
Volume 26,num0er 1 FEBS LETTERS October 1972 

A P R O C E D U R E  B A S E D  ON S T A T I S T I C A L  C R I T E R I A  F O R  D I S C R I M I N A T I O N  

B E T W E E N  S T E A D Y  S T A T E  K I N E T I C  M O D E L S  

T. B/~RTFAI and B. MANNERVIK 
Department of  Biochemistry, University of  Stockholm, Stockholm, Sweden 

Received 19 June 1972 
Revised version received 3 August 1972 

1. Introduction 

A major objective of enzyme kinetic studies is to 
establish the mathematical model that can describe 
the mechanism of action of an enzyme under inves- 
tigation. It is also desirable to determine the numeri- 
cal values of the parameters included in the model 
chosen. These problems are usually solved by means 
of computers. The main approaches in kinetics are 
simulation (digital and analog) and optimization (cf. 
Garfinkel et al. [ 1 ]). In simulation studies a model 
is built to describe the system investigated, whereas 
in the optimization approach a set of numerical 
values are determined to give the best fit of a prede- 
termined model to experimental data. The present 
paper is an attempt to develop and summarize cri- 
teria for selection of one of several rival models using 
the optimization techniques widely applied in steady 
state kinetics (Johansen and Lumry [2] ; Berman et 
al. [3] ; Bliss and James [4] ; Dammkoehler [5] ; 
Hanson et al. [6] ; Kowalik and Morrison [7] ; Cleland 
[8, 9] ; Reich et al. [10]). The selection of the best 
model is generally performed by rejection of all mod- 
els, which are considered inappropriate by statistical 
or physico-chemical criteria. A design criterion is in- 
troduced to help finding the region of experimenta- 
tion most suitable for discrimination purposes. 

2. Regression procedure 

The models of steady state kinetics are nonlinear. 
To estimate the best set of parameter values of a rood- 

el, nonlinear optimization techniques are generally 
used. These procedures can be classified (cf. Swann 
[11] and Kowalik and Osborne [12]) as 
i) direct search methods (methods of alternating var- 

iable [11], Hooke and Jeeves [13], Rosenbrock 
[4], Davies et al. (D.S.C.) [11], Powell [15], and 
the simplex method [ 16). 

ii) gradient methods (the steepest descent method 
and Newton's method [11 ], Davidon's method 
[ 17] and the version of the former improved by 
Fletcher and Powell [ 18], and the compromise 
of the steepest descent method and Newton's 
method given by Marquardt [19]). 
All of these procedures are iterative and require a 

set of primary estimates of the parameter values to 
start the iteration. In the discussion below we shall 
consider nonlinear models, which after suitable trans- 
formations can be treated by means of linear regres- 
sion to compute the primary estimates required in 
the subsequent nonlinear regression. Many steady 
state kinetic equations are of this type, as they con- 
tain only one term in the numerator and can be lin- 
earized by inversion. However, more complex equa- 
tions which are obtained with e.g. allosteric [20]~ 
and binding models [21] cannot be linearized. 

In such cases primary estimates of the parameters 
can be chosen by trial and error [22] within con- 
straints set by physical limits or other considerations. 
The procedure for discrimination and experiment 
design described below is applicable also for these 
models. 
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3, Discrimination based on a given set of data 

3. 1. Development o f  discrimination criteria 
Imagine a series of measured initial velocities, vi, 

with corresponding sets of reactant (i.e. substrate, 
inhibitor, activator etc.) concentrations, X i = (X/l, 

. . . . .  xi ,) 

x v ( l )  

where v is a vector .(Vl, v 2 . . . .  , v i, . . . ,  Vn) and X is 
a matrix composed of n rows of reactant vectors, X i. 
The aim of the investigation is to discriminate bet- 
ween possible models, r~/ 

P i = l?j (Xi, 1(7) (j = 1, 2 . . . . .  k) (2) 

where Kj = (K0/, K l j , . . . ,  KM) is a vector of con- 
stants for the j-th model, and to compute estimates, 
0 i = (Ooj, 01i . . . . .  Opi), of the parameter values, Kj, 
of the best model. 

We shall follow a computing scheme, which divides 
the nonlinear regression into two stages: 
1) linear regression with transformed models to obtain 

primary estimates for 
2) a nonlinear optimization. 

Consider a hyperbolic equation (3) 

K 0 Xil Xi2 (i = 1, 2 . . . . .  n) 
V i - ( 3 )  

X/IXi2+ ~K rXir (r =1,2) 
r 

and the linear equation system (4) obtained by inver- 
sion of (3) 

v2J 

11 

,1 . 1 

Xll  X12 

1 

Xn2 

, o r a = B K *  

(4) 

where K* designates the vector of transformed con- 
stants. 

As is well known from the theory of linear regres- 
sion (cf. [23]), the least squares estimate, 0", of the 
parameter vector, K*, is given by (5), where B T is 
the transpose of B, 

0*  = ( B T B )  - 1  B T a ( 5 )  

The parameter values obtained from (5) are used 
as primary estimates in the nonlinear regression pro- 
cedure. The latter method gives convergence rapidly 
if the primary estimates are sufficiently accurate. It 
is convenient to write the computer programs so 
that a print-out of the vector of residuals and the re- 
sidual sum of squares (6) is obtained 

n 

Q2= i~=l (Vi_~?/(Xi, Oj))2/(n_p_l)  (6) 

in addition to the parameter values and their stan- 
dard errors. 

Assume that two rival models, j and k, are consid- 
ered and that programs are available to analyze ex- 
perimental data according to these models. Further- 
more, suppose that the true model is either j or k, 
making our aim to identify this model and refine 
the corresponding parameter values. 

Now let us examine the computing stages and the 
results of the calculations in order to formulate cri- 
teria, which make possible the rejection of the in- 
correct model. 

3. 1.1. Criteria bas,ed on the success of regression : 
A) Linear regression. Eqn. (4) can be solved if the 

matrix (BTB) can be inverted. Failure of inversion 
can be due to singularity of the matrix, which im- 
plies that the model is overdetermined and not ac- 
ceptable. However, it has to be confirmed that the 
failure of inversion is not caused by numerical dif- 
ficulties (ill-conditioning) [3]. 

B) Nonlinear regression. The solution of Eqn. (4), 
used as primary estimates of the parameters, is suf- 
ficiently accurate to give rapid convergence with 
most of the programs. If only one of the models gives 
convergence, the other one is rejected. (Several sets 
of primary estimates should be used to start the itera- 
tion before a model is regarded to be defective.) 
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3. 1.2. Criteria based on examination of the results 
of regression. 

C) Parameter values. Models giving unreasonable 
parameter values are rejected. The significance of the 
values obtained can be tested by the statistical t-test, 
in which the ratio of  a parameter value to its corres- 
ponding standard error is compared with the proper 
table value. An estimated parameter value, Or, satis- 
fying inequality (7) is considered redundant (cf. [9 
and 22 a]). 

0 
r 

s.e. (Or) 
< t (7) 

Regression with unconstrained parameter values 
may give negative values in the absence of product 
inhibition, which is inconsistent with the theory of 
steady state kinetics. Negative values can be avoided 
by introduction of constraints. Minimization of Q2, 
in this case, will normally result in a parameter value 
equal to one of the limit values [11], and further 
analysis will show redundancy of parameters. 

D) Residuals. The residuals of model j, qij (= v i -  
71j ( X  i, Oj)), should be examined as fufictions of the 
reactant or velocity values by suitable plots or Tukey 
statistics [24]. Models which do not approximate the 
requirements (8) and (9) 

E (a 2) = 0 2 (8) 

qij ,x, N (0,02) (9) 

are rejected. 
E) Residual sum o f  squares. The residual sum of 

squares, Q2, should be compared for the two models. 
If  none of the first four criteria (A-D)  allows elimina- 
tion of one model, the zero hypothesis H 0 : Q2 = Q2 

1 x 
should be examined by the F-test. I f H  0 is rejected, 
the model with the smaller Q2 should be chosen. 

The goodness of fit in the finally accepted model 
can be examined by the F-test, using the quotient of  
the sum of squares about the mean, Q2 , and sum mean 
of squares due to the regression, Qr2eg [23]. 

ar2-ge ~" (Xi' O) - ~)2 (10) R 2 

Q2ea n ~i (Vi--V) 2 

R 2 should not be far from unity in a good regression. 
Furthermore, a test for lack of fit should be carried 
out to confirm the adequacy of the model chosen 
123]. 

4. Development of  experiment design for discrimina- 
tion 

The discrimination criteria described in the pre- 
vious section are very useful if measured values are 
available. However, it is possible that the experiment 
has not been carried out at reactant concentrations 
giving the optimal conditions to solve the discrimina- 
tion problem. In this case we have to find the experi- 
mental conditions, securing the optimal use of cri- 
teria (A-E).  

The only criterion o f ( A - E )  which is not based 
on deficiencies of models is (E). By this criterion a 
comparison of the Q2-values given by the models is 
made, allowing retention of the model giving the sig- 
nificantly smallest Q2-value. Thus experimental con- 
ditions should be elaborated to maximize Q2 in the 
incorrect model, as suggested by Hunter and Reiner 
[25]. It is assumed that the Q2-value of the correct 
model is not affected by the choice of reactant con- 
centrations, whatever their values, whereas the incor- 
rect model will exhibit a greater Q2-value by experi- 
mentation in a particular region of reactant concen- 
trations. 

Consider the residuals of models j and k in the 
/-th experimental point 

qij = v i-rlj  (Xt, 0]) = e i + oil + eij h (11) 

qik = vi-7)k (Xi'  Ok) = ei + eik + eikh 

where e i is the experimental error (which can be es- 
timated from replicate measurements and which is 
assumed to follow ei~N(O,o2)); el~ is the error 
caused by inadequacy of model j; and el~ h is the er- 
ror of the h-th nonlinear regression program. For the 
present purpose we regard all the regression programs 
as giving the same error (eilh~eikh).  

Define a discrimination tunction g: 

g ( x  i, o/, o k) = Iq i / -q ik l  = lei/--eikl (12) 
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Optimal conditions for discrimination between mod- 
els] and k are obtained, if experiments are carried 
out at the point X i in the reactant space, which maxi- 
mizes the discrimination function g. This point can 
be determined by means of numerical or analytical 
differentiation of g, if some primary estimates of 01 
and O k are available. (Differentiation o fg  is feasible 
because the experimental points can be chosen suf- 
ficiently close to define g as a continuous function 
of Xi). 

Now the necessary and sufficient conditions for a 
local maximum ofg  are (13) and (14): 

(og(x i, o], Ok) ] 
~-X~ r / X'i = 0 (r = 1, 2 . . . . .  p) (13) 

Consider an enzyme noncompetitively inhibited 
by I, where the steady state kinetics are described by 
model j 

VA (15) 

K m (1 + I/K1) + A(1 + I/K2) 

where A and I are the concentrations of substrate and 
inhibitor, respectively; K m is the Michaelis constant; 
K 1 and K 2 are inhibition constants, and V is the max- 
imal velocity. 

Suppose now that KI>>K 2 which will cause con- 
siderable difficulties in detecting the slope effect [27] 
in a double reciprocal plot. A consequence of this con- 
dition (KI>>K2) is that also the uncompetitive inhi- 
bition pattern (16) will fit the data 

where X' i is the vector X i lacking the r-th element, and 

Di= 0, A0, A 1 . . . . .  Ap alternately positive (14) 
and negative 

where D i (the Hessian of g) is the determinant of sec- 
ond-order partial derivatives with respect to X/and 
Ap-r (r = 0, 1 . . . . .  p) are the determinants obtained by 
deleting the last r rows and columns ofD i (A 0 = 1) 
[26]. The maximum may lie outside the available 
space of reactant concentrations, but the knowledge 
of the concentrations maximizing g nevertheless can 
be utilized in finding the most suitable region for 
experimentation. 

In the case that constraints are imposed on the 
reactant concentrations, criterion (13) is enlarged by 
introduction of Lagrange multipliers for the side con- 
ditions [26]. In a similar manner constraints on the 
estimates of the parameter vector, Kj, affect the 
search of the minimum of Q2 in the nonlinear optimi- 
zation process. 

5. An example of design for discrimination 

A typical discrimination problem arises when a gen- 
eral equation is examined for redundant terms to se- 
lect the best model  and we do not desire a crude 
model, describing the major features only, but a com- 
plete model reflecting even the minor effects. The g 
function, predicting the suitable region of experimen- 
tation, can help to reach this goal. 

V'A 

vk K' +A(I+I /K '2 )  m 

(16) 

where the constants are used in the same meaning as 
in eqn. (15). 

To resolve this ambiguity by further experiments 
we introduce the function 

g=g(A, I ,  V, V',Km,Km, K1, K2, K2 )= (17) 

L -vkl 
Because of the very small effect o fK  1 on the other 
parameter estimates, the corresponding primed and 
unprirned constants differ only-slightly. Therefore, as 
a first approximation, the corresponding pairs can be 
regarded to be equal making g: 

g =g(A, I, V, Km,KI,K2) (18) 

Examination o fg  shows that zero or infinite values 
of A and I all give g = ft. This indicates a finite maxi- 
mum, which is obtained from: 

i=0  and ~]- A--O 

The analytical solutions are: 

(19) 
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K 
m 

A - 1 + I/K~ X/1 + I/K 1 (20) 

determinant IF T F I. Evidently, it may be possible to 
start at point b) if primary estimates are available 
from literature or other sources. 

K + A  = m 
I x/A/K2 (Km/K1 + A/K2 ~ (21) 

Eqns. (20) and (21) give two choices for the best 
value of  A for discrimination with a given value of  I, 
and vice versa. The point of  intersection of  (20) and 
(21) defines the absolute maximum of g, which can 
be obtained graphically by plotting A versus I accord- 
ing to (20) and (21). Replicate experiments should be 
carried out in the point of  intersection to estimate 
the pure error, ep. If  the residual sum of  squares in 
one model significantly exceeds ep, this model is re- 
jected. The problem now is to optimize the conditions 
for parameter estimation in the better model. As des- 
cribed by Box and Lucas [28],  this is equivalent to 
finding the points which maximizes the determinant 
of  the information matrix, I B T B I of  the linearized 
model or the determinant IF] T F/I in the nonlinear 
model (where F/ is  the matrix of  first derivatives of  
rl/(X i, K/) with respect to the elements o f  the para- 
meter vector, K/; F/ is  evaluated by means of  the 
current estimate, 0/, of  1(7). 

6. Suggested procedure of  experimentation 

Let us briefly summarize the procedure proposed 
in the present paper. 

a) Experiments should be made in a large region 
of  reactant concentrations (to cause failure o f  the 
incorrect model, fitting only in a limited region) and 
the parameter values computed for rival models, b) 
Using these parameter values, the maximum of  the 
discrimination function (g) for pairs of  models (not 
failing in the earlier examination) can be evaluated. 
Experiments should then be carried out to maximize 
g and to obtain Q2. The Q2-values should be exam- 
ined according to criterion (E) (sect. 3.1.2.), and as 
soon as the difference between these values becomes 
significant the best model can be chosen, c) The re- 
maining problem is to obtain the best estimates of  
the parameter values, which requires maximizing the 
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