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1. INTRODUCTION 

The epoch making paper of Zadeh [3] provided a mathematical theory for the 
development of models in many areas of sicnetific research in which fuzziness 
is a pervasive phenomenon [cf. 2, 51. In 1968, Zadeh [4] introduced the concept 
of a fuzzy event and studied its basic properties. This was the first attempt at 
providing a mathematical theory that accounts for the two fundamental modes of 
uncertainty inherent in most practical problems, i.e., statistical uncertainty 
and fuzziness or ambiguity. 

This paper deals with independent fuzzy events. In Section 2 some results 
which are basically of a set theoretic nature are presented. Section 3 contains the 
basis elementary results on independent fuzzy events. Finally in Section 4 
analogues of some of the important Zero-One laws of prbability theory for 
fuzzy events are established. 

2. PRELIMINARIES 

Let Q be a set, F(Q) be the lattice of fuzzy subsets of Q, and for 
each A E s(Q), pLa be the membership function of A, i.e., pa: Q -+ [0, 11. 
The concepts of a monotone sequence in s(Q) and its limit are defined in exactly 
the same way as in elementary set theory. The following lemmas present the 
basic results on monotone sequences in F(Q). The proofs are straightforward 
and will not be presented here. 

LEMMA 2.1. Let (A,) be a monotone sequence in s(Q) and A = limn+m A, . 
Then VW E 0, c4g(w) = limn+m )u~,(uJ). 

LEMMA 2.2. Let (A,) be a monotone sequence in S(Q) and A = lim,,, A,, , 
Then 

(a) VB E F(Q), (A,\B) is a monotone seQuence in F(Q) and lim,,,(A,\B) 
= A\B; 
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(b) VB E s(Q), @\A,) is a monotone sequence in F(Q) and lim,,,(B\A,) 
= B\A; 

(4 ‘dB E ~64, <B u 4) is a monotone sequence in 9(Q) and 
lim,,,(B u A,) = B u A. 

The concepts of lim sup and lim inf of sequences of fuzzy subsets of 9 are 
defined in exactly the same way as in elementary set theory. Using the definitions 
of union and intersection of fuzzy subsets of Q we immediately get the following 
result. 

LEMMA 2.3. Let (A,) be a sepllence in F(Q) and A = lim ~up~+,,~ A, , 
B = lim inf,,, A,. Then VwEQ. 

Using elementary properties of lim sup and lim inf of real numbers we can 
easily prove the following two lemmas. 

LEMMA 2.4. Let (A,) be a sequence in .F(Q). Then 

(a) lim inf,,, A,, C lim supn+,, A,; 

(b) lim infn+cn A, = (lim supnqm A,“)“, where c denotes complementation 
in Q. 

LEMMA 2.5. Let (A,,) and (B,) be sequences in 9(Q). Then 

liy+Fp A,B, C (liF+yp A,) (liTGyP B& 

We next consider subsets of P(Q) which satisfy certain algebraic closure 
properties. 

DEFINITION 2.6. Let G’ C F(Q). Then we say that 

(a) &’ is anF-algebra iff (i) Q E -Bz; (ii) A E ya/ =- AC E JY’; (iii) A, , A, ,..., 
A,E,~ 2 &A,&‘. 

(b) ~2 is an F - u-algebra iff (i) and (“) u as in (a) and (iii) (Ai) a sequence 
in .d’ =* uF=, Ai E &. 

lim (4 .d . IS an F-monotone class iff (A,) a monotone sequence in & Z- 
(.,I A, Ed. 

THEOREM 2.7. Let ~2 C F(Q). Then 3 a smallest F-algebra uZg.(.aZ), a smallest 
F-a-algebra o-aZg.(.ol), and a smallest F-monotone class M.C.(&) containing JG?. 
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F’roof. Identical to the classical case [cf. 1, p. 171. 

DEFINITION 2.8. alg.(&), a-alg.(zZ), and M.C.(&) given by the above 
theorem are called the F-algebra, the F-u-algebra, and the F-monotone class 
generated by & respectively. 

THEOREM 2.9. An F-algebra is an F-u-algebra # it is an F-monotone class. 

Proof is straightforward and will net be presented here. 

THEOREM 2.10. Let SZ? be an F-algebra. Then u-alg.(&) = M.C.(&‘). 

Proof. Let VA E F(Q), 

AA = {B: B E s(Q) and A\B, B\A, A u B E M.C.(&‘)}. 

Using Lemma 2.2 one can easily show that VA E s(Q), AA is an F-monotone 
class. Since AX?’ is an F-algebra and M.C.(&) is the smallest F-monotone class 
containing &, we have 

VAEJZf, M.C.(&‘) C AA . 

Using the symmetry in the definition of AA one can easily show that 

VA E M.C.(&‘), M.C.(&‘) _C AA . 

Using this result and the fact that d is an F-algebra it is trivial to show that 
M.C.(zZ) is an F-algebra. Therefore by Theorem 2.9, M.C.(&) is an F-a-alge- 
gra. Hence a-alg.(&‘) Z M.C.(S(e). Since u-alg.(&) is clearly an F-monotone 
class, M.C.(Oe) C u-alg.(.d). Therefore a-alg.(d) = M.C.(&). 

COROLLARY 2.1 I. If an F-monotone class contains an F-algebra, then it 
contains the F-u-algebra generated by that F-algebra. 

3. INDEPENDENT FUZZY EVENTS 

The concept of a fuzzy event (F-event) was first introduce by Zadeh [4]. In 
this section we will present a number of elementary results on independent 
F-events. 

Let (Q, Z: P) be a probability space and Bl([O, 11) be the collection of Bore1 
subsets of [0, 11. Let g = {B: B E F(Q) and pB is ,?Y, Bl([O, I]) measurable}. It is 
trivial to show that a is an F-u-algebra. 

DEFINITION 3.1. (a) We say that B is a fuzzy event iff B E a; (b) VB E Z3’, 
P”(B) = ,!&I, where E is the expectation with respect to P. 
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Following Zadeh [4], in defining independence of F-events we employ 
products rather than intersection. Recall that VA, B E 9(Q), pAB( .) = p,.,(.) pg(.). 

DEFINITION 3.2. Let n 3 1, and A, , A, ,..., A, ~8. Then we say that 
mutually F-independent iff ii , i, ,..., i,,, E [l, 2, . . . . nj I:- 

DEFINITION 3.3. Let A be a set and ‘v’h E A, d, ~9. Then we say that 
(a) {A,,: X E A) is a mutuaZZy F-independent coEZection iff all finite subcollections of 
it are mutually F-independent; (b) (A,: A E A} . 1s a p airwise F-independent collec- 
tion iR A, 1 A, E A i‘ P(AAIAAP) = P(A,J P”(A,L). 

DEFINITION 3.4. Let A be a set and VA E A, CdA C SY. Then we say that 
{&A: X E A) is a mutually (pairwise) F-independent family iff (rZ,: A, E .Q?~ 1 X E 11: 
is a mutually (pairwise) F-independent collection. 

Clearly mutual F-independence implies pairwise F-independence. When only 
two F-events are involved, the two concepts obviously coincide and in that case 
we will simply say that two events are F-independent. 

The following theorem presents the fundamental properties of F-independent 
events. 

THEOREM 3.5. (a) VA e.8, A and Q are F-independent; 

(b) V,4, NE 28 such that p(N) = 0, A and iV are F-independent; 

(c) Let A E 27. Then {{A), 9} is an F-independent family ifl3a E [0, l] such 
that pA(w) = u a.e. (P); 

(d) =2, B, hT E 99, P”(N) = 0, and A and B F-independent =:v .4 u S and B 
aye F-independent and A\N and B are F-independent. 

(e) 3A3, , A, , A, ~99 which aye mutually F-independent but -4, v A, and 
-4L3Q are not F-independent; 

(f) A, , A, , A, ELI?, A, , A, and A, , A:, F-independent, d, n -‘1, == -m:. 
B, v =1, and A, are F-independent. 

Proof. (a) Immediate consequence of the fact that &w) = 1, VW E Q. 

(b) Follows immediately from the fact that pAV(w) = 0 a.e. (P). 

(c) If 3a E [0, 11 such that ~Jw) = 01 a.e. (P), then clearly VB ~.ti, A and 
B are F-independent. 

Conversely suppose {{A), 991 is an F-independent family. Then A is F-inde- 
pendent of -4. Hence 

qp;] = P[AA] = P[iz] P[A] = (E[lla]j2. 

Therefore Tar&J = 0. Hence 301 E [0, I] such that ~Jw) = iy. a.e. (P). 
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(d) Immediate consequence of the fact that p,,,(w) = 0 a.e. (P) and there- 
fore p&w) = 1 a.e. (P). 

(e) Let D = [0, 11, Z = Bore1 family of [0, I], and P = Restriction of 
Lebesgue measure to [0, 11. Let 

P.&J) = 8 w<(9 P&J) = $ > VW EQ, 

zzz 1 w > 4, 

I%&4 = 0 w<ct 

=2 $<W<$. 

= 0 co>% 

It is a trivial exercise to verify that A, , A, , A, are mutually F-independent, but 
A, u A,, A, are not F-independent. 

(f) Since A, n A, = o , VW E Q, pA1(w) A pa,(u) = 0. Therefore VW E 52, 
3i = 1,2 such that pai = 0. Let Si = {w: w E Q and pA,(w) > 0}, i = 1,2. 
Then VW E 9 

Hence 

PAl”&J) = P&4 ” PA,64 

= PA,(W) x&4 + P‘4&4 x&4. 

THEOREM 3.6. If we replace an arbitrary Jinite or injinite collection of F-events 
A,, in a sequence of mutually (pairwise) F-independent events (A,) by their com- 
plements, the new sequence of F-events will also be mutually (pairwise) F-independent. 

Proof involves simple computation and will not be presented here. 
The following lemma will be needed in the sequel. 

LEMMA 3.7. Let (A,) be a monotone sequence of F-events. Then P(lim,,, A,,) 
= lirnnem P(A,). 

Proof. Immediate consequence of Lemma 2.1 and the Bounded Convergence 
Theorem. 
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THEOREM 3.8. Let A be a set and (dA: h E A) be a mutually F-independent 
farnib of F-algebras. Then {o-alg.(s8,): h E A> . zs a mutually F-independent family. 

Proof. Let A,, E A and 

,tiAO = (A: i3 E~Y and ({A}, dA , X f A,) is a mutually 

F-independent family}. 

Assertion. J&, is an F-monotone family. 

Proof. Let (A,> be a monotone sequence in A’,,, , A := limn- A, , and 
A,, E S$ , i = 1, 2 ,..., m, hi # X, . Using Lemmas 2.1, 3.7 and the Bounded 
Convergence Theorem we get 

Hence lim,,, A,, E .,/IA . Therefore A,,, is an F-monotone class. 
Clearly S$ C AA, . ‘knee AA, is an F-monotone class, by Corollary 2.1 I, 

o-alg.(zQ C AA, . 

4. FUZZY SETS WITH CONSTANT MEMBERSHIP FUNCTIONS 

In the study of stochastically independent events, null sets and their comple- 
ments play a special role. They are the only sets that are stochastically independ- 
ent of themselves. Theorem 3.5(c) states that in the theory of F-events this role 
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is played by F-sets whose membership functions are constant a.e. (P). In this 
section extensions of some of the basic Zero-One laws of the theory of proba- 
bility to F-events are presented. 

Let (Sz, Z, P) b e a probability space, &? be the collection of F-events and 
QB ~g:, p(B) = E[pJ, where E denotes the expectation with respect to P. 

THEOREM 4.1 (Extension of Kolomogrov’s Zero-One Law). Let (i) (A,) be 
a sequence of pairwise F-independent events; 

(ii) Qn > 1, JJ~ = alg.(A, , A 2 ,..., A,), dn = alg.(A,+, , --Ant1 ,... ), and 
2P = a-alg.(A,+, , A,,, ,...); 

(iii) Vn 2 1, sdz, and dn be F-independent; 

(iv) C E nzzr9P. Then &w) = constant a.e. (P). 

Proof. Let Qn 3 1, J?~ = {B: B E g and A E z$ 3 A, B are F-independent}. 
Using the same argument as in the proof of the assertion in Theorem 3.8, one 
can easily show that Vn > I, &, is an F-monotone class. Using hypothesis (iii) 
and Corollary 2. I 1, we get 

Let 
J& = (B: B ~.9? and B, C are F-independent}. 

It is easy to show that ~%‘c is an F-monotone class. Using (1) and the fact that 
Vn 3 1, CEZP, we get 

ij dnCJlt,. (2) 
12=1 

Since (&,J is a monotone increasing family of F-algebras, lJz=r &n is clearly 
an F-algebra. Hence by Corollary 2.11 

Since (A, , A, ,...} C uzzz=, 5;4, , we have 

J&-2 cr-alg. 

Hence C E de . Therefore 

VarhJ = E(&) - MP~)~~ 
= P(C2) - [P(C)]” = 0 

Hence &w) = constant a.e. (P). 
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COROLLARY 4.2 (Extension of Borel’s Zero-One Law). Let (i) <‘=1, be a 
sequence of pairwise F-independent events and A = lim ~up,~~;~ .-1,; 

(ii) Vn 3 1, alg.(A, , A, ,..., A,) and alg.(il,&,, , A, -? ,...) be F-independent. 
Then /tA(w) _ constant a.e. (P). 

Proof. Let Vn > 1, 57’” = a-alg.(A,+r , AILti ,... ). It is 3 trivial exercise to 
show that .-1 E nz=r ~8%. Hence by Theorem 4.1, Pi -= constant a.e. (P). 

Remark. %‘hen dealing with stochastically independent events :.q, , the 
independence of alg.(A, , A, ,..., A,) and alg.(,4,+, , -An+* ,...) follows from the 
independence of the events A, . However in view of Theorem 3.5(e) this is not 
true for F-events. The following example shows that assumption (ii) in Corol- 
lary 4.2 and consequently assumption (iii) in Theorem 4.1 can not be removed. 

EXAMPLE. Let Sz = [0, 11, D = Bore1 family of [0, 11, and P = Restriction 
of Lebesgue measure to a. Let Vn > 1, 

p,4,(w) = i + (sin 4nnw)/2 o< -’ w + f 
= 4 + (sin 4nnw),‘n g <co < 1. 

It is trivial to show that (A.::, is a sequence of pairwise F-independent events. 
Let A = lim SUP~-,~ A, . It is easy to show that pA(w) = x(w)~,~,, ,“) L $x(w)(r,a,i1 
a.e. (P). 

LEMMA 4.3. Let (iz,) be a sequence of F-events. Then 

(a) P(liF+zup A,) = ,l&~ P 

(b) I’(liF+$f A,) = ,lj~ P * 

Pyoof. Immediate consequence of Lemma 2. I and the Bounded Convergence 
Theorem. 

THEOREM 4.4. Let <A,\ be a sequence of F-events ana’ *-1 =: lim sup A,, . Then 

f P(A,) < co 3 cL/,(w) .= 0 a.e. (I’). 
TL=l 

Proof. Since P” is subadditive [cf. 41 we have m > I 
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Hence 

Using Lemma 4.3 we get 

Therefore c4g(w) = 0 a.e. (P). 

Remark. One may ask if an analogue of Bore&-Canelli lemma can be esta- 
blished for F-events. More fully if (A,) is a sequence of mutually F-independent 
events A = lim SUP,+,~ A, and Cl, P(A,) = co, does it follow that pA(w) = 
constant # 0 a.e. (P). The answer is clearly no. In fact if pA,(w) = l/n, Vn > 1, 
VW E Q, then <A,) are mutuallyF-independent, xrzg=, P(A,) = co, but pA(w) = 0 
a.e. (P). 
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