
Computers Math .4pplit Vol. 20. No 9 10, pp. I I 1-123, 1990 009%4943 90 $3.00 + 0.00
Printed in Great Britain. All rights reserved Copyright ,£' 1990 Pergamon Press pie

I N T E L L I G E N T I N T E R A C T I O N I N D I A G N O S T I C E X P E R T

S Y S T E M S

Y. LIROV and S. RAVIKUMAR

AT&T Bell Laboratories, Holmdel. NJ 07733, U.S.A.

Abstract--Advisory systems help to improve quality m manufacturing. Such systems, how, ever, both
human and computerized, are less than perfect and frequently not welcome, Sharp separation between
working and learning modes is the mare reason for the apparent hostility of advisory systems. Intelligent
interaction deploys computerized advisory capabilities by merging working and learning modes. We have
developed a knowledge-based interactive graphic interface to a circuit pack diagnostic expert system. The
graphic interface integrates both the domain knowledge (i.e. circuit pack) and the troubleshooting
knowledge (i.e. diagnostic trees). Our interface dynamically changes the amount of detail presented to the
user as well as the input choices that the user is allowed to make. These changes are made usmg
knowledge-based models of the user and of the circuit pack troubleshooting domain. The resulting system,
McR, instead of guiding the user by querying for input, monitors users actions, analyzes them and offers
help when needed. McR is able both to advise "how-to-do-it" by reifying shallow knowledge from the
deep knowledge, and to explain intelligently "'how-does-it-work'" by abstracting deep knowledge from the
shallow knowledge, McR is used in conjunction with the STAREX expert sy.stem which is installed at
AT&T factory.

I. I N T R O D U C T I O N

In this paper we discuss the development of advisory interfaces for electronic circuit pack
troubleshooting. Advisory interface is a term used to describe collectively any training and reference
material, on-line help and guidance, and any other user support means. A diagnostic expert system
is an example of a computer-based advisor. Computerized advisory systems are hard to build and
difficult to use. Since a consultation is a break in work continuity, new users try to skip around
in a training sequence or dismiss training altogether [I]. Additionally, as Ref. [2] noted: "'Studying
advisory problems and developing advisory solutions for the leading edge of human-computer
interaction is hampered by the fact that the leading edge must have already been codified and
deployed before advisory problems can even exist."

Another basic difficulty in developing advisory interfaces is the lack of understanding of coaching
and interacting. For example, people often seek advice by making claims about the possible answer
to their (unannounced) query. Does it mean that in such cases a direct question is less efficient?
Another important issue is the frequency of an advice, or how often should the advice be offered?
A good parent does not teach the children at every occasion when something is not up to the
standards of the parent. How detailed should be the advice? When is it more important to provide
the declarative advice (i.e. how-does-it-work) and when--the procedural advice (i.e. how-to-do-it)?

In addition, it is important to note that the advisor is constantly under suspicion of giving the
wrong advice. The advisor loses credibility after displaying even the smallest deficiencies. What are
the techniques to restore credibility? And what are the answers to all these questions, when the
advisory interface is a computer program.

I.I. Research and Development Topic

In this subsection we refine the above outlined research topic to a task: we specify what exactly
we want a computer to do. Having developed an expert system for a manufacturing facility
(STAREX, see Lirov [3]), we experiment with a possible solution to the most important question:
how to deploy a less than perfect computerized advisor? Basically we are trying to improve the
classical expert systems which patronize the user by issuing queries, explaining only when asked,
and giving the result only at the end of the session. Such systems treat the user as an object for
providing the details which are necessary to complete the reasoning done by the machine. These
systems also maintain a sharp separation between the learning and working modes.

III

112 Y. LIROV and S. RAVIKUMAR

I. I.I. The task

Carroll and Aaronson [2] address the same question by simulating an intelligent advisory system
for an interactive software design package (the "'Wizard of Oz" technique). We build on their work
in that we consider the same issue, but we restrict ourselves to a relatively narrow application
domain. By considering a narrow application domain we expect to be able to go a step further
from simulating an interface to actually writing its code and observing its behavior. We build an
add-on software module, called McR, which merges working and learning modes.

I. 1.2. The domain

We chose our application domain to be the electronic circuit pack diagnostics for two reasons:
first, diagnostics is the widest expert systems application domain; and second, diagnostics of
electronic circuit packs is the better understood diagnostic problem because of the availability of
deep knowledge [3,4]. We build on STAREX expert system in that we regard circuit pack
diagnostic models to be available. Since STAREX is a deployed expert system, we expect our actual
intelligent advisory system to be deployable at the factory floor level. We note here that to ease
on our programming efforts, ~.e have used a simplified STAREX version, which does not include
truth maintenance. This issue is postponed for future research. On the other hand we reuse the
softw.are modules performing the optimization of the diagnostic sequences [5]. For the sake of
better paper readability, we digress briefly to explain the basic concepts in electronic circuit pack
diagnostics. For an overview of the topic the reader is referred to Ref. [4].

I. 1.2. I. Diagnosis. Diagnosis of an electronic circuit usually refers to the process of determining
the fault~r component(s) that cause an undesired behavior (output) of the given circuit for some
(correctly) given input. Diagnosis can be regarded as a problem of economic optimization: there
is a value associated with every component in the pack, as well as a fiscal value associated with
the process of assembly and soldering of the pack. Thus, when a pack is declared faulty, it is
desirable to replace only the faulty components.

Moreover, the process of identification of the faulty components (the diagnostics) consists of a
series of tests each of which has an associated cost, expressed in such parameters as test setup time,
component destruction, etc. The successful troubleshooter must be able to select an appropriate
strateg), conduct measurements and replace components. Morris and Rouse [6] report that humans
are not good in judging failure rates, human performance degrades as systems become larger and
more complex and, or in the lace of time constraints, presentation of theory of operation does not
improve performance and proceduralization improves performance.

Diagnosis is a difficult problem for the beginners. An unskilled troubleshooter has difficulties in
making an indictment, doing it correctly and doing it sufficiently fast. As a result, a beginner causes
buildup in work in process, unnecessary test-repair cycles, unresolved manufacturing problems (e.g.
a fault) robot or a bad batch of components), and even sometimes overlooked design problems.
Therefore, the construction of automated means for troubleshooting guidance is justified both as
an intellectual and as an economic challenge. However, the diagnostics problem li.e. the
construction of a computer algorithm which is capable to perform diagnostics) is NP-hard [7, 8].

I. 1.2.2. Troubleshooting strategies. Two basic approaches and their combinations are currently
utilized in industry for conventional diagnostic software development: the fault dictionary
approach and the guided probe approach. The fault dictionary approach requires simulation of
the fault) behavior of the system and subsequent storage of the simulation results (as well as the
fault assumptions~ in the fault dictionary. A "misbehaved" output of the pack under test can
therefore be looked up in the fault dictionary. The fault dictionaries are not being used x~idely since
the) are usually incomplete and ambiguous.

The guided probe approach requires only simulation of the correctly functioning circuit pack.
The basic tool in utilizing this approach is the blame-shifting mechanism applied after each
measurement. The upstream (from the test point view) components in the circuit are blamed only
when the measurements do not agree with the expected results. The efficient sequencing of
measurements becomes the main problem when implementing the guided probe approach.

The troubleshooter must employ some kind of strategy in searching for the source of the diffi-
cult). Ref. [9] noted that poor troubleshooters mader fewer tests before accepting hypothesis as

Intelligent interaction in diagnostic expert systems 113

correct, they had more incorrect hypothesis, and they pursued incorrect hypothesis longer than did
the better troubleshooters. Glaser and Phillips [10] associated more than 20% of strategic
shortcomings (e.g. insufficient testing) with faulty inferences (e.g. misinterpretation of a test).
Additionally, poor troubleshooters tend to have incomplete lists of hypothesis and to be frequently
overconfident about their completeness [I I].

I. 1.3. The ciew

McR behaves like a diary for the user, where the user enters the measurements and their results.
The system collects this data and tries to reconstruct the reasoning of the user. If McR discovers
a significant reasoning fault on the user's behalf, then it offers guidance. If the fault is a technical
fault (e.g. using wrong measurement device), then the advice is a low-level, "how-to-do-it" advice,
Otherwise, it is a "how-does-it-work" advice. Such advice can be about the test strategy (e.g. a
diagnostic tree), or about the circuit pack (e.g. signal path). This combination of two approaches
(the procedural and the declarative system explanations) is most likely to be the most effective
means of troubleshooting advice [6], since the system merges the Socratic and the "'learning by
doing" methods of instruction.

I. 1.4. Additional benefits

An important expert systems characteristic is its flexibility to acquire knowledge. Expert systems
usually mimic the behavior of experts which combine knowledge about several domains.
Experienced circuit pack troubleshooters, for example, have some understanding about the circuit
pack, know how to use measurement equipment (e.g. oscilloscope), have knowledge about the
manufacturing process and its weak spots (e.g. "that robot loses its calibration frequently and thus
inserts wrong components", or "'this transistor is often bad"), and know about generally good
troubleshooting strategies (e.g. "divide and conquer"). Shallow knowledge bases contain rules
which represent the combined expert knowledge. It is difficult to maintain such knowledge bases
as it is difficult to comprehend all the interdependencies between the rules.

Deep knowledge bases, on the other hand, promote easier maintenance by segregating different
kinds of knowledge in separate knowledge bases. The price for this convenience is the need for an
integrated inference engine which may take a form of a meta-interpreter [3, 4]. Construction of user
interfaces for such knowledge bases is complicated by the necessity to maintain all the knowledge
bases simultaneously. Our system is able to acquire different kinds of knowledge (e.g. electronic
signal path or troubleshooting tree) and immediately show the implications in the compiled
Ishallow) form. We demonstrate this flexibility using an integrated graphics interface.

From the methodological point of view, this experiment helps to understand better the taxonomy
of problems related to artificially intelligent diagnostics. In particular, we show that the contem-
porary subdivision of the issue to seven subproblems [4] is rather superficial: the user interface
problem is not a stand-alone problem, to be solved separately. Its solution includes solving all the
typical problems for the knowledge-based applications, e.g. choosing knowledge representation,
acquiring knowledge, etc.

I .Z The Approach

1.2. I. User model

Roughly, we develop intelligence of the advisory system by creating a user model. The model
can be used as a reference with which the actual user performance can be compared. The task of
building intelligent advisory system through a user model seems to be tractable for three reasons:
first, we can inventory the errors of the analysts; second, we expect to develop shallow knowledge
disassembly mechanisms to map from observations to user errors; and finally, we have developed
in Ref. [3] a multi-source deep knowledge integration mechanism (reification), which we use to
check the success of the disassembly of knowledge. Systematic shallow knowledge disassembly
(extracting deep knowledge) is a new interesting problem having much in common with machine
learning.

114 Y. LlROV and S. RAVIKUMAR

1.2.2. Reification and abstraction

Coding an intelligent advisory system is a large project requiring solutions to a variety of
problems: designing knowledge representation, control strategy, building knowledge base, integrat-
ing multiple sources of deep knowledge about electronic circuitry, developing user model, acquiring
knowledge and displaying advice in a variety of ways. Our previous report [3] addressed the first
four problems, while in this paper we deal with the last three. We show that the algorithms for
knowledge reification and abstraction are the cornerstones in the intelligent advisory systems. This
view holds promise for further development because it provides better understanding of both
reification and its inverse--abstraction. Furthermore, we introduce a new use for abstraction--we
view it as a tool to test user behavior patterns.

1.2.3. Performance criteria

The performance of the proposed method can be evaluated by testing it for correct and timely
user error classification. While correct classification depends on the user model and diagnostic
algorithm, the timeliness of classification depends on how much of the relevant information has
already been preprocessed. Being able to preprocess most of the information beforehand holds
promise to be able to deliver timely and correct advice.

1.2.4. Programming techniques

The programming approach is similar to that of knowledge-based programming since we use
knowledge to supplement the observed user actions to generate our interpretations. The difference,
of course, is that the product of the system is not a program code, but an advice. We use
object-oriented logic programming to develop graphic interface, and metaprogramming--for
reification and abstraction.

1.2.5. The scope

Our method might scale up to bigger systems, if deep and differentiable shallow kinds of
knowledge can be integrated, and a complete and finite inventory of human errors are available.
Of course, certain types of intelligent help will always be missing because of the inherent brittleness
of such systems. The system is honest about its limitations when it knows them: the system will
tell that something is wrong but will not extend a temporary solution. We advocate such an
approach to all advisory systems (machine and human) in order to maintain their credibility.

Our next question is: How well is the method understood? We confess that we do not understand
the method very well, The reason is that the method depends on having complete knowledge about
the system under diagnosis and about the human errors. We are unable to prove that we have
completed the acquisition of either kind of knowledge, let alone the mapping between the human
error inventory and electronic circuitry deep knowledge. Thus, paradoxically, the only way to
complete knowledge acquisition is to write down a program with incomplete knowledge to deploy
it, to provoke the difficulties, and to learn experimentally about the limitations of the method. As
a result, we expect not only to expand the scope of the knowledge base but also to refine the
knowledge about human analyst errors.

1.3. Design for Experimentation

Once ~.e decided to use programming as the main exploration tool, we must verify that our
program is going to support experimentation in addition to having the required performance level.
To ensure "'experimentability", we write the code in Prolog, in order to have all the inference
mechanisms readily available for alteration. We will be able to observe the program's behavior both
externally via graphics display and textual messages, and internally--via Prolog execution trace.
We demonstrate its correct knowledge through a set of test cases corresponding to the user faults.

The program generally supports both "how-to-do-it" and "'how-does-it-work" kinds of advice,
it is not tuned to one particular kind of help. Performance of the program has two aspects: its
functional and its time characteristics. Functionally, we expect to observe increased number of rules
and improved troubleshooting procedures. Our understanding about interaction, together with a
short review of some prevoius relevant work, is laid out in Section 2. An interface, implementing

Intelligent interaction in diagnostic expert systems 115

our ideas of interaction, is developed by efficiently combining knowledge and metaknowledge in
Section 3.

2. INTERACTIVE APPROACH

A computer program is considered interactive when it requires some user participation in order
to conclude its processing. Diagnostic expert systems are obviously interactive systems both at the
knowledge acquisition and at the diagnosis phases. The degree of interactivity, the amount of
freedom that the user is allowed varies depending on the skill of the user. If the user is a
programmer, then an editor is sufficient. Otherwise, more sophisticated tools are required. Some
guidelines for constructing human-computer interfaces have been published by DOD [12-15], but
they do not provide the necessary information for determining the effectiveness of specific interfaces
and their sophistication. As a rule of thumb, the program sophistication level is directly
proportional to the user's familiarity with the computer programming techniques.

SOPHIE (SOPHisticated Instructional Environment) is probabl~ the best example of an
intelligent interactive computer-based instructional system used for teaching electronics trouble-
shooting [16]. The system can be used in two modes: a team troubleshooting game and an
interaction with an expert. In the game mode the players of one team inflict faults into a simulated
electronics system and troubleshoot the simulated faults of the other team. SOPHIE is an example
of an experimentally implemented learning-b)'-~h~ing environment with a taxonomy of user errors
and an advice feedback mechanism to the user. Unfortunately, the system lacks graphic interface,
does not handle significantly complex electronics equipment, and does not evaluate troubleshooting
strategies.

2. I. Graphic Interaction

Interactive graphics systems require both the inputs and outputs be specified graphically.
Graphics editing of the knowledge base has been proposed recently [17-19] as interaction means
with the knowledge base. An expertise transfer system (ETS) [20] has been proposed to generate
the rules from the user-supplied elements and their attributes and corresponding ratings. The
system identifies conflicts and ambiguities in the rules (but not omissions), and asks the expert for
modifications. Since ETS does not use a model of the unit under test, numerous similar rules may
need to be entered (e.g. pertaining to the same faults on different channels) and at the same time
ETS may still not notice some of the missing rules.

Sand KAST (Sandia Knowledge Acquisition System, Hill et al. [19]) uses a directed acyclic graph
structure as a formalism for knowledge acquisition. In this graph, a node represents a state of the
troubleshooting session with an associated set of possible faults. An arc represents a test to be
applied in the context of the source node. The graph structure provides the means for viewing the
knowledge acquisition and truobleshooting processes as well as for graphic editing of the
knowledge base. SandKAST, although alleviates most of the problems that arise with knowledge
base maintenance, runs only in the KEE environment on a Symbolics computer and relies heavily
on KEEs graphics utilities and object orientation.

IMPULSE [18] permits the user to interact with the knowledge base via various multiple
windows and graphic displays of the knowledge. Editing, however, is allowed only at the textual
level and not graphically. The user of sophisticated graphics interfaces in computer aided design,
simulation, or instruction systems has been also suggested in STEAMER [21], Omega [22], Pecan
[23], Garden [24], Wlisp [25], PV [26], PAW [27], Thing Lab [28] and GUIDON-WATCH [17]. All
of the above systems emphasize and make use of the abilities of the brain to detect spatial patterns
and reason upon them [29].

2.2. Flexible htteraction

Few of the above mentioned systems, however, call attention to the questions of evaluating
advisory strategies and adapting them, and all leave those questions open. Consequently, all of the
above systems lack the flexibility of adjusting the user interface to the sophistication level of
the user. As a result, the systems are either too complex at the initial stages or too detailed at

116 Y. Lmov and S. RAVlKUMAR

the subsequent stages. In any case the users becomes annoyed with the system and frequently stop
using it.

The concept of an adaptive interface [30-32] is an extension of an interactive user interface idea.
An interface system becomes an adaptive system in two ways: active and passive. The passive way
allows users to modify the interface, so it is tailored to meet the specific users needs. Although
resulting in a more suitable interface, the burden of its adapting is left to the user. An active
interface modifies itself. Architecture of an active interface [33-35] addresses explicitly the issues
of dialogue [36, 37] and user modeling [38, 39]. McR is an active user interface.

Crockford [40] identified the user involvement as the most important principle in the design of
interactive programs. He characterized user involvement as having "more to do with taking part
than in making decision". The user choices must affect the presentation. The user is viewed as a
part of the program. Following this approach, our system maintains a model o f the user. According
to the user-model, the sytem defines the kind of data and rules to operate on. Such an approach
allows the user to enter incomplete specifications of the problem and let the system make
knowledge-based interpretations of user intentions. Thus, instead of a one-directional interface at
a single level of complexity, the system interface is flexible.

Consider, for example, the arcade games. Depending on the number of accumulated points, the
speed and the complexity of the game increases. But, contrary to arcade games, where the options
given to the user to input into the system remain fixed, we require the user options to be dynamic
and fit the user needs. The user model is constantly reevaluated by challenging the user at every
step. Such a dynamic approach not only keeps the program to be updated about the level of the
user's proficiency, but it also allows some doubt in the user's mind about the outcome of the
interaction. Therefore, the user remains interested in the interaction. The final diagnosis then is
the "'happ~ end" which reinforces the user's interest in using the program.

Recently Fischer et al. [41] reported about the need for combining the advice-giving strategies.
The). distinguish between actice strategies, where the system provides advice by interrupting the
dialogue, and passive strategies, where the user must explicitly ask for advice. Passive strategies
usually employ a Socratic style of interaction where the system poses questions and the user is
expected to provide answers. Such systems often patronize the users, treating them as the
information providing tools, needed only to conclude the reasoning by the computer. Active
strategies often employ learning-by-doing environments, where user's actions are compared with
the ideal actions and feedback is provided to improve the user's responses towards expert
prototype. McR combines the strategies of interaction.

2.3. Adaptive bzterface Architecture

Knowledge-based adaptive interfaces include four kinds of knowledge [36, 42,43]: (a) user
model: (b) interaction and dialogue management; (c) knowledge of the task and (d) system
characteristics. In the next section we describe user model and interaction management.

2.3. I. L'ser model

Kass and Finin [44] claim that individualized user models are essential for good explanations
~hen the users differ in their knowledge of the domain. Loosely speaking, they perceive the user
model as a knowledge source containing explicit assumptions on all aspects of the user that may
be relevant for the interaction of the system with the user. Any interactive system has a user model.
However. most systems maintain an implict user model because of the assumptions about the user
made during system design. Representing user model explicitly allows to maintain it dynamically
during the program execution, and thus to achieve the desired level of system interface flexibility
tcf. Coombs and Alty [45], who stored error patterns as a normative user models for users of
Prolog).

The simplest technique for building user models involves classifying users as novices and
updating their status as they demonstrate improvements [46]. A more discriminating technique,
allowing more efficient teaching, involves comparing the user's performance with that of the expert.
It is assumed that the user knows about the underlying concept, if its derivative is used correctly
[47, 48]. On the other hand, by classifying the errors that are made by the user, the underlying
deficiencies may be uncovered. The most sophisticated technique is the stereotype user modeling

Intel l igent in terac t ion in d iagnos t i c expert sys tems I 17

Table I. Typical anal)st errors and corresponding user stereotypes

Errors Interpretauon

Unnccessar)
measurement
Wrong measurement

Wrong conclusion
Earl)' conclusion
Late concluston
No conclusion
Lack of technological
suggestions

Lack of plan

Misunderstanding of schematic.
lack of sktll to use eqmpment
Misunderstanding of schematic
Laziness
Lack of self-confidence
Lack of persistence
"l'~ory tower" complex, lack
of understanding of manufacturing process

which involves describing the user by a set of characteristics [49]. Examples of such systems include
a bibliographical system G R U N D Y [39], and a real estate recommendation system [50]. McR uses
a troubleshooter's model which is a combination of stereotyping and user error classification
techniques.

The user model is useful during the troubleshooting session to select the way in which a
troubleshooting advice is constructed and displayed, Once such an error-stereotype table (Table I)
is constructed, the troubleshooters can be ranked, depending on a linear combination of their scores
in the table.

When a novice analyst is interacting with the program, the entire is displayed, including
the component location, description of the test equipment used, measurement procedure
and the meaning of the readouts. As the user becomes more proficient in the use of the
system, such a detailed display becomes annoying. A part of the advice is now sufficient. At
the next level of proficiency, it is enough to display just the location of the measured
component instead of the complete advice. This information now can be supplemented by the
display of the relevant part of the fault tree. Finally, for the expert, it is enough to display just
the list of suspected components and a scaled dov~.n fault tree. We notice that, as the user
sophistication increases, we may condense more and more information at the increasingly abstract
levels.

We note here that in order to diagnose correctly the user's errors, it is not sufficient to observe
the last user's action. The trace of the entire process that the user traversed in arriving to the
current situation is needed in order to make a correct conclusion about user's errors [51-53]. For
example, if a user, troubleshooting a signal path, consisting of the components C1, C2, C3, C4,
C5 in that order, and having observed good input to CI and bad output from C4, measures the
output from C5, then the user most likely misunderstood the signal path. On the other hand, if
the user measures the input to C2 then it is most likely that she does not have a good
troubleshooting plan.

2.4. Logic Programming Implementation

Before continuing with the discussion about user modeling and interaction, we digress briefl2,
to highlight several points on system implementation.

Our graphic interactive interface has been constructed by efficiently combining knowledge and
metaknowledge. Aiello et al. [54] describe three approaches of embedding metaknowledge in a
system. The most primitive approach is to "'hardwire'" metaknowledge by simply writing it as pieces
of code in the system. Such an approach results in extending the implementation of the system with
the procedures that actually instantiate the variables of metaknowledge. An example of such an
approach is the early rule-based expert systems where each separate case has to be covered by a
specific rule instance.

A second approach to combine knowledge and metaknowledge is the metalanguage approach
as in ML [55, 56]. However, using this approach prevents the higher levels of metareasoning. A
third approach allows the user to access both the object and the metalevel simultaneously, as in
FOL [57]. This approach requires that both the language and metalanguage have the same form
of expression. Another requirement in the third approach is that both levels have access to the
inference engine, allowing for proving both theorems and metatheorems. The user is referred to
Ref. [54] for further discussion about the ways of amalgamating knowledge and metaknowledge.

118 Y, LIROV and S. RAVIKUMAR

It is suffice to note here that McR implements the third approach using the metaprogramming
techniques of Prolog. Accordingly, we may state that a subcircuit X is fault}' as follows:

indict(X, Z):-
suspect(X),
generate_suspect (X,Suspects),
generate_ideas(Suspects,Ideas),
try_ideas(Ideas, Suspects,Z).

The predicate suspect/lis true if its argument X has good input and bad output (this fact may
be acquired from the user). The predicates genera te_suspects /2 and generate_ideas/2 are the
knowledge base access predicates, where the first is used to subdivide the circuit X into a set of
faulty subcircuits, and the second to derive the set of indictment methods associated with the
subcircuits.

Here the object-let, el fact about the component Z being the reason for circuit X to fail is derived
provided that the metalerel condition ofprol'ability holds between the set of relevant facts and the
goal try-ideas (Ideas,Suspects,Z):

try_ideas([IdealRest],Suspects,BadGuy):-
do_or (Idea,Suspects, BadG uy),
try_ideas(Rest,BadG uy).

do_or (A,[XlY],Z):-
T = .. [X,A,Z],T,
do_or (A,Y,Z).

The meta-predicate try_ideas/3 creates and executes (do_or/3) the goals required to indict the
suspected subcircuits, as long as there are ways to indict (ideas) and as long as all the subcircuits
are not indicted.

Note that a circuit pack can be faulty for different reasons and hence we not not declare X
indicted by the following object-lel,el sentence:

indict(X,Z):- suspect(X),
idea(Z).

The reader is referred to Ref. [3] for further information about the code of the circuit pack
diagnostic expert s~stem.

Our interface consists of two basic modules: the test tree manager and the user model manager.
Test tree manager consists of the modules to reify the diagnostic tree and to handle the knowledge
bases of advice and of signal path and pins in the circuit pack. It also manages the database of
relations which define the mapping between the nodes of the test tree and the graphical objects
representing the top view of the components [58]. The user model manager maintains a counter
representing the level of the user's proficiency and the conditions for achieving the next level of
proficiency. When the value of the counter exceeds a preset number of allowable errors, the system
issues the corresponding advice.

2.5..4daptire Troubleshooting hlterface
Any user modeling system must provide the following important functions: user model

representation scheme, interface between the user model and the rest of the expert system, and user
model acquisition. Our computational paradigm for implementing intelligent user interfaces is a
loop consisting of the following four activities: monitor, abstract, compare, and react. Therefore,
McR consists of a monitor to acquire knowledge about the user, a fault identifier to map from
user actions to user descriptions, and a proficiency table to map from user model to advice level.
The monitor simply presents the user with the top view of the circuit pack and accepts from the
user the information about the troubleshooting session. This information contains the location of
the measurements, and their results.

The user fault identifier matches the above information to one of the diagnostic trees developed
at the knowledge acquisition stage. When a significant discrepanc}' is identified, the user is offered

I n t e l l i g e n t i n t e r a c t i o n in d i a g n o s t i c e x p e r t s y s t e m s 119

I
user
actions

S~gnal
p a t h
m a n i p u l a t i o n

t r e e

Dmgnos l i c
tree

decompo'>lllOrl

Ll~er Inlerface I
I r o u b l e s h o o t i n g
ad'. ice

IA+er]
Mode l

+ngnal
p a t h

F i g . I . A d a p t i v e t r o u b l e s h o o t i n g k n o w l e d g e b a s e s c h e -

m a t i c .

l i T , I
L ~ d L o ¢ l t i o n : I c 9 - p 8 |
[] V a l u l : r o o d mi~t! |
[] I ~ v l c e : DVN I

F ++ : + + I
-':" ."" '~?. :" ' ':: i':~.': N~.-'~ ~ .:.~....... ,,,,..:.. ~_" I1.....:.:...K+~ • :: :: : ~..~::~:"::. ':...'.'..:..:.':....:'" :'..': ":" .'.:...." ..',.:.:..:~::.:::..: ".'.'.... ~ ,:.:x."::.':':.q~:::::.~,'~.~ , ~ ~ . , , . - , , . , . . ; . ; . . . , • ~..~:..:: . ~ . ~,.. • .

A . . : . c . , : : ; . ~ ' q < , . : : . . : . ' : : ' : . : . ' : . . : : . . . • ~ ~:..~.~: : ; : > . ' : . . . : " . . . : . ~ . . : . c ~ : : . : : . ~ : . h ::.. +-~ ~ . . ~ :...: :~...,..,.,:+~, ~ , :;.. :.:.....: :...:.~,:, .~:~. :: • ~ . ~

. , , . , . . . • , . . ; k .~.&:.~; : : ; :~. . .~:~ f...:....:.:..:...~,;~.~..-..:~, ~ v . 0 ; . : : : : , : . "- '-; .-~,~ . ~ ~ : . : ' . :?: ' i:~" '. ,'...~"'x~ ..~.~:.:.+~::...:~:,+: .:.:.:...: .+..:. k%.:.'..'. : : . .~ . .~ . . ~ ," ~ : ~ . ~ " - " ' ~ ' . ~ -:.:~
.:'::: .. :.:~.~::,~:i:i.: + i:i:i: .~.iil i:..,,: :ii: ::: .:i:i.'?:'i:..'.::::i:.:..+ +:'.::~:~'~:'~+ii:.'.'ii:~:gi:~:~:~::~:k.~'+~ ~ ~ : ~
:~.+.:.+... ~ , : ~ : • ~. ~z.~.:.'.: .~. +:.: :.." ::. :..::: .;:: +:.-" . ~:. ~ ~-" :++:~:'~: ~: :t:-: :.~ ~:~.~ + + ' . . ~ . ; , ' ~ + ,'~.~',~
• ~.: . ." .. ~ " : . ' - - - " . : : . . : : . . : / v :.'.::....:...'.: "z: .×.; . . . '~.~..vx.. :v ' . : . . . : . : . . , . : . :~. . . .~: •~ . . : .~ . . ' : . , . ~ +
• ~:'.'~:.'::, :':: ~"-~::~!i..~::~::. • ::::: :~'~.:: ~.~".¢.". :.~t. ~, ~',,.'~: :~:~: :.-~ .~. ~e.~.~.~i . ~ . • :.:~.:. , . . :~ , ' : : c ' ~ . . , ~ " : ' ~ ' : : : ' : ' :: ' : . :.'..'..'.':.~ x,";::. ':'.'::':: : . : : ~ ;;.>.':;" ::. ' , :" x,..'.:.. ' • :::~ .:.....,~'~.~
..... i?,,x--~',~ +. • ~ +.,..:.:.:~:,.~.~.i~+ , ::.. ~,~,.,~"~:.'Y~+:..~.:,,~ ,-,,x~

F i g . 2. A d v i c e a t e l e m e n t a r y l eve l .

help and the proficiency counter is decremented. Table I in Section 3.3 lists possible user faults.
We differentiate between three basic kinds of troubleshooting errors: misunderstanding of
schematic, misunderstanding of troubleshooting strategy and misinterpretation of the measure-
ment. The proficiency level is matched also for the appropriate level of abstraction which
should be used when presenting information to the user. Low proficiency level corresponds to
high level of detail and vice versa. The schematic and measurement related errors can be ident-
ified by comparing the true signal path with the signal path abstracted from user measurement
sequence observations. The abstractions rules are presented in Section 3.6. The troubleshooting
strategy related errors can be identified by comparing the measurement sequence with the ideal
troubleshooting tree.

Using a rule-based knowledge representation, we may subdivide our system into a hierarchy of
rules (Fig. 1). At the first level are the rules which allow to decompose the knowledge base into
a sequence of components corresponding to the path of signal flow in the unit under test. At the
second level are the rules which use the user supplied measurements to manipulate the sequence
of components obtained at the first level. Every manipulation triggers a rule in the third set of rules
which describe the human troubleshooters behavior patterns. Every rule in the third set may issue
a troubleshooting advice.

2.6. Diagnostic Tree Decomposition Rules

The diagnostic tree decomposition rules are used to generate an abstract signal path which will
serve as a model for the actual signal path. This model serves the purpose of monitoring and
analyzing in a convenient way the sequence of actions of the human troubleshooter.

Rule 2.6. I

If current diagnostic rule has subrules
then invoke Rule 2.6. I for each of the subrules
and collect the current rule ld in the abstract signal path
and invoke Rules 2.6.2 and 2.6.3.

Rule 2.6.2

Rule 2. 6.3

If current diagnostic rule is a replace rule
then tag the corresponding entry in the signal path as a replace entry.

If current diagnostic rule is a test rule
then tag the corresponding entry in the signal path as a test entry.

120 Y. Lmov and S. RAVmUrdAR

Note. The resulting signal path may contain non-unique elements which are ignored by Rules
2.6,2 and 2.6.3.

2. 7. Abstract Signal Path Manipulation Rules

The abstract signal path manipulation rules maintain the current status of the model derived by
the previous set of rules. The model is updated either by deleting its parts which become obsolete
due to the results of test observations, or by replacing it by a new model due to a charge in the
troubleshooting strategy.

Rule 2. Z I

If the outcome of the test is good
then delete from the current abstract signal path all upstream entries.

Rule 2. Z2

If the outcome of the test is bad
then delete from the current abstract signal path all downstream entries.

Rule 2. 7.3

If current test point is the root of the diagnostic tree
then select new diagnostic tree

2.8. User Modeling Rules

The last set of rules actually selects the appropriate troubleshooting advice. These rules are used
to decide whether to dispense a high level advice due to a minor troubleshooting strategy mistake,
or to advice at a more detailed level. Such an advice is given because of a significant lack of circuit
pack understanding on the part of the human troubleshooter discovered by one of the rules.

Rule 2.8. I

If current test point does not belong to abstract signal path
then display the signal path.

Rule 2.8.2

If current test point differs from the root of the current diagnostic tree
then display the diagnostic tree.

Rule 2.8.3

If activated Rules 2.8. I or 2.8.2 more than three times
then disperse a conventional troubleshooting advice.

2.9. Intelligent Interaction Example

The following paragraphs illustrate the different kinds of advice the system can issue depending
on the user. The most detailed advice which would be given to a notice user, is shown in Fig. 2.
In this mode the system advices the user on what-to-do by telling her the location to be tested,
the value to be expected, the measuring device to use and the procedure to be followed for making
the measurement. This advice would be given to a user who does not have a troubleshooting
strategy and whose proficiency counter value is low.

The next advanced level of advice, which would be given to a troubleshooter who has a basic
understanding of the test set, various measuring devices, and the circuit pack in this mode, is shown
in Fig. 3. Now the system displays the entire diagnostic tree which was constructed based on good
troubleshooting strategies (e.g. "divide and conquer") for this particular pack. The system identifies
the user as one who doesn't have a good troubleshooting plan and who might need a longer time
to diagnose a fault. The tree displays only the location to be tested.

Error m test stratecJy-consult, d,ognostlc tree

Intelligent interaction in diagnostic expert systems 121

Fig. 3. A more advanced advice.

Finally, the most advanced level of advice is shown in Fig. 4. Such an advice would be given
to an experienced troubleshooter. In this mode the system gives an advice on how-does-it-work,
by displaying the signal path. The user is responsible for the troubleshooting strategy and also for
completing any necessary details.

3. D I S C U S S I O N

Since consultation interrupts working, advisory systems, both human and computerized, are
frequently not welcome. Intelligent interaction deploys computerized advisory capabilities by
merging working and learning modes. In this paper we explore the user modeling technique to
implement intelligent interaction. If explanation--communicating knowledge to the user by the
program--is viewed as a process of human knowledge acquisition, then a user model must be
maintained by the program as a presumed human knowledge representation scheme.

Carroll and Aaronson [2] showed how it is possible both to frustrate and to help people by
providing "intelligent" help. We are dealing with the question of how to deploy a less than perfect
advisory capability without having a sound theoretical ground. We believe that a flexible
interaction environment based on the human model, maintained by the computer program can
alleviate some of the user frustrations. The flexibility of the interaction is achieved by allowing to
query the advisory knowledge base at different levels of detail, depending on the level of user
sophistication.

To obtain realistic experience and insight we chose to work in the area of engineering, mental,
and economic significance: circuit-pack diagnostics. In this paper we describe the technical aspects
of what we perceive to be an intelligent user interface to an advisory system of sufficiently economic
impact. McR is a knowledge-based interactive graphic interface to a circuit pack diagnostic expert
system.

Scllernot,c error CORSULt $1qrlOL potl't

bipolar bipolar blpoLar = ~ clemu~ bipolar J demux bipoLar

Fig. 4. The most advanced and the least detailed advice.

122 Y. Lmov and S. RAVIKUMAR

McR integrates three kinds of knowledge: domain knowledge (i.e. circuit pack), troubleshooting
knowledge (i.e. diagnostic trees) and user knowledge (i.e. stereotype table), McR is an active
interface which dynamically changes the amount of detail presented to the user as well as the input
choices that the user is allowed to make. These changes are made using a knowledge-based model
of the user and of the circuit pack troubleshooting domain. McR combines the strategies of
interaction: it is able to advise both on "'how-to-do-it" and on "how-does-it-work". While
"'how-to-do-it" advice is concerned with the measurement procedures [e.g. instrument (scope, etc.)
and location (ic, pin)], the "'how-does-it-work" deals with the deeper knowledge representing the
flow of the signal and the sequence of measurements. We have demonstrated that the analysis of
user actions requires disassembly of observations along the different kinds of knowledge. Thus we
develop special knowledge abstraction algorithms along with reification algorithms. The resulting
system, instead of guiding the user by querying for input, monitors users actions, and offers help
when needed. McR is used in conjunction with the STAREX expert system which is currently
installed at an AT&T factory.

Methodologically. we have shown a deep relationship between the problems of user interface
construction, the problem of knowledge acquisition, and the problem of efficient diagnostic
reasoning. All of these problems involve optimal selection of the sequences of measurements, and
in fact, all of our implementations use the same software module for this purpose [5]. We have
also proposed the basic intelligent interaction paradigm to be a loop, consisting of monitor,
abstract, compare, and react activities (the resulting system, McR, demonstrates its software
implementability and its name is a mnemonic to the paradigm). Additionally, we have demon-
strated that metaprogramming techniques have great potential in implementing intelligent inter-
action systems. McR, in particular, has been developed entirely in Prolog--a logic programming
language with an especially convenient environment to develop metainterpreters.

An important area for future research is that of improving a communication backchannel to
allow the user to respond to the help in a less constrained way. Another possible way to improve
our system is to develop an automated user activities monitoring system. We also foresee future
intelligent advisors being able to perform "'what if" analysis of user actions, A way to do such a
task is to substitute the "'correct" parts of the model with the assumed user actions and results,
reify the knowledge base and compare the resulting tree with the ideal one. Additionally, we plan
to incorporate the truth maintenance mechanisms in intelligent user interfaces. And finally, we
foresee using intelligent user interfaces for knowledge acquisition.

.4cknowledgements--We gratefully acknowledge the support of Walt Lawrence who made man~, invaluable comments and
suggesttons: On-Ching Yue for guidance and insight, and Leon Levy for patient reading and comments.

REFERENCES

I. J. Carroll and J. McKendree, Interface design issues for advice-giving expert systems. Commun..4CM 30(1h 14-31
(1987).

2. J. Carroll and A. Aaronson, Learning by doing with simulated intelligent help. Commun..4CM, 31(9), 1064-1079,
(1988)

3. Y. L~rov. S-fAREX--s~muhaneous test and replace c~rcmt pack troubleshooting expert system prototypmg and
implementation. Engng .4pplic Art(£ Intell. 2, 3-18 (1989).

4. Y. LIrox. Circuit pack diagnostic expert systems--a sur,,'ey. Computers Math. Apphc. 18(4), 381-398 (1989),
5. Y. Lirov and O. Yue, Circmt pack troubleshooting via semantic control I: goal selection. Proc. IEEE Wkshp .4rtificial

Intelligence lbr Industrial Application, Hitachi, Japan, pp. II8-122 (1988).
6. N. Morris and W. Rouse, Revie~ and evaluation of empirical research in troubleshooting. Human Factors 27(5),

503-530 11985)
7. L. H.~afil and R. L. Rl~,est, Constructing optimal binary decision trees is NP-complete. In~. Process Lett. 51, 15-17

(1976)
8. O. H. Ibarra and S. Sabra. Pol.~nomially complete fault detection problems. IEEE Trans. Comput. C-24(3), 242-250

(1976).
9. J. L. Saupe, Troubleshooting electronic equipment: an empirical approach to the ~dentificauon of certain requirements

of a maintenance occupation. Ph.D. Dissertauon, University of Illinois (19541.
10. R. Glaser and J. Philhps, An analysis of proficiency for guided missde personnel: Ill, patterns of troubleshooting

behaxior. Technical Bulletin, 55-16. American Institute for Research, Washington D.C., Aug. (1954).
I I. C. Getty, s, C. Manning, T. Mehle and S. Fisher, Hypothes~s generation: a final report of three years of research.

Techmtal Report 15-10-80. Decision Process Laboratory, Universit3 of Oklahoma, Norman, Okla, Oct. (1980).
12. Human engineering criteria for mihtary systems, equipment, and facihties. Report MIL-STD 1472C, Department of

Defense. Washmgton, D.C. (itS81).

Intelligent interaction in diagnostic expert systems 123

13. W. Buxton, M. R. Lamb, D. Sherman and K. C. Smith, Towards a comprehensive user interface management system.
Comput. Graph. 17(3), 35-42 (1983).

[4. S. L. Smith and Y. N. Mosier, Design guidelines for the user-system interface software; The Mitre Corporation
Technical Report ESD-IR-48-190, Bedford. Mass. (1984),

15. A. F. Norcio and J. Stanley, Adaptive human-computer interfaces. Technical Report # NRL-9148, Naval Research
Laboratory, Washington, D.C., Sept. (1988).

16. J. Brown, R. Burton and J. deKleer, Pedagogical, natural language, and knowledge engineering techniques in SOPHIE
I, I! and Ill. In Intelligent Tutoring Systems (Eds D. Sleeman and J. Brown), pp. 227-282. Academic Press, New York
(1982).

17. M. H. Richer and W. J. Clancey, GUIDON-WATCH: a graphic interface for viewing a knowledge based system.
Technical Report, STAN-CS-85-1068, Stanford University, Calif. Aug. (1985).

18. E. Schoen and R. G. Smith, IMPULSE: a display oriented editor for STROBE. Proc..4AA1"86, pp. 356-358 (1986).
19. F. N. Hill, J. D. Ward and A. L. Yates, SandKAST: An automated knowledge acquisition system. SAND-87-0364C,

Sandia, Dec. (1987).
20. J. H. Boose, Personal construct theo D and the transfer of human expertise. Proc. AAAI'84 (1984).
21. A. Stevens, B. Roberts and L. Stead, The use of a sophisticated graphics interface in computer-assisted instruction.

IEEE Comput. Graph. Applic. Mar./Apr., 25-30 (1983).
22. M. L. Powell and M, A. Linton, Visual abstractions in an interactive programming environment. Proc. ACM

SIGPLAN, Sigplan Notices, Vol. 18, pp. 14-21, Jun. (1983).
23. S. P. Reiss, Graphical program development with PECAN program development systems. Proc. ACM SIGSOFT/

SIGPLAN Software Engineering Syrup. Practical Software Development Environmems. Apr. (1984), also printed as
Sigplan Not. 19(5), 30-41 (1984).

24. S. P. Ross, A conceptual programming environment. Proc. 9th Int. Conf. Software Engineering, Monterey. Calif.
Mar,Apr. (1987).

25. C Rathke, Human-computer communication meets software engineering. Proc. 9th Int. Con(. Software Engineering,
Monterey, Calif. Mar Apr. (1987).

26. G. P. Brown, R. T. Carling, C. F. Herot, D. A. Kramlich and P. Souza, Program visualization: graphical support for
software development. Computer Aug., 27-34 (1985).

27. B. Melamed and R. J T. Morns. Visual simulation: the performance analysis workstauon. Computer. Aug. 87-94
(1985J.

28. A. Borning, The programming language aspects of ThingLab, a constraint-oriented simulation laboratory. ACM Trans.
Progrng Lang. Syst. 3(4}, 353-387 11981).

29. T. Dudley, Graphics in software design. Computers. Graph. WId Feb. 35-42 (1986).
30. S. Greenberg and L. H. Witten, Adaptive personalized interfaces--a question of viability, Behavior Inf. Tech. 4(I). 31-45

(1985).
31. E. A. Edmonds. Adaptive man-computer interfaces. In Computing Skills and the L'ser Inte(lace (Eds M. J. Coombs

and Y. L. Ahy), pp. 389-426. Academic Press. London (1981).
32. M. V. Mason and R. C. Thomas. Experimental adaptive interface. Inf. Technol. Res. Des. Applic. 3(3), 162-167 (1984).
33. W. Sherman, SAUCI: self-adaptive user-computer interfaces. Ph. D. Dissertation, Umversity of Pittsburgh, Pittsburgh,

Pa 119861.
34. R. Reichman-Adar, Extended person-machine interface. ,4rttf. In(ell. 22, 157-218 (1984).
35. W. B. Rouse, Human-computer interaction in the control of dynamic systems. Computing Sun'. 13, 71-100 (1981).
36. E. Risland. Ingredients of intelhgent user interfaces Int. J. Man-Mach. Stud. 21, 377-388 [1984).
37. W. Wahlster and A. Kobsa, Dialogue-based user models. Proc. IEEE 74(7), 948-960 (1986).
38. H. Mozelco, A human;computer interface to accommodate user learning stages. Communs .4CM 25(2), 100-104 (I 982).
39. E. Rich, User modeling ,,ia sterot~pes Cogn. Sei. 3, 329-354 (1979).
40. D. Crockford, Stand by for fun. In Interactit'e Multimedia (Eds S. Ambron and K. Hooper). Microsoft Press (1988).
41. G. Fischer, A. Lemke and T. Schwab, Kno~,ledge-based help systems. Proc. CH185 Human Factors tn Computing

Systems. San Francisco, Calif.. 14-17 Apr. pp. 161-167. ACM, New York (1985).
42. I. Monarch and J. Carbonell, Coal SORT: A knowledge-based interface. IEEE Expert 2(I), 39-53 (1987).
43. W. B. Croft, The role of context and adaptation in user interfaces. Int. J. Man-Maeh. Stud. 21, 283-292 (1984).
.,t4. R. Kass and T. Finin, The need for user models in generating expert system explanations. Int. J. Expert. Syst. (m press).
45. M. J Coombs and J. L. Alty, Expert systems: an alternate paradigm. Int. J. Man-Maeh. Stud. 20, 21-43 (1984).
46. D. A. Norman, Design rules based upon analyses of human error. Commun. ACM 26, 254-258 {1983}.
47. M. Matz. Tov, ards a process model for high school algebra errors. In Intelhgent Tutoring Systems (Eds. D. Sleeman

and J. S. Bunon). Academic Press, New York (1982}.
48. R. Burton and J. S. Brown, A tutoring and student modehng paradigm for gaming environments. Proe. ACM SIGCSE,

SIGCUE Joint S.vmp. (1976).
49. T. Finn and D. Darger, GUMS: A general user modeling system. University of Pennsylvania School of Engineering

and Apphed Science, Technical Report MS-CIS-86-35, May (1986).
50. K. Morik and C. Pollinger, The real estate agent--modeling users by uncertain reasoning..41 Mag., pp. 44-52 (1985).
51. J. J. Allen and C. R. Perrault. Analyzing intentions in utterances. Art!£ Intell. 15, 143-178 (19801.
52. R Burton and J. S. Brown. An investigation of computer coaching for informal learning activities. In Intelligent Tutoring

Systems (Eds. D. Sleeman and J. S. Brown}, pp. 137-155. Academic Press, New York ~1982).
53. M. R. Genesereth, The role of plans in intelligent teaching systems, in Intelligent Tutoring Systems (Eds D. Sleeman

and J. S. Brown), pp. 137-[55. Academic Press, Net' York (1982).
54. L. Aid(o, C. Cecchi and D. Sartini, Representation and Use of Metaknotledge. Proc. IEEE 74(10L 1304-1321 (1986).
55. M. Gordon, R. Milner and C. Wadsworth, Edinburg LCF: a mechanized logic for computation. Lecture ,Votes

Computer Stience 78. Springer, Net' York (1979).
56. A. Wikstrom, Functional Programming t.'sing Standard ,l,lL. Prentice-Hall, Englewood Chffs, N.J. (19871.
57. R. Weyhranch, Prolegomena to a theory of mechamzed formal reasoning. AI J. 13, 133-170 (1980).
58. Y. L~rox, Computer aided software engineering of expert s.~stems. E,xpert Systems with Applications. Pergamon Press,

Oxford [in press).

