
Theoretical Computer Science 22 (1983) 297-315

North-Holland Publishing Company
297

OPTIMAL OFF-LINE DETECTION OF REPETITIONS IN A
STRING*

A . APOSTOLICO** and

Coordinated Science Laboratory,

U.S. A.

Communicated by M. Nivat
Received June 1981
Revised March 1982

F.P. PREPARATA

University of Illinois at Urbana-Champaign, Urbana, IL 61&‘01,

Abstract. An algorithm is presented to detect-within optimal time O(rr log 11) and space 01~ j,
off-line on a RAM-all of the distinct repetitions in a given textstring on a finite alphabet. The
proposed strategy is self-contained, as it depends more heavily on algorithmic design considcr-
ations than on the combinatorial properties of the output It is based on a new data structure,
the leaf-tree, which is particularly suited to exploit simple properties of the suflix trr c associated
with the string to be analyzed.

1. Introduction

Strings of symbols containing no consecutive occurrences of the same pattern

have attracted the attention of researchers in diverse fields for a long time. Perhaps

their first appearance dates back to the work by Thue [Ii;], who is generally credited

with the discovery of arbitrarily long streams of symbols from a finite alphabet that

do not contain any ‘square’ substrings, i.e., subpatterns formed by the concatenation

of some substring with itself.

In recent years, the study of such ‘square-free’ strings has been found relevant

to automata and formal language theory, algebraic coding and more generally in

systems theory and combinatorics, and we shall make no attempt to refer to the

existing copious literature. Suffice it to mention that papers have been devoted to

the construction of arbitrarily long square-free (as well as other related repetition-

constrained) strings [3, 7, 81 over alphabets of fixed cardinality. In a related

endeavor, the complementary notions of periodicity and overlaps of strings have

been extensively investigated and still are an active research subject (see Duval [S]

for an extensive bibliography).

“ This work was partially supported by the National Science Foundation Grant MCS-78-13642, b>
the Joint Services Electronics Program Contract NO0014-79-C-0424, and by a Grant by G.N.I.M.
(Gruppo Nazionale di Informatica Matematicaj, Consiglio Naztonals delle Ricerche, Italy. Additional
support was provided by NATO Research Grant 039.82.

** On leave from the Istituto di Scienze dell’ Infarmazione, Irniversita di Salerno, Italy.

(131)4-397,5/83/0000-1)000/$03.0~ ,@ 1983 North-Holland

298 A. Apostolico, E P. Preparata

In the framework of pattern matching [11, some classic results on string periodicity
16, 121 have been used to develop clever techniques for the detection of assigned
patterns in textstrings in time linear in the string length [lo].

The problem of the efficient recognition of the occurrence of substring squares
in a string stems quite naturally from the preceding remarks, and it is certainly
relevant to a variety of practical applications as well [2]. 0(n2)-time algorithms
can be quickly developed on the basis of existing pattern matching techniques and
tools. Recently, an O(n log n) algorithm has been proposed to determine whether
a given textstring over a finite alphabet contains a repetition [131. During the
preparation of this paper, M. Crochemore [4] developed an O(n Wog n) algorithm
to determine ah rcpctitions in a textstring X. Crochemore’s ‘approach essentially
relies on the well-known minimization algorithm for finite state automata [l] and

exploits the theoretical bound of 1x 1 log Ix 1 repetitions in a string [1 l] as a terminating

condition (Ix: denotes the length of x).

In this paper, we present a more direct algorithmic criterion for the latter problem.

The proposed strategy basically relies on the properties of suffix trees [141 associated

with textstrings, but makes crucial use of a novel structure, called leaf-tree. The

resulting algorithm is still inherently off-line and takes O(rz log n) time and O(rz)

space in the worst case.

2. Preliminaries

I-et I be a finite alphabet and I’ the free semigroup generated by I. A strirz,~

XEI~ isfullyspecifiedbywritingx=n~ra~~.~a,,-~,whereni~~(i=O. l,...,rr---1)

and Ix-1 denotes the length of x. We assume here that .Y is stored as an art-a!.

.u[O : fz - 13, where x[i] = ai (i = 0, 1, . . . , 11 - 1). Given .Y = aon 1 * l - a,, -1, 1%’ is :.

substrirzg of x if there exist indices i, j (0 s i ~j s fz - 1) such that w = ccini+ 1 l l l a,.

A factor of x is a substring of x and its starting index in (0, 1, . . . , fz - 1) (that is,

a positioned substring). The notation x’[i : j] is usec’ to denote the factor of s : x [i]s [i +
l]..’ x[j]. A left (right) factor of s is a pr$x (szrfi_i) of s.

The set of all distinct nonempty substrings of x (words) is called the vocnhrhy
of x artd denoted by V,. Two factors s[i:j] and s[nz: n] are txpicaht if their

associated substrings are identical.

Let S be a special symbol not included in the alphabet I. A data structure suitable

for organizing the words in V, is the so called srlfi.~- tree [141 T, for s $. As is well
known, such a tres T, is rooted, has O(rr) nodes and for a string s $ is defined as

follows. Each arc is associated with a word in V, by means of a suitable ;actor OC

.r[O: n], and each path from the root to a leaf describes the suffix obtat,:ed 1~

concatenating the substrings associated with the sequence of its arcs. Thus, if .Y S

is stored in _I [0 : n], a leaf of T\. is labelled with the integer j if the correspcldink.

path describes the saltfix s [j: n 1. An arc is labelled by an ordered pair (i, j) (i ~j’

Optimal off-fine detection of repetitions in a string 299

Fig. 1. The suffix tree of the string ubbaabb?;.

if the associated substring is identical to the substring c _ the factor x[i : j] (see for
an example Fig. 1).

Although a brute force approach would use O(n”) operations to construct TX for

Ix I= n, there exist clever algorithms for its construction in linear time [1, 14, 171.

Any vertex. a of TX distinct from the root describes a substring W(a> cjlf s in a

natural way (the concatenation of the factors associated with the arcs leading to a

from the root): vertex IY is called the proper locus of W(a). In general, for any

w & Vx, the locus cy of w is the unique vertex of TX such that w is a prefix of W(cy)
and W(FATHER[a]j is a proper prefix of u’. It follows from the definition of TX,

that for any substring w of x whose locus is a, the number of distinct occurrences

of w in s (the number of equivalent factors associated with w) is equal to the

number of leaves’of the subtree of TX rooted at cy. In addition, the labels of the

leaves of this subtree completely identify the positions of the first symbols of all

factors whose substrings are identical to IV.

Finally, we recall that a string x E I + is primitive if setting x = uk implies 14 = x

and k = 1. It is a simple exercise to show that with the aid of the suffix tree we can

decide in linear time if a string is primitive (or any of its prefixes is not). A string

x E 1’ is strongly primititre or square-free if, expressing _ as x = v 1u kv2, with LC E 1”

and or, L’~E I*, implies k = 1. Equivalently, .Y is square-free if and only if each

w E Vx is primitive.

To decide whether a string is square-free is a more complicated problem. It is
easy to see, however [lo], that _Y is not square-free if and only if there are equivalent

factors _u[i:j] and x[Z: m], with I > i, such that 2 SJ’ + 1. Let v$rtex CY of ;r7, be the

common locus of the word w associated with these two equivalent factors; then

the subtree of ;rl, rooted at CY contains both leaves labeled i and 1. Since I- i s

j + 1 -i = lx[i:j]l S IU’(cu)I, we can state the following straightforward theorem:

Theorem 1. A string x is not sqcrwe-free if and only if there is at least one interior
vertex CY of TX such that I W(a)1 is not greater than the difierence of the labels of CZIIJ
two leaves of the subtree rooted at ti.

300 A. Apostolico, F. P. Prcparau

Assume thstt x is not bsquare-free. A repetitiarz in x is a factor x[i: m] for which

there are indices I and j’ (i < I <j 6 m) such that:

(i) x[i:j] is equivalent to x[/: m],

(ii) x[i: I- l] corresponds to a primitive word and

(iii) x[j+l]#x[m +l].’

We recall that p is a period of w if w[i]= w[i+p] (Vi = I,&. . . , IwJ-p). It is

easily seen [lo] that a repetition is a positioned periodic substring in the form (st)%,

where k > 1, s E I*, t E I’, which is completely identified by the triple (i, I - i, m - i)

of its starting position, its period, and its length, respectively. It follows from points

(i) and (iii) in the above definition that there must be a vextex CI in TX such that

H&Y) corresponds to x[i: j]. We now claim that i and I must be consecutive integers

in the set of integers associated with the leaves of the subtree of ?1\: rooted at CL

In demonstrating our claim, we make use of the following well-known ‘periodicity’

lemma [lo]:

Lemma 1. If w has periods p and q and iw / 2 p + q therl w has period g.c.d. (p, q 1.

Now, let ~[i: nz] be a repetition; it has the form (st)“s, where st is its primitive

periodic part, with istl = (I - i) 2 p. Assume now that in the subtree of ;rl, rooted at

CY there is some other leaf, labeled 6, with i < 6 c 1. Since (6 -i) < (I -i) s 1 W(cy)I,

there is another repetition, starting at position i, of the form (NL$~, with periodic

part MC (where jltIUi = (6 -Q&J). Since iu’t~y)i # and I(ur$lf] a 1 W(cu)l+iuu) 3

lsrl+luuI=p+q, the factor x[i:i+p+q- l] is a prefix of (M~)~zL This factor has

periods p and q and length p + q, whence, by the above lemma, it has also period

g.c.d. (p, q) 5 q cp, which means that SC is not primitive, a contradiction.

The above characteristic condition provides an algorithmic criterion. The process

could be easily organized %IS a bottom-up computation. Starting from the leaves of

TX, for each interior vertex LY visited we construct the sorted list of the labels of

its leaves, compute the differences of consecutive labels and compare them with

1 H4.t ,I/. The sorted list for any such vertex is obtained by merging the sorted lists

of its offspring vertices. Using ‘natural merging’ [9, p. 1621 this strategy is certainly

efficient if the suffix tlree is nearly balanced and runs in such case in time O(n log !I).

Similarly, if the suffix tree is highly unbalanced and has a comb-like structure, the

above strategy results in the same performance (since each ‘merge’ becomes the

insertion of a single clement into a heap’)..’ Despite the simplicity of these two

extreme cases the intermediate cases are more diflicult to handle. In the next section

w shall present a data structure, the leaf-tree, which supports the outlined strategy

Optimal of-line detertion of repetitions in a string 301

in time O(n log n) irrespective of the structure of the su,%x tree. For the sake of

clarity, we shall present the leaf-tree in two steps: at first in a version which has a

total memory usage O(n log n); subsequently, we transform the implementation

of the leaf-tree to a more compact data structure, using just 19(n) (i.e., optimal)

space in the overall execution of the algorithm.

3. Leaf-trees

We introduce COW a data structure which is suited for merging two disjoint sorted
sequences St and SZ. Each such sequence here and hereafter is a subsequence of the
sequence (0, 1, . . . , n - 1).

The leaf-tree T(S) associated with a given integer sequence S is a composite

data structure which supports sequential and binary sear;;: access to the elements

of S. T contains a strictly tree-like portion and a linear list portion as its main

components. Vertices of the tree portion will be called nodes, to avoid confusion

with the suffix-tree discussed in Section 2.

At this point in the prescntatinn, we shall think of the leaf-tree T(S) as a standard

bal’anced binary tree with n lelves (and a total of 2rz - 1 nodes). The structure is

static, that is, independently of S each node is identified with a unique storage area

and thus the pointers from a node to its offspring nodes are implicit in the storage

allocation. The leaves of T(S) may be viewed as an array (this suggestion is made
only to order the leaves, not to make use of the random access properties of an

array), and actice leaves are the positions of this array corresponding to the elements

of S. The linear list pGitiOn of 7’(S) threads the active leaves in ascending order.

Given a node V in the tree-portion of T(S), by TREE(V) we denote the subtree

rooted at V and by LSON(V), RSON(V) we denote the left and right offsprings

of V respectively. Let mv and I& represent the smallest and largest values,

respectively, of leaves which are currently active in TREE(VI. We associate with

each node V two fieids, min[V] and max[V], whose contents we now define. Any
time in T(S) there is a leaf-bound path VI, Vz, . . . , Vk -1, Vk with (nzv,, Mv,) +

(rZtL$ A4&) = l .a ’ = (f71vI, ,, Mv, , i f (mVk, 6,) and k >5, we set up a BYPASS

pointer from I+ to & _1 which effect1 rely compresses the path VZ 0 - - Vk -1 to its

two terminal nodes; nodes Vj, . . . , Vk 2 are given the status of ‘bypassed’. Thus

we have

(min[V], mas[Vy) =
Ll, .I 1 if tither TREE(V) is empty or 1’ ;S ‘bypassed’,

(Iat’, ivy 1 otherwise.

A node V for whit:h (min[V], max[V]) # (A, A) is referred to as uc tive (innctiue
otherwise). If we now consider the tree formed solely by active nodes, we note

that this tree has a number of leaves equal to the cardmality of S and a number

of internal nodes which is always less than three times the number of leaves.

302 A. Apostolico, F.P. Preparata

The linear list portion of T(S) is straightforward and is described by the pointer

NEXT[]. However, T(S) is completu:d by an array af pointers LIO : M - 111 associated

with the leaf array defined as follows:

A if leaf i is not active,

L[i] = U the highest node in the path from the root of T(S)
to leaf i such that min[U] = i.

In addition, at each node U, such that L[i] = U, we have a backward pointer

L--’ [U] = i; L-‘[U] = A when no i points to U (U is inactive).

Fig. 2. An example of a leaf-tree. Active nodes are shown solid; L-pointers are shown as broken lines,
bypass pointers as double liiles, bypassed paths as dotted lines, and solid lines thread the IiF: of active

leaves (NEXT1 1).

The reader who is getting impatient at the description of an apparently clumsy

object, may find relief in perusing Fig. 2 where T(S) is illustrated for S =

(3,5,8,9, 16, 18,24,25}. Only active nodes are displayed, and different graphical

lines are used for the various types of pointers. L-pointers are shown by broken

lines, bypass pointers by double lines, dotted lines denote bypassed paths, and solid

lines are used for the threaded list on the leaf array.

Note that, according to the definition, each active L-pointer (except the one

pointing to the root) is directed to an RSON node of the tree. For uniformity we

may assume that the root is itself the RSON of a dummy node.

As noted earlier, when the number of active leaves is substantially smaller than

12, very few nodes of TC%--both leaves and internal nodes-are actually used. This

apparently wasteful realization of thz leaf-tree has the following important property:

given two such trees T&j and T&), due to the tixed storage allocation, it is

possible to access in constant time the tree-node of T(S1) homologous” of a selected

tree-node of T(S;), and ~icu VYTSCI. We shall see later, however, that this behavior

can bc emulated by a more subtle 3nd compact implementation of the leaf-tree,

whose description is
of efficiency.

All operations cn

Optimal off-line detection of repetitions in a string 303

deferred in order to separate functional asl;ects irom issues

leaf-trees can be interpreted as the merging of two sorted
sequences. If IS”‘! 2 IS’2’l, we shall always merge S2’ into S”‘. This merge is done

by inserting the terms of St*‘, one at a time and in sorted order, into S”‘. So,
‘insertion’ is the primitive operation. From the data structure standpoint, merging
is effected by operating on the leaf-trees T(S”“) and T(S”‘), by performing an
in-place update of T(S”‘). We shall now analyze the mechanics of this update.

For notational identification, superscripts (1) and (2) denote entities in T(S”‘)
and T(S’*‘), respectively; also the absence of a superscript denotes an entity which
has been updated-in T(S”‘)-to its final status, i.e., the status attained in T(S”’ u
S”‘). With each term i of S’*’ we associate the set of nodes, TREE[i], of the subtree
whose rotIt is pointed to by L’*‘[i] in T(S(*)); note, that this is a uniquely specified
set of nodes, independently of whether we are considering them in 7’(S)) or 7’(S’“‘).

We shall now describe, in great detail, the procedure insert. Our claisn 1s as follows:

Theorem 2. The term-by-term insertion of S2 into S”’ by means of procedure ‘insert’
correctly transforms T(S”‘) into T(S”’ u S’2’).

Proof. We shall need the follcwing lemma:

Lemma 2. Prior to the insertion of i E S2’ into S’ “, the following n gdes of 77s’ ’ ‘)
have been updated to their final status :

(a) on the path from the rogt to leaf i, all nodes preceding the root U of TREE[i];

this is referred to as PATH(i) (see Fig. 3);
(b) all the nodes in the left s&trees of the nodes specified in (a).

In addition all the right sub:rees of the nodes of PATH’ i) are legitimate leaf-trees
(of substrings of T(S”‘)).

Fig. 3. Updated portion of T prior to the insertion of i. The nodes of PATH(i) are show solid.

304 A. Apostdico, F.P. Preparata

Indeed, Lemma 2 implies that after the insertion of the largest term j of S’*’ all

the left-subtrees of PATH(j) are in their final status, and so are the right-subtrees

(if any), which do not contain any term of S”‘. n

Proof of Lemma 2. We note at first that the conditions of the lemma are triGally

satisfied when the first (smallest) term io of S’*’ is to be inserted: indeed, TREE[i,!]

is the entire leaf-tree and the set of updated nodes is empty. Next, assuming it to

be satisfied prior to the insertion of i E St*), we must show it still holding prior to

the insertion of NEXT[i] E S’*‘. Referring to Fig. 3, the extension of the inductive

hypoth,esis is immediate if TREE[NEXT[I’]] is the right subtree of a node in

PATH(i), defined above; so we only need to restrict our attention to the case when

TREE[NEXT[i]] c TREE[i]. Letting U”’ = L’*‘[i], the insertion of i is effected

by the following procedure (i remains a global variable for the procedtire):

proc insert (U, i)

begin I + i

if I, ‘[U”‘]# .I then udzxnce(U, 1)

else begin L[i] * U

copyu 0

end
end

Basicall_v, two entirely diRerent actions take place in TREE[i] depending upon

whether node U” ‘, the root of TREE[i] in T(S”‘), is also ti-re destination of an

I, -pointer.
In the negative case, no leaf c:lf TREE[I’] is active in T(S”‘), so that the content

of TREE[I’] in 77.S”’ ,I must be copied jactive leaves and nodes) into the homologous

positions of r. Sinr-c 7’7.S”‘) is by hypothesis a leaf-tree, the inductive hypothesis

is trivially extended. The copy is actually carried out path by path, that is, all tfl<

active nodes from I/ toward leaf i are copied into T by the following straightforward

procedure there INTER[U] = (min[I/], max[II]), BY PASS[U] is obviously the

bypass pointer at I!, and SON{ I_/, i) is the son of node Il in the direction of leaf i):

proc wp~~ (li, i 1

begin INTE<R[l/]+- INTER[lI”‘]
BYPASS[I/] + BY PASS[U”‘]
if (I,; is not a leaf) then

begin if BYI’ASS[U] * $1 then 1,’ flBYPASS[U]
else C’ +- SON(LJ, il

cop v (\ ‘., i)

en4
end

Optimal ofl-line detection of repetitions in a string 305

i I

Fig. 4. Illustration of the action of procedure copy.

letter. copy(A, i) copies nodes A, B, C, D, E, F; copy(G, j) copies G and H;

copy (I, k) copies I, J, K, L; copy(M, I) copies M and ZV. Note that the use of

BYPASS links ic essential to guarantee that, if copy has to transfer m active leaves

from T(S2’) to Cp, at most 4~2 - 2 nodes will have to be copied.

We now consider the case in which there are active leaves of TREE[i] in T(S”‘),

which is somewhat more complicated. Informally, we initially have two leaves i

and k pointing to the same node U; the final result will be that min(i, k) will point

to U, while for max(i, k) we shall trace and process (part of) its leafward path from

U until the appropriate final destination of L[max(i, k)] is found on this path; let

P(U, i) denote the nodes traversed in this leafward march. Note that:

(1) Since i is the smallest term of S”) in TREE[i] (i.e., the smallest label of the
active leaves of S”’ * in TREE[i]) only terms of S”’ may affect the left subtrees of

nodes of P(U, i j; thus no update is due in these left subtrees. As to the right

subtrees, we shall illustrate below that at most one of tilem may require processing

of its root to verify the lemma (referred to as ‘special case’, below).

(2) If NEXT[‘] I is a leaf of TREE[i], it is also a leaf of a right subtree of a node

V E P(U, i); thus if all nodes of P(U, i.) have been updated to their final status,

since all nodes from the root of T to U had been (inductively) updated, Condition

(a) of Lemma ‘1. will be met for NEXT[i].

Therefore, updating the status of the nodes of P(U, i), and taking care of the

‘special case’ mentioned above, would extend the inductive hypothesis and would

prove the corrf:ctness of our insertion procedure.

To facilitate the understanding of the basic ideas of advance we now introduce

a pedagogical simplification, to be waived with no penalty in the complete descrip-

tion of the procedure given in the Appendix. This simplification consists in disabling

all BYPASS links, i.e., in assuming that all nodes of a leaf-tree are active. Since

the central action of advance is the leaf-ward migration of L-pointers, the intro-

duced simplification avoids unnecessary cluttering of the procedure. We shall later

justify that the complete procedure has essentially the same performance as the

306 A. Apostolico, F. P. Prepara ta

simplified version to be now described. Recall that i-the leaf to be inserted-is

a global variable for the following procedure advance(U, I), and thzt initially I = i.

1.

2.

3.

4.

5.

6.

7.

8.

9.,
l

10.

11.

proc advance (U, I)

begin if (I/ # A) then (* otherwise the procedure is aborted *)

begin INTER[U] + INTER[I/‘“] u INTER[P2’]

if (U is RSON) then
begin k *-L-‘[U’“]

if (k = A) and (min[U] = I) then

begin terminate (U, I)

u + A

end
elseif (k H) then

begin L[Z]+ U(* see footnote 4 *)

I+k
end

end
if W #A) then U +SON(U, /)
adtlance (U, 1)

end
end

Processing starts at the root of TREE[I’] and proceeds toward ZI leaf, since

ndcance (U, I) issues a call advance (SON(U, I), I) in step 11. This march terminates

in step 5, when the procedure tenninate(U, I), to be discussed below, completes

processing and sets U c- .l ; the subsequent call adrance(L1, I) aborts the march.

Step 2 performs the update of the interval of CJ. Since an LSON node cannot

bc the destination of an &pointer, processing of an LSON reduces to the interval

update. When processing an RSON, however, we must check whether that node

is already the destination of an L-pointer (steps 4, 5, 7), and, if so, select the larger

of the two labels pointing to the node and make its pointer migrate leafward (see

steps 8 and 9, where k assumes the role previously held by i). Note that, while

being inserted, term i may encounter as many as [log2 121 L-pointers, but that the

change of role (steps 8 and 9) may occur at most once. Indeed, this happens at the

node 1 where the paths toward i and k diverge and i -C k. In this case, k begins

its leafward migration. On the other hand, since k is’smaller Ihan any remaining

element in the subtree (recall that L”‘[k] pointed to the root of ‘TREE[i]), it cannot

dislodge any other L-pointer and the migration stops at the RSON of C’. This is

the only processing of right suhtrees oQ the P(U, i j, the special case we alluded to
hcfore.

Optimal off-line detection of repetitions in a string 307

Finally, we discuss the procedure terminate (step 5). When we reach an RSON
U for which L-‘[U”‘] = ,/i (i.e., U is not pointed to in T(S”‘)) and min[U] = I,

then clearly we have reached the destination of L[Z]. We have two cases (recall

that i is the term being inserted):

(a) I= i. In this case, after directing the L-pointer of i to U, since there are no

elements of S”’ in the tree rooted at U, further processing reduces to a simple

copy operation.

(b) 2 = k. In this case, the paths towards leaves i and k have diverged at

FATHER[U], with SON(FATHER[U], i) being the LSON. Thus, after directing

the L-pointer of k to U, processing is completed by a copying operation starting
at the left sibling of U (indeed, in the subtree rooted at this node there is no term

of S”)).

With this premise, we have:

proc terminate (U, 1)
begin L[I]+ U(* see footnote 4 *)

if (I # i) then U * LSIBLING [U]

copyW, i)
end

This completes the proof of Lemma 2. D

We now analyze the performance of the above procedure when merging two

sorted sequences S’” and S’? In general, we may charge the computational work

to each call of copy and aduance. Each such call is executed in time bounded by

a constant, as may be easily seen by inspection of the two detailed procedures.
When merging S’*’ into S(l), copy may be called at most as many times as there

are active internal nodes in T(S”‘); but we know that the number of the latter is

less than three times IS’*‘1, whence the work attributable to copy is proportional

to 15”‘). Again, note the crucial importance of the BYPASS pointers to assure the

latter result. If we now consider that we always merge a shorter sequence into a

longer o:qe, each term in (0, . . . , n - 1) is involved in a merge-into process at most

[log2 n] times, whence the total amount of work attributable to copy when success-

ively merging disjoint subsets of (0, . . . , n - 1) is bounded by O(n log n). Similarly,

the work attributable to aduaiice is measured by the number of nodes visited by

L-pointers in their leafward migration. Since each L-pointer starts at the root and

can only descend toward a leaf, the number of visited nodes is bounded by [log2 n 1,
whence also the work attributable to advance is bounded by O(n log n).

4. Application of leaf-trees to the detection of repetitions

The leaf-tree, and its associated handling procedure, as described in Section 3
can now be used for the detection of repetitions in a given textstrinp X.

308 A. Apmtulico, E P. Prqwmta

A preliminary step, of course, consists of constructing the suffix-tree TX 0: x ; we
have already recalled that this task runs in time O(n) [14], where n = Ixl* The
suffix-tree, in general, has maximum node degree equal to 11 u {$}I; we transform
it into a binary tree in a straightforward way by adding appropriate dummy arcs

and vertices. A dummy arc is associated with the empty symbol A and a dummy

vertex is identical to his father (i.e., for a dummy p, W(p) = W(FATHER[P])).
The resulting structur? is referred to as the modified sufJTx-tree.

We now visit the vertices of the modified suffix-tree as in a pebbling game [IS].

Specifically, we have a given number of ‘pebbles’ and visiting a vertex means to

place a pebble on that vertex, where pebbling is subject to the following rules:

(i) a leaf can be pebbled unconditionally;

(ii) a nonleaf vertex can be pebbled if and only if its offsprings are both presently

pebbled. (We adopt the convention to move the pebble from the left offspring to

the father, while the other pebble is free and reusable.)

It has been shown that a tree with n leaves can be pebbled (i.e., all of its vertices

can be pebbled) with O(log n) pebbles [151.
In our application the role of pebbles is taken by leaf-:.rees and pebbling :I vertex

of the modified suffix-tree corresponds to merging the two sequences associated

with its offspring. ln this operation, one of the two leaf *trees is updated while the

other becomes reusable. We defer the analysis of the tirtle and space requirements

of this scheme until the illustration of a space-efficient implementation of the

leaf-tree, to be given in the next section.

As we mentioned in Section 2, the objective of merging S”’ and S’.” was the

calculation of the ‘gaps’ between elements of S”’ and of S”‘, respectively. When
inserting i E 9” into S”‘, i will fall between two consecutive terms j and k: the

values of)’ -ji and Ik - ii are obtained when adjusting the list links NEXT, as

shown in the Appendix. The minimum gaps can thus be obtained and compared

with i Wa 1;. Note that, as we move rootward on a path of the tree T,, the value

of 1 Wcw)I, with which gaps are to be compared, decreases. Thus, a pair of terms
; f .P’ arld j E S’ ” which did not generate an overlap when i was first inserted,
need not he re-examined any further,

5. A space-e%cient implementation of leaf-trees

once the structure and functional capabilities of leaf-trees ale well understood

iSection 31, as well as their application to the detection of repetitions of substrings

of a striq (Section 4, we can tackle the problem of their space-etficient

implcmcn,tati<:n.

As we mentioned in Section 3, the reason for choosing a statically allocated

realization with O(U) storage, rather than a iinked structure realization with Otis\,
storage, was the wish to execute wish great ease the following operation:

Optimal of-line detection of repetitions in a string 309

Clearly this operation is trivial in the proposed realization since the addresses of

T(S”‘) are just a translation of those of T(S(“).

We now want to show that this behavior can be emulated in a linked-structure

realization of leaf-trees, with thz aid of an additional data structure k4, called

directory. The method is admittedly quite complicated, but, nevertheless, it exhibits

asymptotically efficient storage utilization.

While a leaf-tree is realized as a linked-structure, the directory ?@ has the same

storage allocation as the leaf-tree defined in Section 3, i.e., it is a balanced binary

tree with 2n - 1 nodes, each with random-access capabilities. Each node U of a

leaf-tree T(S) corresponds to its homologous U* in 9, that is, from U we can

access U* in constant time (either through a pointer, or by random access on the

basis of U’s name). Suppose now that, during the execution of the algorithms there

are k active leaf-trees T(S’“) “3 T(Stk’). Associated with each U* of 5? there

is a collection of poiniers to {‘LV j E {1,2, . . . , k} and Uci’ is active}, i.e., to its

active homologous nodes in the leaf-trees. We now show that each of these

collect;ons can be organized as a stack as a consequence of the following strategy:

(i) The mod fi d i e su x ffi -t ree TX is rearranged so that for each internal vertex the

left SLbtree contains no fewer leaves than the right subtree;

(ii) Pebbh.;g of the modified suffix tree, rearranged as specified above, is done

according to a post-order visit of the vertices [9].

Condition (i) insures that it will always be the leaf-tree corresponding to a

right-bon of r, that is merged into the one corresponding to its left sibling (recall

that the lighter of two leaf-trees is merged into the heavier one). Next, imagine to

have a hypothetical structure, called STACK (with conventional PUSH and POP

operations, denoted, respectively by ‘STACK’_’ and %= STACK’) to be used in
conjunction with the visit of TX. We now give a concise description of the overall

algorithm, where the operation ‘STACK CL cy’ is to be interpreted as the construction

of the leaf-tree associated with the vertex (Y of T,:

begin STACK +- 4

while there are vertices of TX to be visited do
begin LY + get vertex in post-order visit of Tl

if (a is a leaf) then STACK t-a
if (a is a right-son) then

begin a CL- STACK
,!3 t- STACK

STACK t- FATHERk, /3)

end
end

end

Clearly, STACK contains a sequence of leftsons in TX,’ possibly terminated at the

top with a single rightson. -4s 2 consequence of the vkiting policy (ii) and of the

above algorithm, any time we reach a rightson vertex 01, STACK contains LY and

310 A, Apostolico, F.P. Preparata

its left sibling p in its two top positions: they are popped and replaced with their

father.
The hypothetical STACK is mirrored by a corresponding data structure

STACK(U*) for each node U* of the directory 9. Specifically, let (a!~, cy2, . . . , CQ,)

be the sequence of terms in STACK and let & be the leaf-tree pertaining to vertex

CY& of TX. For a node U*, STACK(U*) contains the set of pointers to {U’? Ufk’

homologous to U* in & and active] as a sequence ordered according to the index

k. Therefore, assume that TOPSTACK) = ar,; if U’“’ is active in &,, then

TOP(STACK(U*j) is a pointer to U’? On the other hand, TOP(STACK(U*))

does not point to U(“, if the latter is inactive. Thus, to test whether

TOP(STACK(U*)) really points to U(‘), it is sufficient to have each active node

in leaf-trees point to a tree designator containing the name of the leaf-tree. This

device not only enables the test just described, but in addition it proves crucial to

the efficiency of the algorithm. Indeed, when merging T(S’2’) into TG”‘) (see
Section 3 j, T(S”)) is updated to T(S’“US”‘); all the nodes of T(S”‘) which are

not visited by the merging task have their tree membership collectively updated

by the single update of the tree designator.

In summary our original task, i e., the operation of obtaining U’l’ from U”‘, is

pictoriajlly described in Fig. 5. The sequence of links is self-explanatory. Note that,

due to condition (i) above, all pointers to nodes of T(S”‘) are popped from the

corresponding stacks in the directory before actual merging begins.

\
\
\
\

/\

b

UV!)

Directory ~3 T (Sfl’) T (S(2))

We can now return to the analysis of the time and space requirements of the
proposed scheme. Leaf-tree T(S) uses storage O\ISI), whence the total storage used

by all leaf-trees active at any one time (those corresponding to the vertices of 7’,

contained in STACK) is Otrz). Storage space is assigned to the linked structures and

rcusahle space (‘garbage’) is collected in standard fashion. The work pertaining to

rccvcling this memory space can be charged to each insert, i.e., the latter work is

increased by a bounded amouri:, since the total work of insert is 002 log 12), so is
the space recycling work. Thus, we conclude with the following theorem:

Optimal off-line detection of repetitions in a string 311

Theorem 3. The detection of repetitions in a textstring of length II can be carried out
in time O(n log n) and space O(n).

The time bound has been shown to be optimal by Crochemore [4]; the space

bound is trivially optimal.

Appendix

Some significant additions to the listings of the procedures presented in Section

3 are necessary to account for two actions which were intentionally ignored in the

preceding presentation:

(1) the management of the list of active leaves, via the pointer al ray NEXT.

The steps corresponding to this task will be displayed within broken-line boxes for
quick reference;

(2) the use of BYPASS links. The corresponding steps will be displayed within
solid-line boxes.

The updating of NEXT occurs immediately after the assignment of a value to

L[i] (recall that i is the element of St2’ actually being inserted into S’ I’). This

assignment occurs in one of three places:

(i) when L- ‘[U’i’] = 11 (there is no term of S’” in TREE[i]), within the pro-

cedure insert itself. Box 14-5 below describes the action: note that 14 correctly

assumes that SIBLING[U” ‘1 is active, for INTER[FATHER[U’ “]I f

INTER[SIBLING[U”‘]]. S’ mce the largest term in T smaller than i is stored in

the subtree rooted at the left-sibling of U(l), then this term is max[SIBLING[U”‘]],

and the corresponding update takes place;

(ii) when TREE[i] contains terms of S”’ and within adcarzce there is a dislodge-

ment of an L-pointer (see steps A&1 1 below);

(iii) after terminate has been invoked (provided that L[i], and not I,[k], is being
assigned). Steps T3-4 show this action: note that since the tree rooted at U does

not contain any term of S’” (see step A6) then M FA-rHER[LI’l)] is the largest term

smaller than i in T; since its interval differs from those of its offspring,

FATHER[U”‘] is active, whence R/i!FA.r,driR~ 1.11 ly = max[FATHER[U’ “I].

We now consider the handling of BYPASS links. It is convenient to provide a

concise review of rhe actions of the various procedures as described in Section 3.

Procedure irzsert(C’, i) basically traces a path from node U (the root of TREE[i])

to leaf i (see Fig. 6). In Fig. 6 the nodes shown as solid circles are those visited by

ahartce, while those shown as empty circles are those visited by ~‘spy ; the portion

visited by copy is never empty, while that visited by advance may be empty. When

both sets are norempty (i.e., there is at least one element k of P' in TREE[i]),
the rlode V where advance stops is also visited by procedure tem;ir~ate.
FATHER[V] is where the paths to leaf i diverges from the path to leaf k; if V is

an LSON, then terminate visits also SIBLING[V].

312 A. Apostolico, F.P. Preparata

(a) i<k (b) i>k

Fig 6. Illustration of the nodes visited by adr‘mce, terrnirtatc~, and copy in the two cases when i <k or
i>k.

Assume now that BYPASS links are used, and let path(U’+ V’) denote the
path from node U’ and to node V’. Note first that a BYPASS link issuing from

node U’ on path(U + FATHER[(V)]) in T(S”‘) must be directed to some node

V’ on path(U ‘+ leaf k). Indeed, (tilLI’, ML,,) = (mve, &&I) by the definition of

BYPASS, and m[J’= k, since k is the smallest term of S”’ in the subtree rooted at

U ; it follows that rnvl = k, i.e., V’ is on path (U’ + leaf k). Analogously, in T(S”‘)

the destination V’ of the BYPASS link is on path (U’+ leaf i).

(0) T(!$))

Reissued

(b) T(S’*‘) (C) T(S’l’US’S’)

Fig. 7. Insertion of i -= 146 into S”‘.

Optimal off-line detection of repetitions in a string 313

One approach to the handling of BYPASS links is the following (although a

more compact approach is possible):

(i) Let advance trace path(U + V), node by node as in Section 3, ignoring
BYPASS links except those (at most two) whose destination is beyond V and

SIBLING[V]: indeed, any such BYPASS link may have to be reissued either from

V or from its sibling.

(ii) trace path(U +FATHER[V]) backward, changing nodes to the inactive
status and establishing BYPASS links as appropriate, in a straightforward manner.

‘We shall now elaborate on part (i). Let U* be the node currently visited by

aduance. If U*“’ is inactive (i = 1,2), then clearly INTER[U*“‘] =

INTER[FATHER[U”“‘]]: this provides an immediate means of reconstructing

INTER[U*“‘], in case U”“’ had become inactive during previous processing. At

the same time, we save the destination of BYPASS links issuing from the visited

nodes both in T(S”‘) and T(S’*‘:. Once we reach V, we test whether any of these

destinations is beyond V and/or its siblings, and if so, reissue the appropriate

BYPASSES. Figure 7 displays an example of insertion with reissue and creation

of BYPASS links. The actions described are clearly shown boxed in the complete

listings of procedures advance and termhate :

11

I2

I3

proc insert (U, i)
begin I * i

14

I5

16

if L?[U’“] z l4 then aduavce(U, I)
else begin L[i] + IL;‘-

__--------

~~~~~~~~~-~~~~~~~~~s*~~~~~~U~l),,~ 
/ NEXT[max[SIBT,ING[ U”‘]]] * i I 

I 
I- __a----------_---------- -I 

copy(U, i) 
end 

end 

proc advance (u, I) 

Al 

A2 

A3 

A4 

AS 

A6 

A7 

begin [Bzi 

if (I/ # 1) then (:k otherwise the procedure is aborted *I) 

begin INTER[ U] * INTER[ U” ‘1 LJ INTER[ U’*‘] 

if (U is RSON) then 
begin k *L-l[U”‘] 

if (k = A) and (min[ U] = it then 

begin terminate (U, 2) 

W-J 
end 

A8 else if (k > I) then 



314 A. A postolico, F. P. Pwpara ta 

A9 

Al0 

All 

Al2 

Al3 

Al4 

AlS 

Al6 

Al7 

Al8 

Tl 

T2 

T3 

T4 

TS 

7’6 

T7 

1’8 

TO 

begin L[l]* U 
-------_ 

%ECT~~ ] +- NEXT[~ ]1 

[NEXT[~]+- f 
I 
I 

y-k---_-__--_ -J 

end 
end 

if (U #A) then U + SON(U, 1) 

if (U”’ is active) then 
if (BYPASS[U”‘] # A) then Bl *BYPASS[U”‘] 

else INTER[ U” ‘I+ INTER[FATHER[ U” ‘I] 

if (Ur2’ is active) then 
tf (BYPASS[U”‘] # ;1) then B2 + BYPASS[U’“‘] 

eke INTER[ U’2 ‘1 c- INTER[FATHER[ U”‘]] 

adcarzce(U, 1) - 

end 
end 

prm terminate ( I/, 1) 

begin L,[l]* II 

if (I = i) then 
--.---- 

~~~~~NEXT[~-NEXI‘L~~~~[FATHER[U”’]]] -I 
I

1 NEXT[max[FATHER[U”‘]]]+ I I
L_-_________-___---,--,,-__------~

I------_ / 1
/ INTER[SIBLING[U]] +- INTER[FATHER[I/’ “I] i
._______-__--

end
else U +- SIBLING[U]

-_
KU?2 is below U) then BYPASS[l/]d32 ---------j

[if (Bl is below SIBLING[U]) then BY?ASS[SIBLING[U]]+ Bl 1
1

cop!* (u, I)

elnd

References

/

i 1

A. Apwtolico, Fast applications of sufix tree<. in: D.G. l.ainiotis and N.S. Tzanncs, E:ds., ~4tlvr~,1ws
in Control (D. Reidel, Dordrecht, Netherlands, 19801 558-567.
(‘.I-{. Braunholtz, Solution to Problem 5030, Atm. of Mzth. 70 (1963) 675-676.
%I. Crochemarc, An optimal algorithm for computing the repetitions in a word. Irrfiw~mti(~~l
PwrIwirrq Lctt. 1215, (1981 1 234-250.
J.1’. Du~al. Sur la p’Pricldicitt2 dcs mats. 7’hL;se de Doctcur du .Imc cycle. Faruity of Sciences,
(.ni\crxtt\ of Roucn t 107X).

1

Optimal off-line detection of repetitions in a string 315

[6! N.J. Fine and H.S. Wilf, Uniqueness theorems for periodic functions, Proc. Amer. Math. Sot. 16
(1965) 109-l 14.

[7] M.A. Harrison, Introduction to Formal Language Theory (Addison-Wesley, Reading, MA, 1978)
36-40.

[8] G.A. Hedlund, Remarks on the work of Axe1 Thue on sequences, Nurd. Mat. Tidsb. 15 (1967)
148-150.

[9] D.E. Knuth, The Art of Computer Programming, Vol3: Sorting and Searchirlg (Addison-Wesley,
Reading, MA, 1973).

[lo] D.E. Knuth, J.H. Morris and V.R. Pratt, Fast pattern matching in strings, SIAM J. Cornput. 6
(1977) 323-350.

[111 A. Lentin and M.P. Schiitzenbcrger, A combinatorial problem in the theory of free miinoids, Proc.
University of North Carolina (1967) 128-l 44.

[121 R.C. Lyndon and M.P. Schiitzenberger, The equation a” = 6”~’ in a free group, M+Gigarz Math.
J. 9 (1962) 289-298.

[13] M. Main and R. Lorentz, An O(n log n) algorithm for finding repetition in a string, T.R. 79-056,
Computer Science Department, Washington State University, Pullman (1979).

[14] E.M. McCreight, A space economical suffix tree construction algorithm, J. ACM 23 (1976)
262-272.

[15] M. Paterson and C.E. Hewitt, Comparative schematology, Proc. MAC C’mference cm Cmcurrenr
Systems and Parallel Computation, Woods Hole, MA (1970) 119-127.

[161 A. Thue, Uber die gegenseitige Lage gleicher Teile Gewisser Zcichenreichen, Skr. V.X.-Kristiarru
I. n4at. Nature. Klasse l(l912) l-67.

[17] P. Weiner, Linear pattern matching algorithms, Pruc. Z&/z Anrwal Syrnposizm on S:~~if(hing and
Automata Theory (1973) l-l 1.

