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1. INTRODUCTION 

This paper presents existence results for semipositone discrete higher-order problems. In partic- 
ular, we discuss the (n,p), n 2 2, discrete boundary value problem 

A” Y@ - n + 1) + CL f(k Y(k)) = 0, k E k-1, 

Ai y(0) = 0, O<i<n-2, (1.1) 

Apy(T+n-p) =0, l<p<n-1 (pisfixed), 

wherep>O,TE{1,2 ,... },J+r={n-1,n ,..., T+n-l},andy:I,={O ,..., T+n}--+R. 
We look for nonnegative solutions to (1.1) in C(In). Recall C(&) denotes the class of maps UI 
continuous on 1, (discrete topology) with norm ]w]e = maxkel, ]w(/r)]. We note that throughout 
this paper our nonlinearity f may take negative values. Problems of this type are referred 
to as semipositone problems in the literature. The literature on positive solutions to higher- 
order difference equations (see [l-6] and the references therein) is almost totally devoted to the 
positone problem, i.e., to the problem when the nonlinearity takes only nonnegative values. To 
our knowledge only one paper [7] has partially discussed the semipositone problem in the discrete 
case. 

The technique we supply in this paper will enable the reader to see that other boundary data, 
for example conjugate, focal, Sturm-Liouville, could also be discussed. To illustrate this point we 
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will in addition consider in this paper the nth -order discrete conjugate boundary value problem 

(-1)“-* 0” Y(k -PI = P f(k,Y(k)), k E Jp, 

Ai y(0) = 0, O<i<p--1, 

Py(T+n-i) =o, OLi<n-p-l, 

wherep>O,TE{1,2 ,... }, JP={p,p+l ,..., T+p},l<p<n-l,andy:I,+R. 
Existence in this paper will be established using Krasnoselskii’s fixed-point theorem in a cone, 

which we state here for the convenience of the reader. 

THEOREM 1.1. Let E = (E, /I.[[) b e a B anach space and let K c E be a cone in E. Assume s11 
and Rz are open subsets of E with 0 E Gr and a-21 c Slz and let A : K n (fiz \ !2,) + K be 
continuous and completely continuous. In addition, suppose either 

Or 

IlA~ll 2 ll~llr for 21 E K ndfh, and llA4 < 1141, for 21 E K n WZ, 

hold. Then A has a fixed point in K n (a, \ RI). 

2. SEMIPOSITONE PROBLEMS 

In this section, we first discuss the discrete (n,p) boundary value problem 

a” y(k - n + 1) + p f(k, y(k)) = 0, k E Jn-1, 

Ai y(0) = 0, O<i<n-2, (2.1) 
a*y(T+n-p) =O, llpln-1 (pisfixed), 

wherep>O,TE{1,2 ,... }, J+i={n-1,n ,..., T+n-l},andy:I,={O ,..., T+n}-+R. 
Of physical interest is the existence of solutions which are positive on J,-l. 

Before we prove our main result, we first recall two well-known results from the literature which 
will be used in our proof. The first lemma can be found in [2] and the second in [l, p. 773;2]. 

LEMMA 2.1. Suppose y : I, + R satisfies 

An y(k - n + 1) I 0, k E Jn-I, 

Ai y(0) = 0, O<i<n-2, 

D-‘y(T+n-p) =O, l<p<n-1. 

Then 
kb-1) 

dk) 2 (T + n)(,+l) lyl”, for k E In; 

here 1~10 = SUP~~I,, IYWI. 
LEMMA 2.2. The boundary value problem 

A”y(k-n+l)+l=O, k E Jn-I, 

Ai y(0) = 0, O<iIn-2, 

a*y(T+n-p) =O, lLp<n-1, 

has a solution w with 

CT+ 1) 
w(k) ’ (n - p) (n - l)! 

kc”-1)) for k E Jn-l, 
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and 

for k E In; 

here 
T+n-1 kc”--l) (T+ 1) k-n+ 1 

w(k)= c G(ic,j)=&‘1(k$=~ (n- 
.[ 

, n 
j=n-1 j=o 1 

for k E In, where G(k,j) = Gl(k,j - n + 1) and Gr is the Green’s function for (see [2j for an 
explicit representation) 

A” y(k) = 0, kElo={O,l ,..., T}, 
, 

Ai y(0) = 0, O<i<n--2, 

APy(T+n-p) =o, lLp<n-1. 

We now use Lemmas 2.1 and 2.2 and Krasnoselskii’s fixed-point theorem to establish our main 
result. 

THEOREM 2.3. Suppose the following conditions are satisfied: 

f : .I,-1 x [0, cm) -+ R is continuous and there 

exists a constant M > 0 with f(i,u) + M 2 0 

for (i, u) E .&-I x [0, oo), 
(2.2) 

f(i, IL) + M 5 +(u) on &-I x [0, m) with 

$J : [0, co) + [0, oo) continuous and nondecreasing 

and I/J(U) > 0, for 21 > 0, 
(2.3) 

3r> /AM(T+~)@-~) 
- (n-l)! 

with - ’ > p sup ‘+E1 G(k,j), 
+cr) - &I, j=n-l 

(2.4) 

there exists a continuous, nondecreasing function g : (0, oo) -+ (0, oo), 

with f(i,u) + M 2 g(u), for (i,u) E L1 x (O,co), 

and 
R T+n-1 

3R>r, 
with g (E R (n - l)(“-l)/(T + n)(+l)) - 

< P c G(g,j); 

(2.5) 

(2.6) 

here E > 0 is any constant (choose and fix it) so that 

1 _ p M (T + n)@-l) [T + l] 
(n - l)! R (n - p) ’ ’ 

(note, E exists since R > r 2 (p M (7’ + n)(“-l)/(n - l)!) ([T + l]/(n - p))), and 0 E I, is such 
that 

T+n-1 T+n-1 

c G(a,j) = 2~ c G(i,j). 
j=n-1 n 

j=n-1 

Then (2.1) has a solution y E C(In) with y(i) > 0 for i E &-I. 

PROOF. To show (2.1) h as a nonnegative solution, we will look at the boundary value problem 

An dk - n + 1) + CL f*(k, y(k) - 4(k)) = 0, k E L-l, 

Ai y(0) = 0, O<i<n-2, (2.7) 
A*y(T+n-p) =O, l<p<n-1, 
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where 4(i) = p&fur(i) ( w is as in Lemma 2.2) and 

f(i,v) + M, 
f*(ilw) = { j(i,O) +A4, 

?.I 2 0, 
215 0. 

We will show, using Theorem 1.1, that there exists a solution yi to (2.7) with yi(i) 2 4(i) for 
i E I,, (note, d(i) > 0 for i E .&+I). If this is true, then u(i) = yr(i) - 4(i) is a nonnegative 
solution (positive on J,-1) of (2.1), since, for lc E &-.I, we have 

A?@-n+l)=Anyi(k-n+l)+/MV=-~f*(k,y(k)-r#@))+II.M 

= -P m Y(k) - 4(k)) + Ml + I-L M = -P f(k u(k)). 
As a result, we will concentrate our study on (2.7). Let E = (C(ln), ] . 10) and 

Clearly, K is a cone of E. Let 

R1 = {u E C(In) : lulo < 7-} and 02 = {u E C(L) : IUJO < R}. 

Next let A : K n (0, \ Rr) + C(ln) be defined by 

T+n-1 

A?@) = P c G(k,.d f*(Ay($ - 4(d)- 
j=n-1 

First, we show A : K II (as \ 521) + K. If u E K n (!& \ ai), then (2.2) and the known sign of G 
(see [1,2]) guarantees that 

AnAu(k-nfl) 50, k E Jn-I, 
Ai Au(O) = 0, O<i<n-2, 

ApAu(T+n-p) =O, l<pln-1, 

and so Lemma 2.1 implies Au(k) > (kc”-‘)/(T + n)(“-l)) IAzllo for k E In,. Consequently, 
AUE KsoA: Kn(&\R1) + K. It is well known [2] that A : K n (a, \ 0,) + K is continuous 
and compact. 

We now show 
lAylo 5 1~10, for y E K n t%&. (2.8) 

To see this let y E K n 6’01, so ]y]c = r and y(k) 2 (k (“-I)/(2 + n)(“-‘)) T for k E In. Now, for 
k E I,, we have 

T+n-1 

Ay(k) = P 1 G(k.$f*(A~(j) -4(d) 
j=n-1 

Tfn-1 

I /I c W,.Wb(d) 
j=n-1 

T+n-1 

I PNYIO) x Wk.?) 
j=n-1 

T+n-1 
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since for j E J,-I we have (note, y(k) 2 0 for k E In) 

f(j, y(j) - d(j)) + A4 5 $J(Y(d - 4C.i)) 5 NY(d), 

f*(.Ay(j) - 4u) = { f(j, 0) + M 2 T)(O) 5 $J(y(j)), 
if Y(j) - dG) 2 0, 

if y(j) - 4C.d < 0; 

in fact, one can show y(j) - 4(j) 2 0 for j E J,-l ( see the argument below). This together 
with (2.4) yields 

T+n-1 

(A yl, I pti(~) SUP c G&j) I T- = blol 
&In j=,-l 

so (2.8) holds. 
Next, we show 

lAylo L 1~10, for y E K n dry. (2.9) 

To see this, let y E K n R& so lylo = R and y(k) > (k(“-l)/(T + n)(“-l)) R for k E I,. Let E be 
as in the statement of Theorem 2.3. For j E &-I, we have from Lemma 2.2 that 

(T + 1) p-1) 
y(j) - 4(j) = Y(j) - I-L Mw(j) 2 y(j) - PM (n - l)! (n - p) 

9 

pM(T+1) (T+n)(“-l) 
>?h) l- (n-l)!(n-p) R 1 p-1) (n - qb-1) 
L fY(j) 2 E (T + n)(“-l) R 2 e (T + +4) R. 

Now with ~7 as in the statement of Theorem 2.3, we have 

tr+n-1 

AY(~) = CL c G(a,d f*(Ay(.i) - 4(j)) 

j=n-1 

Tr+n-1 

= CL c G(a,d [f(i y(j) - #G)) + Ml 

since for j E &-I we have from (2.5) that 

f(.h Y(j) - 4(j)) + 44 2 g(Y(d - d(j)) 2 9 ( 
(n - 1)~“~1) 

CR (* + n)(“-l) 
> 

. 

This together with (2.6) yields 

AY(~) 2 c1s CR (n - 1)o) ‘5’ G(a,j) 2 R = Iylo, 
(T + np-1) 

j=n-1 

so (2.9) holds. 
Now Theorem 1.1 implies A has a fixed point y1 E Kn(&\R,), i.e., r < lyllo 5 Rand yl(k) 2 

(k(“-l)/(T + n)(+‘)) T for k E I,. To finish the proof, we need to show yl(k) 2 b(k) for k E I,. 
This is immediate since Lemma 2.2 with the fact that T 2 (p M (T + n)(“-l)/(n - l)!) [(T + 
l)/(n - p) + (n - 1)/n] implies for k E I, that 

kc”-1) 

yl(k) 2 (T + n)(“-l) T 2 
v] 1 ,uMw(k) = 4(k). I 
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REMARK 2.1. In (2.4), it is possible to replace 

with 

r> pM(T+n)(n-1) 
- (n - l)! 1 

T , pM (T + n)(“-‘1 (T + 1) 
- (n-l)!(n-p) ’ 

see the ideas in the last few lines in the proof of Theorem 2.6. 

EXAMPLE. Consider (2.1) with 

f(k, u) = urn - 1, m > 1, and 
” 

(n - l)! 
O’(T+n)(+l) [(T+l)/(n-i)+(n-1)/n] ’ I 

Then (2.1) has a solution y with y(i) > 0 for i E J+r. 
To see this, we will apply Theorem 2.3 with (here R > 1 will be chosen later; in fact we 

will choose R so that E = l/2 works, i.e., we choose R so that 1 - ~(T+n)(“-l)(T+ l)/ 
(n - l)! R (n - p) 2 l/2) 

M= 1, t)(u) = g(u) = urn, and 
1 c=- 2. 

Clearly (2.2), (2.3), and (2.5) hold. In addition, we know [l, p. 7731 that 

Yr+n-1 k(+l) k -n + 1 
c”k”~” c G(k,d=p sup - 

(T + 1) 
-- 

kEI,, (n - I)! (n-P> 72 n j=n-1 1 
<p(T+n)(“-l) 
- (n - l)! 

so (2.4) is true with r = 1 since 

pM(T+n)("-l) 
(n - l)! 

and 
T+n-1 

CL ye c G(4.d I P 
(T + n)cnel) (T + 1) n-l - - 

n j=,-1 (n - l)! (n-p)+ n ‘l=&’ 1 
Finally, notice (2.6) is satisfied for R large since 

R 1 
g (eR(n - l)(n-l)/(T + n)(“-1)) = (c (n - I)(“-l)/(T + n)(n-l))m Rm-1 h ” 

&?lR-+CO. 

Thus, all the conditions of Theorem 2.3 are satisfied so existence is guaranteed. 

Next, we discuss the discrete conjugate boundary value problem 

(-I)‘+* An dk - P) = c1 f(k y(k)), k E Jpr 
Ai y(0) = 0, 0 5 i 5 p - 1 (i.e., y(0) = . . . = y(p - 1) = 0), 

Aiy(T+n-i)=O, O<i<n-p-l 
(2.10) 

(i.e., y(T + p + 1) = . . . = y(T + n) = 0), 

wherep>O,TE{1,2 ,... }, Jp={p,p+l ,..., T+p},l<p<n-l,andy:I,+R. 
First, we recall two known results from the literature. The first lemma can be found in [3] and 

the second in [l, p. 7731. 
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LEMMA 2.4. Suppose y : I, -t R satisfies 

(-l)-‘Any(k -p) > 0, k E Jp, 

Ai y(0) = 0, O<i<p--1, 

Aiy(T+,n-ii) =O, O<iin-p-l. 

Then 

Y(k) L 0 IYIO, for k E Jp; 

here 0 < 0 < 1 is such that 6 = min{b(p), b(p + 1)) with 

minMz,p), ghT+ P)) 
b(z) = min{g(z, [@)I>, sb, P(x) + W, s(z,p), g&T +p)I 

and 

g(z, k) = ICC”-‘) (T + n - k)(‘+“), qx:)= (a:--1)T+(a:--2)n+ 5 
n-l 

and [ . ] is the greatest integer function. 

LEMMA 2.5. The boundary value problem 

(-l)- A” y(k - p) = 1, k E Jp, 

Ai y(0) = 0, O<i<p-1, 

Aiy(T+n-i) =O, O<i<n-p-l, 

has a solution w with 

and 

w(k) 5 1 (T +p)(*) (T + n - P)(~-~) I , 72. 
for k E Jp, 

w(k) 5 f (T + n)(P) (T + n)(“-P), for k E In; 

here w(0) =. . . = w(p - 1) = w(T + p + 1) = . . . w(T + n) = 0 with 

T+P T 

w(k) = x(-l)“-pK(k,j) =x(-l)“-“Kl(k,j) = -$k(P)(T+n-k)(nyP), 
j=P j=o 

for k E I,, where K(k,j) = Kl(k,j -p) and K r is the Green’s function for (see [3] for an explicit 
representation) 

An y(k) = 0, kEIo={O,l ,..., T}, 

Ai y(0) = 0, Olilp-1, 

Aiy(T+n-ii) =0, Oli<n-p-l. 

We are now in a position to prove our main result for (2.10). 

THEOREM 2.6. Suppose the following conditions are satisfied: 

f : Jp x [0, oo) -+ R is continuous and there 

exists a constant M > 0, with f(i, U) + M 2 0, for (i, u) E JP x [0, cm), 
(2.11) 
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f(i, u) + M 5 $(u) on Jp x [0, cm) with 

q!~ : [0, oo) + [0, co) continuous and nondecreasing 

and T+!(U) > 0, for u > 0, 

3r> ~1M(T+p)(*)(T+n-p)(~-*) 
- n! B 1 (2.13) 

there exists a continuous, nondecreasing function g : (0, W) --+ (0, co), 

with f(i, U) + M > g(u), for (i, U) E Jp x (0, co), 
(2.14) 

and 

3R>r, with (2.15) 

here E > 0 is any constant (choose and fix it) so that 

1- IIM(T+~)(*)(T+~-P)‘*-~’ >E 
n!RB - 

and c E I, is such that 

T+P T+P 

c (-l)“-PK(a,j) = Ei”E”;” c (-l)“-PK(i,j). 
i=* 

n 
i=p 

Then (2.10) has a solution y E C(In) with y(i) > 0 for i E Jp. 

PROOF. To show (2.1) has a nonnegative solution, we will look at the boundary value problem 

(-l)“-* a” Y(k -P) = CL f*(kY(k) - 4(k)), k E Jp, 

Ai y(0) = 0, Olilp-1, (2.16) 

aiy(T+n--i) =O, O<i<n-p-l, 

where 4(i) = ~1 M w(i) ( w is as in Lemma 2.5) and f* is as in Theorem 2.3. It is enough to show 
that there exists a solution y1 to (2.16) with yl(i) > 4(i) for i E 1n (note, 4(i) > 0 for i E Jp). 
Let E = (C(&,), I. 10) and 

K = {U E C(In) : u(i) 2 0, f or i E 1, and u(k) 2 8 Iu[o, for k E Jp}. 

Also, let 
!a1 = {u E C(In) : Iulo < r} and 02 = {u E C(L) : 1~10 < R} 

and let A : K n (02 \ 01) -+ C(In) be defined by 

T+P 

Ay(k) = P 2 (-lY-* K(k,$ f*(A y(d - d(d). 
i=p 

Essentially the same reasoning as in Theorem 2.3 guarantees that A : K fl (02 \ a,) -+ K is 
continuous and compact with 

lAylo I 1~10, foryEKnDR1. (2.17) 

Next, we show 
IAYIo 2 1~10, for y E K TI &&. (2.18) 
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To see this, let y E K II a&! so 1~10 = R and y(k) > 0 R for k E JP and y(k) 2 0 for k E 1,. Let E 
be as in the statement of Theorem 2.6. For j E JP we have from Lemma 2.5 that 

y(j) - 4(j) = Y(j) - PM4.d 2 Y(j) - 
p M (T + p)(P) (T + n - Ppp) 

72. I 

2 Y(j) l- 
p M (T + p)(P) (T + n - Ppp) 

n!BR 1 
> ey(j) > EOR. 

Now with c as in the statement of Theorem 2.6, we have 

T+P 

A Y(C) = P c (-lYP K(c d Hi ~(3 - 4(d) + Ml 

T+P 

2 pg(ceR) c (-l>“-pK(~,.i) 

i=p 

2 R = 1~10, 

from (2.15). Thus, (2.18) holds. 
Now Theorem 1.1 implies A has a fixed point y1 E Kn(fi,\Q,), i.e., T 5 lyllo I Rand yl(k) > 0 

for k E Jn and yl(k) 2 8 r for k E Jp. To finish the proof, we need to show yl( k) 1 +(k) for 
k E 1,. First, if k E 1, \ Jp, then since yl(j) > 0 for j E 1, and 4(j) = 0 for j E 1, \ Jpr we 
have yl(k) 2 0 = 4(k) for k E 1, \ Jp. It remains to consider the case k E Jp. If k E Jp, then 
T 2 pM(T +p)(P) (T+ n -p) (“-P)/n! 0 and Lemma 2.5 implies 

z/l(k) 1 h- 2 
p M (T + p)cp) (T + n - P)(“-~) 

n. 1 2 pMw(k) = d(k). 
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