
Wrapping of Web Sources with restricted

Query Interfaces by Query Tunneling

Thomas Kabisch1 and Mattis Neiling2

Computation and Information Structures (CIS)
University of Technology Berlin

Germany

Abstract

Information sources in the World Wide Web usually offer two different schemes to their users,
an Interface Schema which the user can query and a Result Schema which the user can browse.
Often the Interface Schema is more restricted than the Result Schema, moreover many sources offer
keyword-search interfaces only. Thus query capabilities of such sources are very small and a useful
integration into a mediator-based information system using query capabilities is almost impossible.
We propose the Query Tunnelling architecture for the wrapping of these restricted web sources.
Wrapping of sources by Query Tunneling hides restrictive query interfaces and makes such sources
fully queryable based on their result schema. The process of Query Tunneling is divided into two
main steps, Query Relaxation to make a higher order query suitable to a restricted interface and
Result Restriction in order to filter the results using the original query.

Keywords: Information Extraction, Information Integration, Information Filtering, Query
Capabilities, Schema Mapping, Web Query Interface, Wrapping.

1 Introduction

In the context of federated information systems wrapper are used to encapsu-
late heterogeneous information sources [6]. The specific design of the certain
wrappers is highly heterogeneous, it depends on the underlying sources, the
desired query capabilities and the used query languages. In this context a
wrapper provides a query interface for an information source in a predefined

1 Email: tkabisch@cs.tu-berlin.de
2 Email: mneiling@cs.tu-berlin.de

Electronic Notes in Theoretical Computer Science 150 (2006) 55–70

1571-0661 © 2006 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.11.034
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82783706?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:tkabisch@cs.tu-berlin.de
mailto:mneiling@cs.tu-berlin.de
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

query language. Thus a wrapper needs to bridge various heterogeneities of
the underlying sources. Web sources that are accessible through small query
interfaces shall be wrapped in order to support higher level query capabili-
ties. This aspect is the main focus of our contribution. Before presenting
the approach we will discuss some types of information sources and give a
short overview to RDF [23] and RDQL [3] which we use as infrastructure and
interface to support complex queries. 3

Classification of Information sources

Information sources may be categorized along many criteria. Here we will
discuss two of them, the degree of source structuring and the degree of acces-
sibility of sources.

Structuring The source-specific wrapper functionality depends on the kind
of source which should be wrapped. Sources can be classified into struc-
tured, semi structured and unstructured ones.
• Structured sources (e.g. SQL databases) can be queried by a higher query

language and provide a schema. The wrapper has to transform queries
and results between the mediator language and the language of the specific
source.

• Semi-structured sources (e.g. XML sources) do not necessarily provide a
schema but have a less constrained structure. Higher level query languages
(e.g. XQuery [24]) are under way and could be employed. So a wrapper
also has to transform queries and results between languages.

• Unstructured sources (e.g. HTML pages) are more difficult to deal with.
These sources have no schema and usually provide no higher level query
language. They are designed for human interaction.

Accessibility In contrast to classical database information sources (e.g. rela-
tional databases with SQL-Query Interface), web databases generally allow
a restricted access to the underlying data sources only. The bottlenecks
in terms of accessibility of such sources are their query interfaces. Web
databases with HTML-Frontend usually offer a form-based query interface.
Such a query interface is restricted to some queryable attributes which may
be requested by typing keywords and combine them by usually only one
operator. Another restriction is the general lack of a typing system, each
parameter is decoded into a string when submitting a query.

3 RDF abbreviates Resource Description Framework,
while RDQL stands for Resource Description Query Language.

T. Kabisch, M. Neiling / Electronic Notes in Theoretical Computer Science 150 (2006) 55–7056

RDF/RDQL as Infrastructure

We use RDF [23] and its query language RDQL [3] as infrastructure. RDF is
a standard for the description of resources. Thus our wrapper is queryable in
RDQL and delivers RDF results.

RDF as common data model The RDF format and the related RDF schema
are well suited for semi-structured web data and its describing metadata.

Query languages and RDQL Several proposals for RDF query languages
exist. We decided to use RDQL because it is very readable — the notation
is quite similar to SQL.

Designing a mediator-based information system one should consider that the
chosen data model has effects on the domain-specific query capabilities and
mapping rules as well as on the query executor and result integrator of the
mediator component. In distributed information systems the semantics of
the query language and the query capabilities should be precisely defined,
especially the logic between selection and projection attributes. Using the
Jena API [14] a tuple is only part of the RDF result of a RDQL query if it
contains all of the selected attributes. In federated information systems this
is not appropriate: The user usually wants any information that he could get,
even if some of the selected attributes are missing.

Introducing examples

Web sources are mostly unstructured (e.g. HTML) and usually can be re-
quested through a small query interface. Nevertheless, the generated HTML
pages of queryable Web sources often carry some regular structure, that can
be utilized. As an example we will discuss the scientific publication source
”CiteSeer”, cf. [19]. This data source supports keyword-queries only.

Fig. 1. CiteSeer interface

CiteSeer offers an interface schema ICiteSeer, that allows keyword retrieval
only: ICiteSeer = (keyword). The result schema RCiteSeer is more sophisti-
cated, we will discuss the overview page here, whose schema may be denoted
as RCiteSeer = (title, author, year, link, citations). Thus the only query capa-
bility of this source is keyword → (title, author, year, link, citations). More

T. Kabisch, M. Neiling / Electronic Notes in Theoretical Computer Science 150 (2006) 55–70 57

Fig. 2. CiteSeer result snippet

complex queries are generally not supported. Based on four different query
examples we will discuss our approach.

Example 1.1 [Simple Query] Return all papers of the Author

"Garcia-Molina". This is an example for a simple query which cannot be
issued against the interface directly. The attribute author is not a valid query
attribute, but the value could be a selection criteria for a keyword query.

Example 1.2 [Non queryable Attributes] Return all papers of the Author

"Garcia-Molina" which have more than 100 Citations".

This query is challenging because the number of citations is an element of
the result schema but is not queryable — the attribute is not indexed in the
underlying data source.

Example 1.3 [Range Query] Return all papers of the Author

"Garcia-Molina" which have been written between 1998 and 2004.

Most sources support exact matches only — thus a range query cannot be
issued. Even if this given query might be rewritten to certain exact queries,
this is not a suitable way in general.

A complex query containing selection criteria for queryable attributes com-
bined with Boolean operators (e.g. AND, OR, and brackets (...)) can be issued
directly, if the query interface supports the respective operators. Otherwise, if
the the source is not capable for such complex queries, an adequate handling is
needed in order to split the query into its atoms. If the results of the different
queries are received, an integration will be made.

Example 1.4 [Complex Query] Return all publications written by

"Garcia-Molina" or where the title contains "federation".

If the source does not support disjunctive (OR) queries, the query has to be
split into two queries:

• Return all publications written by "Garcia-Molina" and

• Return all publications where the title contains "federation".

Then the union of the results forms a superset of the original query results.

T. Kabisch, M. Neiling / Electronic Notes in Theoretical Computer Science 150 (2006) 55–7058

The rest of this paper is organized as follows. Section 2 introduces our
general wrapping architecture, which is the basis for Query Tunneling. The
3rd and 4th section describes Query Relaxation and Result Restriction in de-
tail, section 5 gives an overview about related work, section 6 describes briefly
our MiWeb prototype system [5], which implements the Query Tunneling ap-
proach. Finally section 7 gives a conclusion and an outlook.

2 General Web Wrapping Architecture

Our general understanding of wrapping is that the wrapper offers a query in-
terface, which supports a higher level query language and delivers structured
results. At the time the architecture targets conjunctive queries only. The
proposed general wrapper architecture is structured along different transfor-
mation tasks which need to be offered by a web wrapper in order to support
an higer level query interface. Figure 3 draws a general picture, outlinging
all components which a web wrapper may include. This section gives a short
overview of the whole wrapping architecture and summarizes all tasks and
transformations, which need to be supported. The main focus of this pa-
per are the Query Relaxation and Result Restriction components. All other
components are described in brief only.

Query Serialization

Source

Source Interface

Result Restriction

Result Integration

Export Interface

Schema Mapping

Export
Result

Export
Query

Source
Result

Source
Query

Query Relaxation

Parameter Extraction Result Extraction

Source
Repository

Fig. 3. General Wrapping Architecture for Web Sources

T. Kabisch, M. Neiling / Electronic Notes in Theoretical Computer Science 150 (2006) 55–70 59

Components

Our general architecture supports a distributed handling of different kinds of
heterogeneity — thus the architecture is segmented w.r.t this tasks, and each
component is responsible for one specific transformation task.

Query Relaxation/Result Restriction Web-Pages often only offer a small
query interface, which allows a very small set of queryable attributes, while
the underlying source schema is of higher complexity. Thus a complex query
needs to be relaxed in order to cope with the restricted interface. Query
relaxation supports two main use cases:
• Attribute Substitution
• Attribute Elimination
In most cases query relaxation leads to a superset of the desired result set.
Thus, in a second step, after the relaxed query has issued to the source,
Result Restriction has to be applied. After the result set have been trans-
formed back to an RDF representation the original query is issued again
against the result set. This step reduces the result set to all valid elements
w.r.t. this query.

Schema Mapping In a general wrapping architecture this component tack-
les schema heterogeneity. Mapping rules (mostly on attribute level) are
specified in order to bridge this heterogeneity. In our approach this task is
performed by an extra component which is not discussed here, but in [5].

Parameter/Result Extraction This component reduces complex query state-
ments to a list of query parameters which need to be piped to the source.
On the way back this component deals with extraction, which occurs if
the source output is not database-like structured. The output of the result
extraction step conforms to the so-called result schema of a source and is
well structured (e.g. employing RDF or XML). The most web-sources are
HTML-based and thus offer no structured output. Result extraction is fo-
cused by numerous related works, e.g. [10], [8], [7] or [25]. [16] gives a good
overview to this issue. We follow a grammar-based paradigm [15]. At the
time the grammar has been developed by hand, but in future we plan to
adopt an automated solution, similar to [10],[20].

Query Serialization/Result Integration The Query Serialization/Result
Integration component is responsible for splitting a higher level query into
multiple queries and collecting results together if the source offers their
content distributed over multiple pages. Two main cases are of interest:
Master-Detail Pages Many deep web sources return first an overview

page which presents a list of suitable results. Detail information on each
delivered result is stored on extra pages. In order to get all matching in-

T. Kabisch, M. Neiling / Electronic Notes in Theoretical Computer Science 150 (2006) 55–7060

formation this detail pages need to be considered as well. Having collected
all relevant information an integration process is issued to transform data
into instances of the wrapper exort schema. [11] investigates master-detail
sources.

Restricted Number per Page Another challenge in web sources are re-
stricted result sets. Many information sources deliver the first − k or
top − k results at once only. In order the get the complete result sets
more than one query need to be issued or (in HTML) a Hyperlink to the
”next” k elements needs to be followed.

Source Repository

Generally the Source Repository contains the meta information for the config-
uration of the wrapper. Each wrapping component uses the Source Repository
for its own tasks. Thus it contains four sections Mapping Rules, Relaxation
Rules and Serialization Information and Extraction Grammars.

Relaxation Rules The task of the corresponding Relaxation Component is
to ensure a fully queryable interface to the source which is based on the
source result schema R. Thus Relaxation rules are formulated to answer
the following questions:
• Which attributes of R are part of the Interface Schema I?
• Which attributes of R are queryable and which not?

Mapping Rules Whereas relaxation rules are based on the source result
schema R, additional mapping rules have to be applied, if the desired wrap-
per export schema W is different from the result schema R. This is mostly
the case if the integration into a mediator based information system with a
common schema is targeted. In this case schema mapping rules are formu-
lated which solve schema heterogeneity between R and W . In our prototype
MiWeb [5], which is shortly introduced in section 6, we used an extra map-
ping component for schema mapping.

Extraction Grammars The repository entry for extraction grammars needs
to be distinguished into parameter extraction grammars used for parameter
extraction and result extraction grammars. The first is used in order to
extract queryable fields from the relaxed and serialized query expression.
An important point in this part of these grammar is the aggregation of
multiple query conditions for one interface field to one expression. The result
expression grammar needs to mine the result schema from the unstructured
result document which is delivered by a HTML source. Some approaches use
regular expression for this task, other derive their own wrapping grammars
[7], [20], [11], [10].

T. Kabisch, M. Neiling / Electronic Notes in Theoretical Computer Science 150 (2006) 55–70 61

Serialization Information Under this repository segment we sum up infor-
mation required if queries need to be serialized because of result distribution
over multiple pages. In case of master-detail web sources there has to be in-
formation, wether a specific attribute attrI can be found on master or detail
pages or both in order to transform query and reintegrate results correctly.

To avoid partial result sets caused by source limitations additional in-
formation have to be provided about the behavior of the source: Either it
delivers all results at once or it cuts after a predefined number of results. In
that case information how to split a query into partial ones which deliver
all valid results is stored. This part is subject of future research.

3 Query Relaxation

Relaxation Rules

Relaxation rules will be distinguished into Attribute Substitution Rules and
Attribute Elimination Rules.

Attribute Substitution Rules Attribute Substitution Rules are formulated
if an attribute of the source result schema attrR is not provided in the query
interface schema I but an attribute attrI of the interface schema exists,
which may be used to query attrR implicitly. In this case we call attrR an
Queryable Attribute, because the extensions of attrR are indexed and can
be queried. An Attribute Substitution Rule is denoted as: attrR ↪→ attrI .
The most common use-case for the application of an attribute substitution
rule is a form-based data source which offers a ”keyword search” only.

Attribute Elimination Rules In contrast Elimination Rules occur in case
if an attribute of the result schema attrR does not exist in the interface
schema I, and additionally, if there is no suitable attribute of the interface
schema which allows an implicit querying of attrR. In that case no useful
mapping is possible, more over a mapping would produce incorrect query
relaxations. We call this kind of attributes Non-queryable Attributes, mean-
ing that the interface of the source does not provide any query opportunity
for them. A relaxation rule for a non-queryable attribute attrR is written
attrR ↪→ ε, meaning that this attribute needs to be eliminated from the
query before the query is issued against the source.

Notably, the approach provides an added value, because non-queryable
attributes are getting queryable at the wrapper export interface, as we will
elaborate in section 4.

While the query interface of CiteSeer provides keyword search only, our
wrapper is able to query the attributes of the result schema, it provides

T. Kabisch, M. Neiling / Electronic Notes in Theoretical Computer Science 150 (2006) 55–7062

the result schema RCiteSeer. Thus the wrapper provides the query capability
(title∗, author∗, year∗, link∗, citations∗) → (title, author, year, link, citations).
Internally, each of the left-hand attributes has to be either mapped to the
interface schema of CiteSeer (i.e. to the keyword) or eliminated from the
query: title ↪→ keyword, author ↪→ keyword, year ↪→ keyword, link ↪→ ε, and
citations ↪→ ε.

Query rewriting using relaxation rules

Outgoing from the original RDQL query, the wrapper relaxes it according
to the source description. For each of the selection attributes contained in
a query attrR it has to be checked, whether it is queryable, i.e. whether
a substitution rule exists. In this case, the selection condition is rewritten
accordingly. Otherwise an elimination rule exists, and thus the attribute is
removed from the query. Then this selection attribute attrR has to be later
applied in the result restriction phase. We discuss the query relaxation along
the examples introduced in section 1.

Query with Queryable Attributes Only (cf. Examples 1.1 and 1.4).
The simple query of example 1.1 can be written in RDQL as

(Q1) SELECT *

WHERE (?resource <cs:author> ?author)

AND ?author =~ "Garcia-Molina"

USING cs FOR <http://cis.cs.tu-berlin.de/citeseer-rdf/>

Using the substitution rule author ↪→ keyword it is simply relaxed to

(Q2) SELECT *

WHERE (?resource <cs:keyword> ?keyword)

AND ?keyword =~ "Garcia-Molina"

USING cs FOR <http://cis.cs.tu-berlin.de/citeseer-rdf/>

The complex query given in example 1.4 is represented in RDQL as:

(Q3) SELECT *

WHERE (?resource <cs:author> ?author)

(?resource <cs:title> ?title)

AND (?author =~ "Garcia-Molina" ||

?title=~ /Federation/)

USING cs FOR <http://cis.cs.tu-berlin.de/citeseer-rdf/>

Since both author and title are queryable via the keyword field, it is
relaxed to

(Q4) SELECT *

WHERE (?resource <cs:keyword> ?keyword)

T. Kabisch, M. Neiling / Electronic Notes in Theoretical Computer Science 150 (2006) 55–70 63

AND (?keyword =~ "Garcia-Molina" ||

?keyword =~ "Federation")

USING cs FOR <http://cis.cs.tu-berlin.de/citeseer-rdf/>

Query having Non-Queryable Attributes (cf. Example 1.2). Elimination
rules have to be applied for non-queryable attributes.

Outgoing from the following RDQL query:

(Q5) SELECT *

WHERE (?resource <cs:author> ?author),

(?resource <cs:citations> ?citation)

AND ?author =~ "Garcia-Molina" &&

?citations >= 100

USING cs FOR <http://cis.cs.tu-berlin.de/citeseer-rdf/>

the elimination rule citation ↪→ ε is applied — the citations attribute can
not be queried through the query interface. Eventually it is also relaxed to
the query (Q2) using a substitution rule.

Range Query (cf. Example 1.3). If range queries can not be applied through
a query interface, the respective selection predicates have to be eliminated
from the query like non-queryable attributes and applied to the result there-
after. Notably, the keyword query (Q2) is also yielded if we apply to the
equality-queryable attribute year a range query as follows:

(Q6) SELECT *

WHERE (?resource <cs:author> ?author),

(?resource <cs:year> ?year)

AND (?author =~ "Garcia-Molina" &&

?year >= 1998 &&

?year <= 2004)

USING cs FOR <http://cis.cs.tu-berlin.de/citeseer-rdf/>

Alternatively, one could relax this query with several disjunctive selection
conditions:

(Q7) SELECT *

WHERE (?resource <cs:keyword> ?keyword)

AND (?keyword =~ "Garcia-Molina" &&

(?keyword =~ "1998" || ?keyword =~ "1999" ||

?keyword =~ "2000" || ?keyword =~ "2001" ||

?keyword =~ "2002" || ?keyword =~ "2003" ||

?keyword =~ "2004")

USING cs FOR <http://cis.cs.tu-berlin.de/citeseer-rdf/>

But in general, range queries can not be rewritten to equality-based queries,

T. Kabisch, M. Neiling / Electronic Notes in Theoretical Computer Science 150 (2006) 55–7064

e.g. for the condition ?year <= 2000 or for continuous range intervals.

4 Result Restriction

Since we pose relaxed queries against the source, the result set might contain
superfluous records. For instance, if a full-text index is accessed for the key-
word search (as for CiteSeer), the results might contain a selection criteria
anywhere in the respective document and not necessarily in the author or ti-
tle attributes. Moreover, given the relaxed range query (Q7) above, several
records in the result set might contain the respective year in their references
section and do not necessarily be published between 1998 and 2004. Thus the
results has to be filtered w.r.t. the previously relaxed selection criteria. In
order to get the results fulfilling all the selection criteria stated in the original
RDQL query, we execute the original query against the intermediate RDF
result set. We give an example.

Example 4.1 For the RDQL query (Q5) at page 10 we issue the relaxed
query (Q2) from page 9 against CiteSeer, whereby only the author name can
be taken for the keyword search. Consequently, the results of this query has
to be post-processed as follows:

• Only results that were reported as at least hundred time cited shall be
filtered, and

• The string ”Garcia-Molina” has to be a part of the reported authors, and
not only contained elsewhere. The latter results will be removed from the
results.

Thanks to our architecture, the intermediate result is represented in RDF,
such that we can execute RDQL queries on it by means of the Jena API. The
execution of the original RDQL query against the result of the relaxed query
delivers the correct result. For instance, given the three results displayed
in figure 4 at page 12, only the first result fulfills the original query and
will be returned by the wrapper. In detail, for the second result the string
”Garcia-Molina” is not contained in the <cs:author> element, while it is
more then hundred times cited. In the third result neither of both selection
criteria is fulfilled — it is less then hundred time cited and the <cs:author>

element does not match the criteria. In fact, publications of ”Garcia-Molina”
are referenced in both articles and therefore these are results of the keyword
search for "Garcia-Molina".

T. Kabisch, M. Neiling / Electronic Notes in Theoretical Computer Science 150 (2006) 55–70 65

<?xml version="1.0" encoding="UTF-8"?> <rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:cs="http://http://www.cis.cs.tu-berlin.de/citeseer-rdf#">

<rdf:Description rdf:about=

"http://citeseer.ist.psu.edu/papakonstantinou95object.html">

<cs:title>Object Exchange Across

Heterogeneous Information Sources</cs:title>

<cs:author> ... Hector Garcia-Molina ... </cs:author>

<cs:year>1995</cs:year>

<cs:link>www-db.stanford.edu/pub/papers/icde95.ps</cs:link>

<cs:citations>243</cs:citations>

</rdf:Description>

<rdf:Description rdf:about="...">

<cs:title>Zebra: A Striped Network File System</cs:title>

<cs:author>John H. Hartman, John K. Ousterhout</cs:author>

<cs:year>1993</cs:year><cs:link>...</cs:link>

<cs:citations>157</cs:citations>

</rdf:Description>

<rdf:Description rdf:about="...">

<cs:title>Managing Semantic ... </cs:title>

<cs:author>Richard Hull</cs:author>

<cs:year>1997</cs:year><cs:link>...</cs:link>

<cs:citations>88</cs:citations>

</rdf:Description>

</rdf:RDF>

Fig. 4. An example RDF result

5 Related Work

Wrapping of information sources is an important issue of recent research. On
the one hand wrapping is discussed in the specific focus of a component in a
mediator system. Examples are Garlic [21] or TSIMMIS [17]. Garlic enriches
wrapping functionality with planning support. On the other hand there are
many systems which focus on wrapping of Web sources. Some frameworks
have been developed for this task [13] or [25].
Many prior works describe the content extraction task in detail [10], [18] or
[7]. Some approaches of recent research focus on web forms [28], [12] or [27].
A newer approach is the distinction between interface and a result schema and
the identification of extensional overlaps between them for wrapping tasks [26].
Only a few of these papers discuss filtering issues. To best of our knowledge
no of them uses RDF and RDQL for this task.

T. Kabisch, M. Neiling / Electronic Notes in Theoretical Computer Science 150 (2006) 55–7066

6 Experiments

We tested the approach in the MiWeb-System [5], which is a mediator-based
information system for the integration of Web sources. The MiWeb system
integrates metadata sources describing different types of web documents: the
search engine Google [1] 4 , the scientific citation index Citeseer [19], and spe-
cific resources for e-learning developed in the NewEconomy (NE) project [2].
MiWeb consists of three main components (see Figure 5): mediator, wrap-
per, and mapper. Inside the MiWeb-System Query Tunneling is used in the
wrapper components of the Roodolf and CiteSeer data source.

User Interface

Mediator

Google-
Wrapper

Roodolf
Google

QEL/RDF Interface

Google
search engine

CiteSeer-
Wrapper

CiteSeer
ResearchIndex

NE-
Wrapper

NE
Learning object

Metadata

QC

Mapper

RDQL-LOM RDF-LOM

QEL Google

RDF Google

RDQL-LOM RDF-LOM

Keyword HTML

Mappings
RDF-Google

RDF-LOM

Fig. 5. Architecture of the MIWeb system

In MiWeb metadata is represented as a RDF model, that means the Re-
source Description Framework RDF [23] is used as the common data model
[22]. The mediator schema adheres to the Learning Object Metadata standard
(LOM) [9] that is used to describe e-learning resources. Users can query the
system with RDQL [3].

The mediator is responsible for answering queries against the mediator
schema. This includes

• to generate plans for querying the integrated wrappers so that the global
query can be answered (query rewriting),

• to execute these queries by communicating with the wrappers and

4 In detail, we use the QEL/RDF wrapper Roodolf ([4]) that already exists.

T. Kabisch, M. Neiling / Electronic Notes in Theoretical Computer Science 150 (2006) 55–70 67

• to integrate the results by eliminating redundancies and identifying data
conflicts.

Query planning is based on the descriptions of the wrappers’ interfaces
– the query capabilities. Therefore the mediator component also includes a
manager for registering, changing, and deleting query capabilities. It is used
to dynamically integrate data sources into the system.

In the MiWeb system most of the wrapping tasks are done with a grammar-
based approach, which is suitable for many kinds of sources.

A user entered query is processed as follows. First a plan how to divide
the query into sequences (plans) of subqueries to registered sources is gener-
ated. When these queries are sent to these sources the wrapper transforms
the result into a source-specific representation in RDF. The mapper compo-
nent translates specific RDF into RDF compliant to the LOM-specification,
which is used by the mediator. The mediator component collects all pieces of
information delivered by the sources, and integrates them to a result, which
is sent back to the user interface.

7 Summary and Outlook

We presented an approach to overcome with restrictive query capabilities of
web sources. More detailed, with Query Tunneling queries can be posed which
might contain selection criteria against attributes that are present in the result
schema only — and not in the query interface of the web source.

Wrapper employing Query Tunneling can be easily adapted, since the con-
figuration is metadata-driven — the source specific information is provided in
a descriptive manner.

Since web sources usually provide only a restricted number of results per
page, query serialization plays an important role for wrappers, i.e. either the
splitting of one query into several or of repetitive processing of several result
pages. This is particularly relevant for Query Tunneling, because the number
of results increases regularly for relaxed queries. Thus the processing of sev-
eral result pages for one query needs sometimes to be done. Consequently, we
are going to improve query serialization. The efficient processing of relaxed
queries that lead to unmanageable large result sets (i.e. if only non-queryable
attributes are used for selection criteria) will be another direction of our fu-
ture research. In order to manage these issue statistical metadata about the
selectivity of attributes will be investigated.

Another point of further research will focus to a method on how to infer
relaxation rules automatically by using recognition technics among query and
result interface as described in [26].

T. Kabisch, M. Neiling / Electronic Notes in Theoretical Computer Science 150 (2006) 55–7068

While we discussed the approach based on the RDF/RDQL framework,
it is applicable independently of the chosen data representation and query
language.

Summarizing, by means of Query Tunneling higher-order queries can be
issued to web sources without to breach their autonomy towards semantic
enriched querying.

References

[1] Google. http://www.google.de/.

[2] New Economy - Homepage. http://www.dialekt.cedis.fu-berlin.de/neweconomy/.
Project founded of the bmb+f within the program ’Neue Medien in der Bildung’.

[3] RDQL - RDF Data Query Language. http://www.hpl.hp.com/semweb/rdql.htm.

[4] RooDolF 2.0. http://nutria.cs.tu-berlin.de:8080/roodolf2/index.html.

[5] Susanne Busse, Thomas Kabisch, and Ralf Petzschmann. MiWeb: Mediatorbased integration
of web sources. Technical report, University of Technology Berlin, 2005.

[6] Susanne Busse, Ralf Kutsche, Ulf Leser, and Herbert Weber. Federated informations systems:
Concepts, terminology and architectures. Technical report, Technical University of Berlin,
1999.

[7] Chia-Hui Chang. IEPAD: Information extraction based on pattern discovery. In Tenth
International World Wide Web Conference, pages 681–687, 2001.

[8] W. Cohen, M. Hurst, and L. Jensen. A flexible learning system for wrapping tables and lists
in html documents. In The Eleventh International World Wide Web Conference WWW-2002,
2002.

[9] IEEE Learning Technology Standards Committee. Standard for information technology –
education and training systems – learning objects and metadata. Technical report, IEEE,
2002.

[10] Valter Crescenzi, Giansalvatore Mecca, and Paolo Merialdo. Roadrunner: Towards automatic
data extraction from large web sites. In The VLDB Journal, pages 109–118, 2001.

[11] Christoph Göldner, Thomas Kabisch, and Jörn Guy Süß. Developing robust wrapper-systems
with content based recognition. In WRAP 2004: Proceedings of the First International
Workshop on Wrapper Techniques for Legacy Systems, Computer Science Reports.

[12] Bin He, Kevin Chen-Chuan Chang, and Jiawei Han. Discovering complex matchings across web
query interfaces: a correlation mining approach. In KDD ’04: Proceedings of the 2004 ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 148–157.
ACM Press, 2004.

[13] Kevin Chen Chang Bin He and Zhen Zhang. Toward large scale integration: Building a
metaquerier over databases on the web. In CIDR, 2005.

[14] HP labs. Jena Java RDF API and toolkit. http://www.hpl.hp.com/semweb/.

[15] Thomas Kabisch. Grammatikbasiertes semantisches wrapping für föderierte
informationssysteme. In Tagungsband zum 15. GI-Workshop Grundlagen von Datenbanken,
pages 62–66. Fakultät fuer Informatik,Otto-von-Guericke-Universität Magdeburg, 2003.

[16] A. Laender, B. Ribeiro-Neto, A. Silva, and J. Teixeira. A brief survey of web data extraction
tools. SIGMOD Record, 31(2), June 2002.

T. Kabisch, M. Neiling / Electronic Notes in Theoretical Computer Science 150 (2006) 55–70 69

http://www.google.de/
http://www.dialekt.cedis.fu-berlin.de/neweconomy/
http://www.hpl.hp.com/semweb/rdql.htm
http://nutria.cs.tu-berlin.de:8080/roodolf2/index.html
http://www.hpl.hp.com/semweb/

[17] Chen Li, Ramana Yerneni, Vasilis Vassalos, Hector Garcia-Molina, Yannis Papakonstantinou,
Jeffrey Ullman, and Murty Valiveti. Capability based mediation in TSIMMIS. In SIGMOD
’98: Proceedings of the 1998 ACM SIGMOD international conference on Management of data,
pages 564–566. ACM Press, 1998.

[18] I. Muslea, S. Minton, and C. Knoblock. Stalker: Learning extraction rules for semistructured.
In Proceedings of AAAI-98 Workshop on AI and Information Integration, Technical Report
WS-98-01, AAAI Press, Menlo Park, CA (1998).

[19] NEC Research Institute. CiteSeer Scientific Literature Digital Library. http://citeseer.nj.
nec.com/cs.

[20] Mattis Neiling, Markus Schaal, and Martin Schumann. Wrapit: Automated integration of web
databases with extensional overlaps., 2003.

[21] Mary Tork Roth and Peter M. Schwarz. Don’t scrap it, wrap it! a wrapper architecture for
legacy data sources. In VLDB ’97: Proceedings of the 23rd International Conference on Very
Large Data Bases, pages 266–275. Morgan Kaufmann Publishers Inc., 1997.

[22] F. Saltor, M. Castellanos, and M. Garcia-Solaco. Suitability of data models as canonical models
for federated databases. ACM SIGMOD Record, 20(4):44–48, 1991.

[23] W3C World Wide Web Consortium. Resource Description Framework (RDF) Model and
Syntax. W3C Recommendation 22 Feb 1999, REC-rdf-syntax-19990222, Feb. 1999.

[24] W3C World Wide Web Consortium.
XQuery 1.0: An XML query language. W3C Working Draft 11 February 2005, 2005. http:
//www.w3.org/TR/2005/WD-xquery-20050211/.

[25] Jiying Wang and Fred H. Lochovsky. Data extraction and label assignment for web databases.
In Twelft International World Wide Web Conference, pages 470–480, 2003.

[26] Jiying Wang, Ji-Rong Wen, Fred Lochovsky, and Wei-Ying Ma. Instance-based schema
matching for web databases by domain-specific query probing. In VLDB ’04: Proceedings
of the 2004 Conference on Very Large Databases, 2004.

[27] Wensheng Wu, Clement Yu, AnHai Doan, and Weiyi Meng. An interactive clustering-based
approach to integrating source query interfaces on the deep web. In SIGMOD ’04: Proceedings
of the 2004 ACM SIGMOD international conference on Management of data, pages 95–106.
ACM Press, 2004.

[28] Zhen Zhang, Bin He, and Kevin Chen-Chuan Chang. Understanding web query interfaces: best-
effort parsing with hidden syntax. In SIGMOD ’04: Proceedings of the 2004 ACM SIGMOD
international conference on Management of data, pages 107–118. ACM Press, 2004.

T. Kabisch, M. Neiling / Electronic Notes in Theoretical Computer Science 150 (2006) 55–7070

http://citeseer.nj.nec.com/cs
http://citeseer.nj.nec.com/cs
http://www.w3.org/TR/2005/WD-xquery-20050211/
http://www.w3.org/TR/2005/WD-xquery-20050211/

	Introduction
	General Web Wrapping Architecture
	Query Relaxation
	Result Restriction
	Related Work
	Experiments
	Summary and Outlook
	References

