
Computers Math .4pplit Vol. 20. No 9 10, pp. I I 1-123, 1990 009%4943 90 $3.00 + 0.00 
Printed in Great Britain. All rights reserved Copyright ,£' 1990 Pergamon Press pie 

I N T E L L I G E N T  I N T E R A C T I O N  I N  D I A G N O S T I C  E X P E R T  

S Y S T E M S  

Y. LIROV and S. RAVIKUMAR 

AT&T Bell Laboratories, Holmdel. NJ 07733, U.S.A. 

Abstract--Advisory systems help to improve quality m manufacturing. Such systems, how, ever, both 
human and computerized, are less than perfect and frequently not welcome, Sharp separation between 
working and learning modes is the mare reason for the apparent hostility of advisory systems. Intelligent 
interaction deploys computerized advisory capabilities by merging working and learning modes. We have 
developed a knowledge-based interactive graphic interface to a circuit pack diagnostic expert system. The 
graphic interface integrates both the domain knowledge (i.e. circuit pack) and the troubleshooting 
knowledge (i.e. diagnostic trees). Our interface dynamically changes the amount of detail presented to the 
user as well as the input choices that the user is allowed to make. These changes are made usmg 
knowledge-based models of the user and of the circuit pack troubleshooting domain. The resulting system, 
McR, instead of guiding the user by querying for input, monitors users actions, analyzes them and offers 
help when needed. McR is able both to advise "how-to-do-it" by reifying shallow knowledge from the 
deep knowledge, and to explain intelligently "'how-does-it-work'" by abstracting deep knowledge from the 
shallow knowledge, McR is used in conjunction with the STAREX expert sy.stem which is installed at 
AT&T factory. 

I. I N T R O D U C T I O N  

In this paper we discuss the development of advisory interfaces for electronic circuit pack 
troubleshooting. Advisory interface is a term used to describe collectively any training and reference 
material, on-line help and guidance, and any other user support means. A diagnostic expert system 
is an example of a computer-based advisor. Computerized advisory systems are hard to build and 
difficult to use. Since a consultation is a break in work continuity, new users try to skip around 
in a training sequence or dismiss training altogether [I]. Additionally, as Ref. [2] noted: "'Studying 
advisory problems and developing advisory solutions for the leading edge of human-computer 
interaction is hampered by the fact that the leading edge must have already been codified and 
deployed before advisory problems can even exist." 

Another basic difficulty in developing advisory interfaces is the lack of understanding of coaching 
and interacting. For example, people often seek advice by making claims about the possible answer 
to their (unannounced) query. Does it mean that in such cases a direct question is less efficient? 
Another important issue is the frequency of an advice, or how often should the advice be offered? 
A good parent does not teach the children at every occasion when something is not up to the 
standards of the parent. How detailed should be the advice? When is it more important to provide 
the declarative advice (i.e. how-does-it-work) and when--the procedural advice (i.e. how-to-do-it)? 

In addition, it is important to note that the advisor is constantly under suspicion of giving the 
wrong advice. The advisor loses credibility after displaying even the smallest deficiencies. What are 
the techniques to restore credibility? And what are the answers to all these questions, when the 
advisory interface is a computer program. 

I.I. Research and Development Topic 

In this subsection we refine the above outlined research topic to a task: we specify what exactly 
we want a computer to do. Having developed an expert system for a manufacturing facility 
(STAREX, see Lirov [3]), we experiment with a possible solution to the most important question: 
how to deploy a less than perfect computerized advisor? Basically we are trying to improve the 
classical expert systems which patronize the user by issuing queries, explaining only when asked, 
and giving the result only at the end of the session. Such systems treat the user as an object for 
providing the details which are necessary to complete the reasoning done by the machine. These 
systems also maintain a sharp separation between the learning and working modes. 

III 
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I. I.I. The task 

Carroll and Aaronson [2] address the same question by simulating an intelligent advisory system 
for an interactive software design package (the "'Wizard of Oz" technique). We build on their work 
in that we consider the same issue, but we restrict ourselves to a relatively narrow application 
domain. By considering a narrow application domain we expect to be able to go a step further 
from simulating an interface to actually writing its code and observing its behavior. We build an 
add-on software module, called McR, which merges working and learning modes. 

I. 1.2. The domain 

We chose our application domain to be the electronic circuit pack diagnostics for two reasons: 
first, diagnostics is the widest expert systems application domain; and second, diagnostics of 
electronic circuit packs is the better understood diagnostic problem because of the availability of 
deep knowledge [3,4]. We build on STAREX expert system in that we regard circuit pack 
diagnostic models to be available. Since STAREX is a deployed expert system, we expect our actual 
intelligent advisory system to be deployable at the factory floor level. We note here that to ease 
on our programming efforts, ~.e have used a simplified STAREX version, which does not include 
truth maintenance. This issue is postponed for future research. On the other hand we reuse the 
softw.are modules performing the optimization of the diagnostic sequences [5]. For the sake of 
better paper readability, we digress briefly to explain the basic concepts in electronic circuit pack 
diagnostics. For an overview of the topic the reader is referred to Ref. [4]. 

I. 1.2. I. Diagnosis. Diagnosis of an electronic circuit usually refers to the process of determining 
the fault~r component(s) that cause an undesired behavior (output) of the given circuit for some 
(correctly) given input. Diagnosis can be regarded as a problem of economic optimization: there 
is a value associated with every component in the pack, as well as a fiscal value associated with 
the process of assembly and soldering of the pack. Thus, when a pack is declared faulty, it is 
desirable to replace only the faulty components. 

Moreover, the process of identification of the faulty components (the diagnostics) consists of a 
series of tests each of which has an associated cost, expressed in such parameters as test setup time, 
component destruction, etc. The successful troubleshooter must be able to select an appropriate 
strateg), conduct measurements and replace components. Morris and Rouse [6] report that humans 
are not good in judging failure rates, human performance degrades as systems become larger and 
more complex and, or in the lace of time constraints, presentation of theory of operation does not 
improve performance and proceduralization improves performance. 

Diagnosis is a difficult problem for the beginners. An unskilled troubleshooter has difficulties in 
making an indictment, doing it correctly and doing it sufficiently fast. As a result, a beginner causes 
buildup in work in process, unnecessary test-repair cycles, unresolved manufacturing problems (e.g. 
a fault) robot or a bad batch of components), and even sometimes overlooked design problems. 
Therefore, the construction of automated means for troubleshooting guidance is justified both as 
an intellectual and as an economic challenge. However, the diagnostics problem li.e. the 
construction of a computer algorithm which is capable to perform diagnostics) is NP-hard [7, 8]. 

I. 1.2.2. Troubleshooting strategies. Two basic approaches and their combinations are currently 
utilized in industry for conventional diagnostic software development: the fault dictionary 
approach and the guided probe approach. The fault dictionary approach requires simulation of 
the fault) behavior of the system and subsequent storage of the simulation results (as well as the 
fault assumptions~ in the fault dictionary. A "misbehaved" output of the pack under test can 
therefore be looked up in the fault dictionary. The fault dictionaries are not being used x~idely since 
the) are usually incomplete and ambiguous. 

The guided probe approach requires only simulation of the correctly functioning circuit pack. 
The basic tool in utilizing this approach is the blame-shifting mechanism applied after each 
measurement. The upstream (from the test point view) components in the circuit are blamed only 
when the measurements do not agree with the expected results. The efficient sequencing of 
measurements becomes the main problem when implementing the guided probe approach. 

The troubleshooter must employ some kind of strategy in searching for the source of the diffi- 
cult). Ref. [9] noted that poor troubleshooters mader fewer tests before accepting hypothesis as 
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correct, they had more incorrect hypothesis, and they pursued incorrect hypothesis longer than did 
the better troubleshooters. Glaser and Phillips [10] associated more than 20% of strategic 
shortcomings (e.g. insufficient testing) with faulty inferences (e.g. misinterpretation of a test). 
Additionally, poor troubleshooters tend to have incomplete lists of hypothesis and to be frequently 
overconfident about their completeness [I I]. 

I. 1.3. The ciew 

McR behaves like a diary for the user, where the user enters the measurements and their results. 
The system collects this data and tries to reconstruct the reasoning of the user. If McR discovers 
a significant reasoning fault on the user's behalf, then it offers guidance. If the fault is a technical 
fault (e.g. using wrong measurement device), then the advice is a low-level, "how-to-do-it" advice, 
Otherwise, it is a "how-does-it-work" advice. Such advice can be about the test strategy (e.g. a 
diagnostic tree), or about the circuit pack (e.g. signal path). This combination of two approaches 
(the procedural and the declarative system explanations) is most likely to be the most effective 
means of troubleshooting advice [6], since the system merges the Socratic and the "'learning by 
doing" methods of instruction. 

I. 1.4. Additional benefits 

An important expert systems characteristic is its flexibility to acquire knowledge. Expert systems 
usually mimic the behavior of experts which combine knowledge about several domains. 
Experienced circuit pack troubleshooters, for example, have some understanding about the circuit 
pack, know how to use measurement equipment (e.g. oscilloscope), have knowledge about the 
manufacturing process and its weak spots (e.g. "that robot loses its calibration frequently and thus 
inserts wrong components", or "'this transistor is often bad"), and know about generally good 
troubleshooting strategies (e.g. "divide and conquer"). Shallow knowledge bases contain rules 
which represent the combined expert knowledge. It is difficult to maintain such knowledge bases 
as it is difficult to comprehend all the interdependencies between the rules. 

Deep knowledge bases, on the other hand, promote easier maintenance by segregating different 
kinds of knowledge in separate knowledge bases. The price for this convenience is the need for an 
integrated inference engine which may take a form of a meta-interpreter [3, 4]. Construction of user 
interfaces for such knowledge bases is complicated by the necessity to maintain all the knowledge 
bases simultaneously. Our system is able to acquire different kinds of knowledge (e.g. electronic 
signal path or troubleshooting tree) and immediately show the implications in the compiled 
Ishallow) form. We demonstrate this flexibility using an integrated graphics interface. 

From the methodological point of view, this experiment helps to understand better the taxonomy 
of problems related to artificially intelligent diagnostics. In particular, we show that the contem- 
porary subdivision of the issue to seven subproblems [4] is rather superficial: the user interface 
problem is not a stand-alone problem, to be solved separately. Its solution includes solving all the 
typical problems for the knowledge-based applications, e.g. choosing knowledge representation, 
acquiring knowledge, etc. 

I .Z The Approach 

1.2. I. User model 

Roughly, we develop intelligence of the advisory system by creating a user model. The model 
can be used as a reference with which the actual user performance can be compared. The task of 
building intelligent advisory system through a user model seems to be tractable for three reasons: 
first, we can inventory the errors of the analysts; second, we expect to develop shallow knowledge 
disassembly mechanisms to map from observations to user errors; and finally, we have developed 
in Ref. [3] a multi-source deep knowledge integration mechanism (reification), which we use to 
check the success of the disassembly of knowledge. Systematic shallow knowledge disassembly 
(extracting deep knowledge) is a new interesting problem having much in common with machine 
learning. 
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1.2.2. Reification and abstraction 

Coding an intelligent advisory system is a large project requiring solutions to a variety of 
problems: designing knowledge representation, control strategy, building knowledge base, integrat- 
ing multiple sources of deep knowledge about electronic circuitry, developing user model, acquiring 
knowledge and displaying advice in a variety of ways. Our previous report [3] addressed the first 
four problems, while in this paper we deal with the last three. We show that the algorithms for 
knowledge reification and abstraction are the cornerstones in the intelligent advisory systems. This 
view holds promise for further development because it provides better understanding of both 
reification and its inverse--abstraction. Furthermore, we introduce a new use for abstraction--we 
view it as a tool to test user behavior patterns. 

1.2.3. Performance criteria 

The performance of the proposed method can be evaluated by testing it for correct and timely 
user error classification. While correct classification depends on the user model and diagnostic 
algorithm, the timeliness of classification depends on how much of the relevant information has 
already been preprocessed. Being able to preprocess most of  the information beforehand holds 
promise to be able to deliver timely and correct advice. 

1.2.4. Programming techniques 

The programming approach is similar to that of  knowledge-based programming since we use 
knowledge to supplement the observed user actions to generate our interpretations. The difference, 
of course, is that the product of the system is not a program code, but an advice. We use 
object-oriented logic programming to develop graphic interface, and metaprogramming--for  
reification and abstraction. 

1.2.5. The scope 

Our method might scale up to bigger systems, if deep and differentiable shallow kinds of 
knowledge can be integrated, and a complete and finite inventory of  human errors are available. 
Of course, certain types of intelligent help will always be missing because of the inherent brittleness 
of such systems. The system is honest about its limitations when it knows them: the system will 
tell that something is wrong but will not extend a temporary solution. We advocate such an 
approach to all advisory systems (machine and human) in order to maintain their credibility. 

Our next question is: How well is the method understood? We confess that we do not understand 
the method very well, The reason is that the method depends on having complete knowledge about 
the system under diagnosis and about the human errors. We are unable to prove that we have 
completed the acquisition of either kind of knowledge, let alone the mapping between the human 
error inventory and electronic circuitry deep knowledge. Thus, paradoxically, the only way to 
complete knowledge acquisition is to write down a program with incomplete knowledge to deploy 
it, to provoke the difficulties, and to learn experimentally about the limitations of the method. As 
a result, we expect not only to expand the scope of the knowledge base but also to refine the 
knowledge about human analyst errors. 

1.3. Design for Experimentation 

Once ~.e decided to use programming as the main exploration tool, we must verify that our 
program is going to support experimentation in addition to having the required performance level. 
To ensure "'experimentability", we write the code in Prolog, in order to have all the inference 
mechanisms readily available for alteration. We will be able to observe the program's behavior both 
externally via graphics display and textual messages, and internally--via Prolog execution trace. 
We demonstrate its correct knowledge through a set of test cases corresponding to the user faults. 

The program generally supports both "how-to-do-it" and "'how-does-it-work" kinds of advice, 
it is not tuned to one particular kind of help. Performance of the program has two aspects: its 
functional and its time characteristics. Functionally, we expect to observe increased number of rules 
and improved troubleshooting procedures. Our understanding about interaction, together with a 
short review of some prevoius relevant work, is laid out in Section 2. An interface, implementing 
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our ideas of interaction, is developed by efficiently combining knowledge and metaknowledge in 
Section 3. 

2. INTERACTIVE APPROACH 

A computer program is considered interactive when it requires some user participation in order 
to conclude its processing. Diagnostic expert systems are obviously interactive systems both at the 
knowledge acquisition and at the diagnosis phases. The degree of interactivity, the amount of 
freedom that the user is allowed varies depending on the skill of the user. If the user is a 
programmer, then an editor is sufficient. Otherwise, more sophisticated tools are required. Some 
guidelines for constructing human-computer interfaces have been published by DOD [12-15], but 
they do not provide the necessary information for determining the effectiveness of specific interfaces 
and their sophistication. As a rule of thumb, the program sophistication level is directly 
proportional to the user's familiarity with the computer programming techniques. 

SOPHIE (SOPHisticated Instructional Environment) is probabl~ the best example of an 
intelligent interactive computer-based instructional system used for teaching electronics trouble- 
shooting [16]. The system can be used in two modes: a team troubleshooting game and an 
interaction with an expert. In the game mode the players of one team inflict faults into a simulated 
electronics system and troubleshoot the simulated faults of the other team. SOPHIE is an example 
of an experimentally implemented learning-b)'-~h~ing environment with a taxonomy of user errors 
and an advice feedback mechanism to the user. Unfortunately, the system lacks graphic interface, 
does not handle significantly complex electronics equipment, and does not evaluate troubleshooting 
strategies. 

2. I. Graphic Interaction 

Interactive graphics systems require both the inputs and outputs be specified graphically. 
Graphics editing of the knowledge base has been proposed recently [17-19] as interaction means 
with the knowledge base. An expertise transfer system (ETS) [20] has been proposed to generate 
the rules from the user-supplied elements and their attributes and corresponding ratings. The 
system identifies conflicts and ambiguities in the rules (but not omissions), and asks the expert for 
modifications. Since ETS does not use a model of the unit under test, numerous similar rules may 
need to be entered (e.g. pertaining to the same faults on different channels) and at the same time 
ETS may still not notice some of the missing rules. 

Sand KAST (Sandia Knowledge Acquisition System, Hill et al. [19]) uses a directed acyclic graph 
structure as a formalism for knowledge acquisition. In this graph, a node represents a state of the 
troubleshooting session with an associated set of possible faults. An arc represents a test to be 
applied in the context of the source node. The graph structure provides the means for viewing the 
knowledge acquisition and truobleshooting processes as well as for graphic editing of the 
knowledge base. SandKAST, although alleviates most of the problems that arise with knowledge 
base maintenance, runs only in the KEE environment on a Symbolics computer and relies heavily 
on KEEs graphics utilities and object orientation. 

IMPULSE [18] permits the user to interact with the knowledge base via various multiple 
windows and graphic displays of the knowledge. Editing, however, is allowed only at the textual 
level and not graphically. The user of sophisticated graphics interfaces in computer aided design, 
simulation, or instruction systems has been also suggested in STEAMER [21], Omega [22], Pecan 
[23], Garden [24], Wlisp [25], PV [26], PAW [27], Thing Lab [28] and GUIDON-WATCH [17]. All 
of the above systems emphasize and make use of the abilities of the brain to detect spatial patterns 
and reason upon them [29]. 

2.2. Flexible htteraction 

Few of the above mentioned systems, however, call attention to the questions of evaluating 
advisory strategies and adapting them, and all leave those questions open. Consequently, all of the 
above systems lack the flexibility of adjusting the user interface to the sophistication level of 
the user. As a result, the systems are either too complex at the initial stages or too detailed at 
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the subsequent stages. In any case the users becomes annoyed with the system and frequently stop 
using it. 

The concept of an adaptive interface [30-32] is an extension of an interactive user interface idea. 
An interface system becomes an adaptive system in two ways: active and passive. The passive way 
allows users to modify the interface, so it is tailored to meet the specific users needs. Although 
resulting in a more suitable interface, the burden of its adapting is left to the user. An active 
interface modifies itself. Architecture of an active interface [33-35] addresses explicitly the issues 
of dialogue [36, 37] and user modeling [38, 39]. McR is an active user interface. 

Crockford [40] identified the user involvement as the most important principle in the design of 
interactive programs. He characterized user involvement as having "more to do with taking part 
than in making decision". The user choices must affect the presentation. The user is viewed as a 
part of the program. Following this approach, our system maintains a model o f  the user. According 
to the user-model, the sytem defines the kind of  data and rules to operate on. Such an approach 
allows the user to enter incomplete specifications of the problem and let the system make 
knowledge-based interpretations of user intentions. Thus, instead of a one-directional interface at 
a single level of complexity, the system interface is flexible. 

Consider, for example, the arcade games. Depending on the number of accumulated points, the 
speed and the complexity of the game increases. But, contrary to arcade games, where the options 
given to the user to input into the system remain fixed, we require the user options to be dynamic 
and fit the user needs. The user model is constantly reevaluated by challenging the user at every 
step. Such a dynamic approach not only keeps the program to be updated about the level of  the 
user's proficiency, but it also allows some doubt in the user's mind about the outcome of the 
interaction. Therefore, the user remains interested in the interaction. The final diagnosis then is 
the "'happ~ end" which reinforces the user's interest in using the program. 

Recently Fischer et al. [41] reported about the need for combining the advice-giving strategies. 
The). distinguish between actice strategies, where the system provides advice by interrupting the 
dialogue, and passive strategies, where the user must explicitly ask for advice. Passive strategies 
usually employ a Socratic style of interaction where the system poses questions and the user is 
expected to provide answers. Such systems often patronize the users, treating them as the 
information providing tools, needed only to conclude the reasoning by the computer. Active 
strategies often employ learning-by-doing environments, where user's actions are compared with 
the ideal actions and feedback is provided to improve the user's responses towards expert 
prototype. McR combines the strategies of interaction. 

2.3. Adaptive bzterface Architecture 

Knowledge-based adaptive interfaces include four kinds of knowledge [36, 42,43]: (a) user 
model: (b) interaction and dialogue management; (c) knowledge of the task and (d) system 
characteristics. In the next section we describe user model and interaction management. 

2.3. I. L'ser model 

Kass and Finin [44] claim that individualized user models are essential for good explanations 
~hen the users differ in their knowledge of the domain. Loosely speaking, they perceive the user 
model as a knowledge source containing explicit assumptions on all aspects of the user that may 
be relevant for the interaction of the system with the user. Any interactive system has a user model. 
However. most systems maintain an implict user model because of the assumptions about the user 
made during system design. Representing user model explicitly allows to maintain it dynamically 
during the program execution, and thus to achieve the desired level of system interface flexibility 
tcf. Coombs and Alty [45], who stored error patterns as a normative user models for users of 
Prolog). 

The simplest technique for building user models involves classifying users as novices and 
updating their status as they demonstrate improvements [46]. A more discriminating technique, 
allowing more efficient teaching, involves comparing the user's performance with that of the expert. 
It is assumed that the user knows about the underlying concept, if its derivative is used correctly 
[47, 48]. On the other hand, by classifying the errors that are made by the user, the underlying 
deficiencies may be uncovered. The most sophisticated technique is the stereotype user modeling 
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Table I. Typical anal)st errors and corresponding user stereotypes 

Errors Interpretauon 

Unnccessar) 
measurement 
Wrong measurement 

Wrong conclusion 
Earl)' conclusion 
Late concluston 
No conclusion 
Lack of technological 
suggestions 

Lack of plan 

Misunderstanding of schematic. 
lack of sktll to use eqmpment 
Misunderstanding of schematic 
Laziness 
Lack of self-confidence 
Lack of persistence 
"l'~ory tower" complex, lack 
of understanding of manufacturing process 

which involves describing the user by a set of  characteristics [49]. Examples of such systems include 
a bibliographical system G R U N D Y  [39], and a real estate recommendation system [50]. McR uses 
a troubleshooter's model which is a combination of  stereotyping and user error classification 
techniques. 

The user model is useful during the troubleshooting session to select the way in which a 
troubleshooting advice is constructed and displayed, Once such an error-stereotype table (Table I ) 
is constructed, the troubleshooters can be ranked, depending on a linear combination of  their scores 
in the table. 

When a novice analyst is interacting with the program, the entire is displayed, including 
the component location, description of the test equipment used, measurement procedure 
and the meaning of the readouts. As the user becomes more proficient in the use of  the 
system, such a detailed display becomes annoying. A part of the advice is now sufficient. At 
the next level of proficiency, it is enough to display just the location of the measured 
component instead of the complete advice. This information now can be supplemented by the 
display of  the relevant part of the fault tree. Finally, for the expert, it is enough to display just 
the list of  suspected components and a scaled dov~.n fault tree. We notice that, as the user 
sophistication increases, we may condense more and more information at the increasingly abstract 
levels. 

We note here that in order to diagnose correctly the user's errors, it is not sufficient to observe 
the last user's action. The trace of  the entire process that the user traversed in arriving to the 
current situation is needed in order to make a correct conclusion about user's errors [51-53]. For 
example, if a user, troubleshooting a signal path, consisting of  the components C1, C2, C3, C4, 
C5 in that order, and having observed good input to CI and bad output from C4, measures the 
output from C5, then the user most likely misunderstood the signal path. On the other hand, if 
the user measures the input to C2 then it is most likely that she does not have a good 
troubleshooting plan. 

2.4. Logic Programming Implementation 

Before continuing with the discussion about user modeling and interaction, we digress briefl2, 
to highlight several points on system implementation. 

Our graphic interactive interface has been constructed by efficiently combining knowledge and 
metaknowledge. Aiello et al. [54] describe three approaches of embedding metaknowledge in a 
system. The most primitive approach is to "'hardwire'" metaknowledge by simply writing it as pieces 
of code in the system. Such an approach results in extending the implementation of the system with 
the procedures that actually instantiate the variables of  metaknowledge. An example of such an 
approach is the early rule-based expert systems where each separate case has to be covered by a 
specific rule instance. 

A second approach to combine knowledge and metaknowledge is the metalanguage approach 
as in ML [55, 56]. However, using this approach prevents the higher levels of  metareasoning. A 
third approach allows the user to access both the object and the metalevel simultaneously, as in 
FOL [57]. This approach requires that both the language and metalanguage have the same form 
of expression. Another requirement in the third approach is that both levels have access to the 
inference engine, allowing for proving both theorems and metatheorems. The user is referred to 
Ref. [54] for further discussion about the ways of amalgamating knowledge and metaknowledge. 



118 Y, LIROV and S. RAVIKUMAR 

It is suffice to note here that McR implements the third approach using the metaprogramming 
techniques of Prolog. Accordingly, we may state that a subcircuit X is fault}' as follows: 

indict(X, Z):- 
suspect(X), 
generate_suspect (X,Suspects), 
generate_ideas(Suspects,Ideas), 
try_ideas( Ideas, Suspects,Z). 

The predicate suspect/lis true if its argument X has good input and bad output (this fact may 
be acquired from the user). The predicates genera te_suspects /2  and generate_ideas/2 are the 
knowledge base access predicates, where the first is used to subdivide the circuit X into a set of 
faulty subcircuits, and the second to derive the set of indictment methods associated with the 
subcircuits. 

Here the object-let, el fact about the component Z being the reason for circuit X to fail is derived 
provided that the metalerel condition ofprol'ability holds between the set of relevant facts and the 
goal try-ideas (Ideas,Suspects,Z): 

try_ideas([IdealRest],Suspects,BadGuy):- 
do_or (Idea,Suspects, BadG uy), 
try_ideas(Rest,BadG uy). 

do_or (A,[XlY],Z):- 
T = .. [X,A,Z],T, 
do_or (A,Y,Z). 

The meta-predicate try_ideas/3 creates and executes (do_or/3)  the goals required to indict the 
suspected subcircuits, as long as there are ways to indict (ideas) and as long as all the subcircuits 
are not indicted. 

Note that a circuit pack can be faulty for different reasons and hence we not not declare X 
indicted by the following object-lel,el sentence: 

indict(X,Z):- suspect(X),  
idea(Z). 

The reader is referred to Ref. [3] for further information about the code of the circuit pack 
diagnostic expert s~stem. 

Our interface consists of two basic modules: the test tree manager and the user model manager. 
Test tree manager consists of the modules to reify the diagnostic tree and to handle the knowledge 
bases of advice and of signal path and pins in the circuit pack. It also manages the database of 
relations which define the mapping between the nodes of the test tree and the graphical objects 
representing the top view of the components [58]. The user model manager maintains a counter 
representing the level of the user's proficiency and the conditions for achieving the next level of 
proficiency. When the value of the counter exceeds a preset number of allowable errors, the system 
issues the corresponding advice. 

2.5..4daptire Troubleshooting hlterface 
Any user modeling system must provide the following important functions: user model 

representation scheme, interface between the user model and the rest of the expert system, and user 
model acquisition. Our computational paradigm for implementing intelligent user interfaces is a 
loop consisting of the following four activities: monitor, abstract, compare, and react. Therefore, 
McR consists of a monitor to acquire knowledge about the user, a fault identifier to map from 
user actions to user descriptions, and a proficiency table to map from user model to advice level. 
The monitor simply presents the user with the top view of the circuit pack and accepts from the 
user the information about the troubleshooting session. This information contains the location of 
the measurements, and their results. 

The user fault identifier matches the above information to one of the diagnostic trees developed 
at the knowledge acquisition stage. When a significant discrepanc}' is identified, the user is offered 
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help and the proficiency counter is decremented. Table I in Section 3.3 lists possible user faults. 
We differentiate between three basic kinds of troubleshooting errors: misunderstanding of  
schematic, misunderstanding of  troubleshooting strategy and misinterpretation of  the measure- 
ment. The proficiency level is matched also for the appropriate level of  abstraction which 
should be used when presenting information to the user. Low proficiency level corresponds to 
high level of  detail and vice versa. The schematic and measurement related errors can be ident- 
ified by comparing the true signal path with the signal path abstracted from user measurement 
sequence observations. The abstractions rules are presented in Section 3.6. The troubleshooting 
strategy related errors can be identified by comparing the measurement sequence with the ideal 
troubleshooting tree. 

Using a rule-based knowledge representation, we may subdivide our system into a hierarchy of  
rules (Fig. 1). At the first level are the rules which allow to decompose the knowledge base into 
a sequence of components corresponding to the path of  signal flow in the unit under test. At the 
second level are the rules which use the user supplied measurements to manipulate the sequence 
of  components obtained at the first level. Every manipulation triggers a rule in the third set of rules 
which describe the human troubleshooters behavior patterns. Every rule in the third set may issue 
a troubleshooting advice. 

2.6. Diagnostic Tree Decomposition Rules 

The diagnostic tree decomposition rules are used to generate an abstract signal path which will 
serve as a model for the actual signal path. This model serves the purpose of monitoring and 
analyzing in a convenient way the sequence of  actions of  the human troubleshooter. 

Rule 2.6. I 

If current diagnostic rule has subrules 
then invoke Rule 2.6. I for each of the  subrules 
and collect the current rule ld in the abstract signal path 
and invoke Rules 2.6.2 and 2.6.3. 

Rule 2.6.2 

Rule 2. 6.3 

If current diagnostic rule is a replace rule 
then tag the corresponding entry in the signal path as a replace entry. 

If current diagnostic rule is a test rule 
then tag the corresponding entry in the signal path as a test entry. 
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Note. The resulting signal path may contain non-unique elements which are ignored by Rules 
2.6,2 and 2.6.3. 

2. 7. Abstract Signal Path Manipulation Rules 

The abstract signal path manipulation rules maintain the current status of the model derived by 
the previous set of  rules. The model is updated either by deleting its parts which become obsolete 
due to the results of  test observations, or by replacing it by a new model due to a charge in the 
troubleshooting strategy. 

Rule 2. Z I 

If the outcome of the test is good 
then delete from the current abstract signal path all upstream entries. 

Rule 2. Z2 

If the outcome of the test is bad 
then delete from the current abstract signal path all downstream entries. 

Rule 2. 7.3 

If current test point is the root of  the diagnostic tree 
then select new diagnostic tree 

2.8. User Modeling Rules 

The last set of  rules actually selects the appropriate troubleshooting advice. These rules are used 
to decide whether to dispense a high level advice due to a minor troubleshooting strategy mistake, 
or to advice at a more detailed level. Such an advice is given because of  a significant lack of  circuit 
pack understanding on the part of  the human troubleshooter discovered by one of the rules. 

Rule 2.8. I 

If current test point does not belong to abstract signal path 
then display the signal path. 

Rule 2.8.2 

If current test point differs from the root of the current diagnostic tree 
then display the diagnostic tree. 

Rule 2.8.3 

If activated Rules 2.8. I or 2.8.2 more than three times 
then disperse a conventional troubleshooting advice. 

2.9. Intelligent Interaction Example 

The following paragraphs illustrate the different kinds of advice the system can issue depending 
on the user. The most detailed advice which would be given to a notice user, is shown in Fig. 2. 
In this mode the system advices the user on what-to-do by telling her the location to be tested, 
the value to be expected, the measuring device to use and the procedure to be followed for making 
the measurement. This advice would be given to a user who does not have a troubleshooting 
strategy and whose proficiency counter value is low. 

The next advanced level of advice, which would be given to a troubleshooter who has a basic 
understanding of the test set, various measuring devices, and the circuit pack in this mode, is shown 
in Fig. 3. Now the system displays the entire diagnostic tree which was constructed based on good 
troubleshooting strategies (e.g. "divide and conquer") for this particular pack. The system identifies 
the user as one who doesn't have a good troubleshooting plan and who might need a longer time 
to diagnose a fault. The tree displays only the location to be tested. 
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Fig. 3. A more advanced advice. 

Finally, the most advanced level of advice is shown in Fig. 4. Such an advice would be given 
to an experienced troubleshooter. In this mode the system gives an advice on how-does-it-work, 
by displaying the signal path. The user is responsible for the troubleshooting strategy and also for 
completing any necessary details. 

3. D I S C U S S I O N  

Since consultation interrupts working, advisory systems, both human and computerized, are 
frequently not welcome. Intelligent interaction deploys computerized advisory capabilities by 
merging working and learning modes. In this paper we explore the user modeling technique to 
implement intelligent interaction. If explanation--communicating knowledge to the user by the 
program--is viewed as a process of human knowledge acquisition, then a user model must be 
maintained by the program as a presumed human knowledge representation scheme. 

Carroll and Aaronson [2] showed how it is possible both to frustrate and to help people by 
providing "intelligent" help. We are dealing with the question of how to deploy a less than perfect 
advisory capability without having a sound theoretical ground. We believe that a flexible 
interaction environment based on the human model, maintained by the computer program can 
alleviate some of the user frustrations. The flexibility of the interaction is achieved by allowing to 
query the advisory knowledge base at different levels of detail, depending on the level of user 
sophistication. 

To obtain realistic experience and insight we chose to work in the area of engineering, mental, 
and economic significance: circuit-pack diagnostics. In this paper we describe the technical aspects 
of what we perceive to be an intelligent user interface to an advisory system of sufficiently economic 
impact. McR is a knowledge-based interactive graphic interface to a circuit pack diagnostic expert 
system. 

Scllernot,c error CORSULt $1qrlOL potl't 

bipolar bipolar blpoLar = ~  clemu~ bipolar J demux bipoLar 

Fig. 4. The most advanced and the least detailed advice. 
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McR integrates three kinds of knowledge: domain knowledge (i.e. circuit pack), troubleshooting 
knowledge (i.e. diagnostic trees) and user knowledge (i.e. stereotype table), McR is an active 
interface which dynamically changes the amount of detail presented to the user as well as the input 
choices that the user is allowed to make. These changes are made using a knowledge-based model 
of the user and of the circuit pack troubleshooting domain. McR combines the strategies of 
interaction: it is able to advise both on "'how-to-do-it" and on "how-does-it-work". While 
"'how-to-do-it" advice is concerned with the measurement procedures [e.g. instrument (scope, etc.) 
and location (ic, pin)], the "'how-does-it-work" deals with the deeper knowledge representing the 
flow of the signal and the sequence of measurements. We have demonstrated that the analysis of 
user actions requires disassembly of observations along the different kinds of knowledge. Thus we 
develop special knowledge abstraction algorithms along with reification algorithms. The resulting 
system, instead of guiding the user by querying for input, monitors users actions, and offers help 
when needed. McR is used in conjunction with the STAREX expert system which is currently 
installed at an AT&T factory. 

Methodologically. we have shown a deep relationship between the problems of user interface 
construction, the problem of knowledge acquisition, and the problem of efficient diagnostic 
reasoning. All of these problems involve optimal selection of the sequences of measurements, and 
in fact, all of our implementations use the same software module for this purpose [5]. We have 
also proposed the basic intelligent interaction paradigm to be a loop, consisting of monitor, 
abstract, compare, and react activities (the resulting system, McR, demonstrates its software 
implementability and its name is a mnemonic to the paradigm). Additionally, we have demon- 
strated that metaprogramming techniques have great potential in implementing intelligent inter- 
action systems. McR, in particular, has been developed entirely in Prolog--a logic programming 
language with an especially convenient environment to develop metainterpreters. 

An important area for future research is that of improving a communication backchannel to 
allow the user to respond to the help in a less constrained way. Another possible way to improve 
our system is to develop an automated user activities monitoring system. We also foresee future 
intelligent advisors being able to perform "'what if" analysis of user actions, A way to do such a 
task is to substitute the "'correct" parts of the model with the assumed user actions and results, 
reify the knowledge base and compare the resulting tree with the ideal one. Additionally, we plan 
to incorporate the truth maintenance mechanisms in intelligent user interfaces. And finally, we 
foresee using intelligent user interfaces for knowledge acquisition. 
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