervals. The capacities can then be
scaled by adjusting the capacity ratio, C = |A|D/

∑
a∈A ua, to user-provided values (in this formula, D =

∑
k∈K dk is the total

demand flowing through the network). When C equals 1, the average arc capacity
∑

a∈A ua/|A| equals the total demand, and
the network is lightly capacitated; it becomes more tightly capacitated as C increases.

To simplify the analysis, we divide the problem instances into four classes of instances, with characteristics described in
Table 1. For each class, 8 “basic” instances were generated and tested with 4 different values of C, for a total of 32 instances
(except for the huge class, which, due to very large running times, was restricted to only 6×4 = 24 instances). All instances
in a class share the same number of nodes and commodities, while the number of arcs may vary. Tables 2–5 present the
computational results obtained with these four classes of instances. Note that for small instances we do not report the CPU
times, since they are always less than one second for both approaches.

From the tables, the following trends can be observed:

• Using the “improved” formulations I+ and B+ delivers dramatic improvements in the lower bound (column IMP), which
tend to become more and more significant as the size of the instances grow: the minimum and average improvements
are 4% and 19%, 34% and 77%, 43% and 109%, 63% and 97% for small, medium, large and huge instances, respectively.
However, the improvement clearly decreases as the instances become more and more capacitated (C grows). This does
not mean that more capacitated instances are necessarily more difficult to solve; more often than not, especially in the
large and huge sets, the final gap is smaller for tightly capacitated instances (C = 16) than for lightly capacitated ones
(C = 1).
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Table 5
Results for huge instances

Problem IMP (%) I+ B+

|A| C CPU CUTS GAP (%) CPU CUTS GAP (%)

519 1 104.71 42 183 9 104 16.29 24 293 8 174 7.96
4 95.94 39 145 8 882 14.26 24 489 8 023 8.24
8 84.99 39 880 8 660 12.58 28 748 7 773 7.67

16 67.33 37 077 8 361 11.96 30 645 7153 8.49

519 1 147.39 383 639 15 741 37.61 56 997 12 254 17.68
4 127.39 396 879 15 795 23.23 63 088 11 858 22.72
8 105.60 323 178 15 227 23.46 68 849 11 082 22.68

16 76.93 196 321 12 860 21.57 66 350 9 315 23.19

519 1 91.63 17 864 7 313 24.03 19 351 6 993 5.72
4 85.17 19 828 7 323 8.14 16 960 6 848 5.42
8 76.91 18 344 7 159 7.26 20 222 6 702 5.70

16 62.76 18 717 6 960 8.42 23 892 6 242 5.29

519 1 131.28 192 903 12 851 56.92 42 195 10 698 15.25
4 116.39 148 750 12 696 22.13 45 282 10 319 15.25
8 99.03 138 651 12 238 21.27 50 533 9 749 15.22

16 74.44 114 130 10 941 18.85 46 412 8 503 13.59

668 1 122.93 171 554 12 715 20.13 76 074 10 900 15.88
4 112.29 137 467 12 567 19.58 66 537 10 611 18.31
8 99.21 136 076 12 309 16.90 81 745 10 261 19.09

16 78.74 107 195 11 524 16.46 96 239 9 381 15.56

668 1 108.69 69 891 10 487 14.74 58 145 9 310 10.85
4 100.84 55 764 10 444 13.12 53 774 9 244 10.64
8 90.93 63 318 10 114 13.72 52 405 8 902 10.17

16 74.38 55 629 9 687 12.72 63 779 8 291 10.42

• The row-and-column generation approach to formulation B+ is competitive with the standard cutting-plane approach to
formulation I+. In particular, for the large and huge instances, it is almost always better (except for four cases), sometimes
by a factor of up to 6. It should be remarked that often, although not always, the column-and-row generation approach
tends to be slower on tightly capacitated instances (large C) than on lightly capacitated ones (small C), whereas very often
the inverse trend is true for the standard cutting-plane approach. Thus, the column-and-row generation approach looks
particularly promising when capacities are not extremely tight, although holding well also if they are.
• Somewhat contrary to what the theoretical arguments would suggest, formulation B+ is a better starting point for

constructing MIP-based heuristics for the MCND than I+: especially on large and huge instances, the final gap attained
by B+ is almost always better than the one attained by I+ (the only exception being an instance with C = 16, and by a
very small margin). Since the lower bound is identical in both cases, this only reflects the quality of the upper bound.
Heuristics based on model B+ are capable of finding solutions with a gap better by a factor of up to three compared with
those based on I+, and typically in less CPU time. In absolute value, the gaps are also interesting for such notoriously
difficult problems, considering that a general-purpose MIP heuristic is used: only two large and most of the (positively)
huge instances terminate with a gap larger than 10%. It should be noted, however, that the advantage of using formulation
B+ over model I+ reduces as C increases.

The above observations allow us to conclude that the improved formulations are a worthy starting point for constructing
exact and approximate approaches to MCND. The proposed column-and-row generation approach for solving formulation
B+ is especially interesting for not too-tightly capacitated instances (which, however, are the ones where the improved
formulations provide the largest impact on the lower bounds) and as the size of the instances grow.

6. Conclusions

We have shown that a nontrivial 0–1 reformulation of MCND provides the same LP bound obtained by adding
exponentially many residual capacity inequalities to the LP relaxation of the general integer formulation. This gives two
different ways for obtaining the same bound. Our computational experiments show that the “more balanced” master
problem of the column-and-row generation approach results in a more efficient approach, especially for large-scale, not
too-tightly capacitated instances with many commodities. Interestingly, the 0–1 reformulation of the problem also appears
to be a better starting point for constructing MIP-based heuristic approaches to MCND than the standard integer formulation,
even if the latter is augmented with residual capacity inequalities.

The obtained results open a number of interesting research lines that we intend to pursue in the future. First and foremost,
similar approaches have been applied independently to rather different applications [5,54–56], but to date there does not
seem to be a general abstract framework which nicely covers them all. We suspect that developing such a framework could
prove rewarding, especially if issues like stabilization of the column(-and- row) generation algorithm [13,30] are taken into
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account. As far as MCND (or other similar network design problems) is concerned, the presented approach is clearly only
a first step towards the development of a complete solution algorithm. While the column-and-row generation approach
looks competitive “in isolation”, it remains to be seen how the various elements of a B&C approach, such as heuristics,
other valid inequalities, and branching schemes, impact on the performances of the different methods for obtaining the
same “basic” lower bound. It is only by implementing and refining a complete solution algorithm that these issues will be
properly addressed.
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