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Abstract

In this paper we investigate logic classification and related feature selection algorithms for large biomedical data sets. When the
data is in binary/logic form, the feature selection problem can be formulated as a Set Covering problem of very large dimensions,
whose solution is computationally challenging. We propose an alternative approximated formulation for feature selection that
results in an extension of Set Covering of compact size, and use the logic classifier Lsquare to test its performances on two well-
known data sets. An ad hoc metaheuristic of the GRASP type is used to solve efficiently the feature selection problem. A simple and
effective method to convert rational data into logic data by interval mapping is also described. The computational results obtained
are promising and the use of logic models, that can be easily understood and integrated with other domain knowledge, is one of the
major strengths of this approach.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In past years, research in molecular biology and molecular medicine has accumulated enormous amounts of data.
Such large amount of information must be thoroughly analyzed to gain a better understanding of the underlying
biological processes. Methods of knowledge discovery and data mining are the best candidates for this challenging
task.

Important examples of large data sets are found in: (i) genomic sequences gathered by the Human Genome Project
and sequences of Single Nucleotide Polymorphisms (SNPs); (ii) gene expression data from microarray experiments;
(iii) protein identification and quantification data from proteomics experiments.

For each of these problems, different modeling, algorithmic, and interpretation problems arise (see [1–3] for
presentation and discussion of fundamental issues and methodologies).

The study of both genomic sequences and SNP sequences is aimed at identifying the positions of base pairs
responsible for function, mechanism or interaction. The analysis of SNPs permits us to understand the relationship
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between genotypic and phenotypic information, as well as to identify polymorphisms that can be related to specific
genetic diseases. One application is the identification of gene/SNP patterns impacting cure/drug development for
various diseases. Data sets are made of genomic or SNP sequences (in both cases, sequences of base pairs) of given
individuals of the same species or of different but related species. The general analysis problem to be solved requires
us to associate diversities and commonalities among individuals with differences and identities between their base
pairs sequences.

Microarrays are semiconductor devices used to detect the DNA makeup of a cell. They contain hundreds of
thousands of tiny squares, each designed to hybridize with a sequence encoding a particular gene. The microarray
squares react to the liquified human cells poured over them, and capture the sequences that they are targeted to
hybridize with. After the reaction, the amount of captured gene sequences is detectable by a laser, that reads the
“expression” of each gene at the corresponding square. Microarrays are used, e.g., to identify drug targets (the proteins
with which drugs actually interact) and can also help us to identify individuals with similar biological patterns. This
way, drug companies can choose the most appropriate candidates for participating in clinical trials of new drugs. Data
from microarray experiments are two-dimensional arrays, in which each entry corresponds to the expression of one
specific gene. Given a set of arrays (experiments on the same microarray), the analysis problem is to classify the
experiments, taking into account the value of gene expressions for a small number of genes.

Finally, data bases of proteins exist that contain primary, secondary, and tertiary structures of each protein. There
are protein families with common properties, whose functions are characterized by patterns in their three-dimensional
structure. Here one wants to detect subsets of amino acids of the chains that are linked to the analyzed properties. In
particular, with each amino acid is associated the measure of the studied properties.

All these data sets are typically represented by matrices whose rows are associated with the objects, or records,
while the columns are associated with the many measures taken on each object. Such measures are often referred to as
variables, or features. For the analysis of such type of data there are analysis tools with different degree of complexity,
where the complexity is to be found in the models that are needed and in the large dimension of the data that are to
be processed. Such techniques are being referred to as data mining (DM), indicating a collection of methods inherited
mainly from the classical multivariate and nonparametric statistics, the Computer Science oriented Learning Theory,
mathematical programming, and Artificial Intelligence.

Data mining is used to systematically explore the possibility of relations between variables when there are no (or
incomplete) a priori expectations as to the nature of those relations. Its use in biology and medicine has grown rapidly
since 1997. When dealing with large data sets, it is often the case that the information available is somehow redundant
for the scopes of the DM application; many mining tools deal with this issue by trying to provide classification or
association rules that are as much compact as possible.

In conjunction with data mining techniques it is common to apply feature selection (FS), by which we address
a set of methods to identify, in a large set, those features that are best useful for the specific analysis task, be it
the identification of a classification model, of association rules, or a statistical regression model. The role of feature
selection is particularly important when computationally expensive data mining tools are used, or when the data
collection process is difficult or costly, as it is the case in the type of applications that we consider here.

In this paper, we test the efficacy of a particular class of feature selection methods for classification on data sets
represented in binary, or logic form, in conjunction with a method to mine logic relations in the data, the Lsquare
system (see [4,5]). Lsquare models the classification problem as a sequence of minimum cost satisfiability problems
(MINSAT) and is able to find separating formulas optimized according to certain criteria. To reduce the intractable
dimensions of the data sets analyzed, we consider FS methods based on another well-known combinatorial problem,
the Set Covering Problem (SC). We propose a simplified version of such models that significantly reduces the
dimension of the Set Covering problem to be solved showing that also in this case we are able to identify a good
and small subset of the available features.

The paper is organized as follows.
Section 2 introduces the main issues in designing a FS method and the most basic and widely known techniques;

then, describes the basic ideas of the Set Covering formulation, focusing both on the quadratic formulation already
presented in [6], and on the simplified linear version proposed in this paper. A specific subsection deals with the
complexity issues related with the solution of a large SC problem and describes the metaheuristic algorithm used to
solve the large instances associated with FS. In Section 3, the basic steps of the Lsquare method for logic learning are
presented. Then, Section 4 describes the techniques used to preprocess the data, in particular to obtain data in logic
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form from measures expressed through real numbers, as it is the case for microarray data. Such a process, known as
discretization or binarization, is not to be overlooked in the entire process as it accomplishes a relevant transformation
of the available information and influences the work of FS and DM. Then, in Section 5 we synthesize the whole
analysis process, and report and discuss the experimental results obtained. Conclusions are drawn in Section 6 together
with some consideration on future work in this challenging research area.

2. Feature selection methods

In many applications FS may be considered as an independent task in the mining process; it is used to reduce
the data to a treatable size before it can be processed by a DM algorithm. A reason behind this strategy is that
sophisticated DM algorithms often may fail, or have significant computational problems, when treating directly data
set with a very large number of features, as in the case of biomedical data. A very extensive treatment of the use of
FS in DM applications is given by Liu and Motoda [7], who provide a complete overview of the methods developed
since the 70s, comparing the results of several applications and providing suggestions on how to drive the choice of
the proper method for each specific problem. Feature selection problems are typically solved in the literature using
search techniques, where the evaluation of a specific subset is accomplished by a proper function (filter methods),
or directly by the performance of a data mining tool (wrapper methods). A general overview of different methods
is also available in [8,9]. In this paper, we focus on data represented by binary features and try to exploit particular
methods that are designed for such cases. As we will see later in Section 4, our proposal is to convert, by proper
binarization techniques, rational features into binary features in order to apply logic-based classification methods.
Such a binarization process induces a further proliferation of the number of features, and thus demands even more
strongly a valid method to reduce the size of the problem to a treatable one. In the following sections we describe such
methods.

2.1. Feature selection for biological data analysis

Many FS methods have been applied in biological data analysis. Most of such work concerns microarrays
classification, where the number of features is in the range of several thousands. In [10] the authors propose a hybrid
of filter and wrapper approaches to feature selection, based on Unconditional Mixture Modeling, Information Gain
Ranking, and Markov blanket Filtering. In [11,12] redundancy-based methods are applied. Support Vector Machines
are used as a classification method to prove the goodness of a selected feature set in [13,14]. In [15], Nearest
Neighbor methods and Support Vector Machines are used for predicting protein functional classes from binary vectors
obtained by comparing functional domains in the SBASE database to each protein sequence. In [16] a global search
mechanism, weighted decision tree, decision-tree-based wrapper, a correlation-based heuristic, and the identification
of intersecting feature sets are employed for selecting significant genes/SNPs for predicting drug effectiveness.

2.2. Set Covering formulation for feature selection: The minimal test collection

When dealing with binary features, the problem of selecting a subset of features of minimal size that guarantees
the separation between two sets can be formulated as an Integer Linear Programming Problem, more specifically as
a Set Covering problem. Here we consider a known formulation, that suffers from the fact that its size, in terms of
number of rows, increases quadratically with the number of rows of the data matrix.

A formal definition of the problem of feature selection (called test cover) is presented in [17]. The input is a set of
items {1, . . . , m} (e.g., arrays of gene expression from a microarray experiment) and a collection F of features (e.g. a
feature could be a gene) { f1, . . . , fn}. The item set is divided into two classes, (e.g., microarrays obtained from DNA
of sick patients and microarrays obtained from DNA of healthy ones). By convention, we indicate the two classes
by class A and class B, respectively. For each item h, each feature fi takes a value in a given metric. In a binary
setting each feature has two possible values {1, 0}, representing the presence or the absence of a given characteristic,
associated with that feature, in item h. To represent the value of feature i for item h we use the notation fih , that would
then take value 0 or value 1. A feature fi differentiates (covers) item pair {k, h} if fik 6= fih . If we consider all the
pairs of items {k, h} where k belongs to a class (say, “healthy patients”) and h belongs to the other class (say, “sick
patients”), then a subcollection F ⊂ F of features is a cover if each of such pairs {k, h} is covered by at least one
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element in F . Obviously, the number of pairs is equal to the product of the cardinalities of the two classes, that grows
quadratically with m. The problem of finding a subset of features of minimal size that cover all the pairs of distinct
elements is called Combinatorial Feature Set or minimal test collection. A mathematical formulation of the problem
is given below:

min
n∑

i=1

xi

n∑
i=1

ai j xi ≥ 1 j = 1 . . . M

xi ∈ {0, 1} i = 1 . . . n,

(1)

where xi = 1 if fi is chosen and 0 otherwise; each of the M constraints is associated with a pair of items belonging
to different classes; e.g., if row j is associated with the item pair {k, h} then we have that for feature iai j = 1 if and
only if fik 6= fih . Here we refer to the above problem as QSC (Quadratic Set Covering).

For the QSC problem, in [6] a branch-and-bound procedure is presented, based on a new definition of branching
rules and lower bounds. Nevertheless, when problem size is significantly large, the use of optimization algorithms
to produce guaranteed optimal solutions becomes impractical, and one has to resort to heuristics schemes, such
as, among the others, the one proposed in [18]. The above approach to the FS problem presents also additional
drawbacks. Its purpose is to find a minimal set that can separate the given data, that plays the role of training data
in the general process. The features associated with the minimal set are then used to project the training data and
to derive classification rules, that are then applied to test data, once the latter has been projected using the same
feature set. When the data is noisy or not well sampled, it may happen that the very thrifty representation of the data
overlooks some features that, although not strictly needed for separating the training data, may play a role in formulas
that behave well on testing data. In other words, maintaining a certain measure of redundancy in the information that
is retained by the FS process may be a good strategy for the production of rules with good predictive power. This
is particularly true when FS is followed by classification algorithms that can perform an additional selection of the
features based on the separating model. For this reason, we want to evaluate the quality of the QSC formulation also
when the requirement on the number of covering features is raised, that is when the rhs of the covering constraints is
greater than 1. This would result in the selection of a larger set that brings more information in the classification step.
In the present setting, such modification is easy to make on the modeling side, as it is sufficient to rewrite the covering
constraints of QSC as follows:

min
n∑

i=1

xi

n∑
i=1

ai j xi ≥ α j = 1 . . . M

xi ∈ {0, 1} i = 1 . . . n,

(2)

where α is an integer representing the degree of redundancy required. In such case, the standard Set Covering problem
is transformed into a Generalized Set Covering (GSC) problem and many of the known results and algorithms cannot
be applied in a straightforward fashion. To any extent, the QSC formulation is computationally very expensive to
solve, and we propose a more compact model based on a GSC formulation that does not guarantee to find a subset
of the features that perform perfect separation in the training set, but identifies a small set of highly informative and
loosely correlated features. This is done with a consistently smaller computational effort as compared with that of
QSC.

2.3. An approximated formulation of the feature selection: The “Linear” Set Covering

The approximated Set Covering formulation described in this section is based on a very simple idea. Given a
feature fi , let PA(i) and PB(i) be the proportion of items where feature fi has value 1 in sets A and B, respectively.
If PA(i) > PB(i), then the presence of fi with value 1 is likely to characterize items that belong to A, and viceversa.
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Let us assume that we are in this case, that is, PA(i) > PB(i), and define for fi the following vector di j , j = 1, .., m
(note that here j is used to refer a single item, and not a pair of items as in models (1) and (2)):

di j =


1, if item j is in class A and fi has value 1;

0, if item j is in class A and fi has value 0;

1, if item j is in class B and fi has value 0;

0, if item j is in class B and fi has value 1.

For the case PA(i) < PB(i), the corresponding vector ai j is computed in the same way by exchanging the roles
of A and B. A feature fi with ai j = 1 for all j ∈ 1, .., m would be able to discriminate perfectly between A and B,
as it would suffice to tell whether an item belongs to one of the two classes. Obviously, such a feature is not likely to
exist, but we may assume that the number of ones in vector ai j is positively correlated with the discriminating power
of feature fi . Moreover, we would like to select a subset of the features that exhibit, as a set, a good discriminating
power for all the items considered, so that we may use more features combined together, among the ones in the set, to
obtain a complete separation between A and B. According to this line of reasoning, we formulate the following Set
Covering problem:

min
n∑

i=1

xi

n∑
i=1

di j xi ≥ α j = 1 . . . m

xi ∈ {0, 1} i = 1 . . . n,

(3)

where, as in QSC, xi = 1 implies that feature fi is selected in the final set and α represents the degree of redundancy
of the information provided by the selected features. Although such formulation does not guarantee exact separation,
it identifies good features that exhibit their discriminating power in a distributed way over the item set, due to the
presence of the same rhs α for each item. The problem above is referred to as LSC (Linear Set Covering) and has the
same nature as QSC but only a linear number of constraints. Some of the results conducted on large data sets show
experimentally that the trade-off between the approximation of the LSC model and its computational simplicity may
be worth considering.

In the above QSC and LSC formulations we have presented very trivial objective functions, that simply minimize
the size of the feature sets. It is important to note that both models are designed to host additional information by
means of proper weights associated with the features, that can be taken into account to drive the solution algorithm
towards the choice of particular features, according to contextual consideration. For example, we may want to drive
the algorithm towards particular features that, a priori, have a special role in the genetic phenomenon under study; or
we may choose the weights in such a way that those features associated with the extremes of the measuring scale of a
gene expression in microarray data are preferred as they are less prone to measuring errors.

2.4. GRASP heuristic

To solve the generalized Set Covering problems we pursue a non-deterministic and heuristic method known in the
literature as GRASP, acronym of Greedy Randomized Adaptive Search Procedure. GRASP is a randomized multistart
iterative metaheuristic initially proposed in Feo and Resende [19,20]. For a comprehensive study of GRASP strategies
and variants, the reader is referred to the survey chapter by Resende and Ribeiro [21], as well as to the annotated
bibliography of Festa and Resende [22] for a survey of applications. Generally speaking, GRASP is a randomized
heuristic having two phases: a construction phase and a local search phase. The construction phase adds one element
at a time to a set that ends up with a representation of a feasible solution. At each iteration, an element is randomly
selected from a restricted candidate list RCL, whose elements are among the best ordered, according to some greedy
function. Once a feasible solution is obtained, the local search procedure attempts to improve it by producing a
locally optimal solution with respect to some neighborhood structure. The construction and the local search phases
are repeatedly applied. The best solution found is returned as an approximation of the optimal one. Fig. 1 depicts the
pseudo-code of a generic GRASP heuristic for a minimization problem.
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Fig. 1. Pseudo-code of a generic GRASP for a minimization problem.

The construction phase makes use of an adaptive greedy function, a construction mechanism for the restricted
candidate list, and a probabilistic selection criterion. The greedy function takes into account the contribution to the
objective function achieved by selecting a particular element. In the case of the generalized unweighted Set Cover
problem, the selection involves candidate features and it is intuitive to relate the greedy function to the number of
constraints still to be fully covered that a feature not yet chosen would cover if selected. More formally, at a generic
iteration of the GRASP construction phase let F ⊂ F be the subset of features already selected as the partial solution
and let C ⊆ C be the subset of constraints still to be fully covered. Then, for each f ∈ F \ F we define σ( f ) = |C f |,
where C f ⊆ C is the subset of constraints not yet fully covered that feature f would cover. This greedy function
measures how much additional cover will result from the selection of f . The greedy choice consists in selecting the
feature f ∈ F \ F with the highest greedy function value. To define the construction mechanism for the restricted
candidate list RCL, let

σmin = min{σ( f ) | f ∈ F \ F}

and

σmax
= max{σ( f ) | f ∈ F \ F}. (4)

Denoting by µ = σmin +β · (σmax
−σmin) the cut-off value, where β is a parameter such that 0 ≤ β ≤ 1, the restricted

candidate list RCL is made up by all features whose value of the greedy function is greater than or equal to µ. A
feature is randomly selected from the restricted candidate list and the sets F and C are updated accordingly to the just
made selection (adaptive component).

Since we are dealing with the problem in its unweighted variant, the local search procedure only checks for
redundancy of the current solution built by the GRASP construction phase, which is replaced by its best improving
neighbor. The search stops after all possible moves have been evaluated and no improving neighbor has been found.

3. The learning system Lsquare

The learning tool used in this application, Lsquare, is a particular learning method that operates on data represented
by logic variables and produces rules in propositional logic that classify the items in one of two classes. The general
scheme of this method is the one of automatic learning, where the items presented in a training set are used to infer
the rules that link the class of an item with the value of some of its features; these rules are then used to classify new
records and predict their class.

The choice of Lsquare is motivated by the fact that it uses a logic representation of the description variables, that
are to all extents logic variables, and of the classification rules, that are logic formulas in Disjunctive Normal From
(DNF). Such property enables us to analyze and interpret the classification results also from the semantic point of
view, as the classification rules determined by the method express combination of the features that can be interpreted
by domain experts and bring to light new knowledge in an easily understandable format.

The learning of propositional formulas from data is tackled also by other learning methods, such as the strongly
heuristic, simple and widely used decision trees (originally proposed in [23]), to the more sophisticated LAD system,
originally proposed by Hammer in [24,25], with complexity and mathematical programming issues similar to those
faced in Lsquare, to the greedy approach proposed in [26].
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The Lsquare system and some of its additional components have been described in other papers [4,27,5] and its
detailed description is out of the scope of this paper. Here, we simply mention the fact that the rules are determined
using a particular problem formulation that amounts to be a well-known and hard combinatorial optimization problem,
the minimum cost satisfiability problem, or MINSAT, that is solved using a very sophisticated solver based on
decomposition and learning techniques [5]. The DNF formulas identified have the property of being created by
conjunctive clauses that are searched for in order of coverage of the training set. Therefore, they usually are formed by
few clauses with large coverage (the interpretation of the trends present in the data) and several clauses with smaller
coverage (the interpretation of the outliers).

4. Preprocessing and data binarization

The preprocessing phase was conceived to transform input data from a problem dependent format to a problem
independent format. In general, biological data sets are large arrays of integers or real numbers, that correspond to
measures on the items. Such data are not suitable for logic methods, and a transformation is needed to adapt the data
sets. This transformation consists of the identification of a set of intervals of values for each feature, the computation
of the number of samples in each interval, and a reduction of the number of these intervals through the elimination of
empty intervals and unification of contiguous intervals with the same meaning. In binarized data, the new features can
be viewed as binary, or logic, variables, that indicate whether the measure of one of the original real features belongs
to a certain interval.

To obtain an initial set of intervals for feature fi we consider its mean µi and variance σi over the training items,
and create a number of equal sized intervals symmetrical with respect to µ and proportional in size to σi . Once such
intervals have been created, we iterate a set of steps that merge two adjacent classes if one of them is empty, if the
proportion of elements in A and B is not altered when the two classes are merged (class entropy), and finally if the
reduction obtained in the entropy of the feature is negligible.

For a given feature fi , let Ki be the set of the intervals in which fi is discretized; its entropy hi is given by
−

∑
k∈Ki

fik log fik , where flk = plk/n, and plk is the number of samples included in the interval k; since hi = 0 if
the number of intervals Ki is equal to 1, the goal is to obtain a good trade-off between a high level of entropy and a
small number of intervals. The procedure performs the following steps on the training data set:

1. for each feature fi , the mean value µi and the variance σi of the values of the feature over the items of the training
set are evaluated;

2. N intervals around mi are computed, so that each interval width wi is equal to
√

σ i/N (such intervals are indicated
with Cik , for k = 1, .., N );

3. for each interval Cik , the total number pik of samples that are included in the interval is determined, together with
the number of samples that are in class A, pA

ik and the number of samples that are in class B, pB
ik .

4. The N intervals are reduced on the basis of the following three criteria:
• if an interval is empty then it is unified with one of the smaller of its adjacent intervals;
• if in two adjacent intervals class A (B) samples are strongly prevalent over those of B (A) samples, the two

intervals are unified;
• if one interval is poorly populated it is unified with one of the two adjacent classes if the entropy level of the

feature does not fall below a given threshold.

Given the final set of intervals, a binary representation of the values of the feature is obtained by mapping the
rational value of that feature into its corresponding interval, and setting the corresponding binary variable to 1.

5. Experiments and results

We have applied the classification procedures described above to two data sets characterized by a very large number
of features, that have already been considered in other similar works. Such choice is driven by the intention to test
the efficacy of the methods for problems in this application area, in order to gain the sufficient thrust to apply them
in real problems where the results may be of some potential interest. The experiments described below have the same
structure: a training set of data is analyzed with the FS Set Covering models to extract a significant and small subset
of the features; then, Lsquare is applied to extract a logic model that separates at best the two sets A and B with the
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Table 1
Thrombin data set: Correct recognition rate for 50% split testing with LSC FS and increasing value of α

Values of α % correct on A % correct on B Total correct

10 0.673 0.399 0.426
20 0.629 0.617 0.618
30 0.588 0.757 0.740
40 0.609 0.790 0.772
50 0.622 0.829 0.809
60 0.622 0.822 0.803
70 0.620 0.858 0.835
80 0.620 0.857 0.834

available features. Finally, such a model is applied on test data, i.e., data of the same nature of the training set, for
which we know the classification in A and B, but that has not been considered in the training phase. The percentage
of correct recognition on the test set is a reasonable measure of the quality of the whole method, and can be compared
with other ones already presented in the literature. According to the purpose of the paper, we investigate the behavior
of the performances of the system when the main experimental parameters are varied.

In Section 5.1, we describe the experiments conducted on the thrombin data set. Here no preprocessing and
binarization is needed, as the data has been already made available in binary form. The problem is of large size
and we were able to solve the QSC problem optimally and with the proposed heuristic procedure, and compare its
results with those obtained with the LSC feature selection method.

In Section 5.2, we consider a typical case of classification of microarray data where the genes should differentiate
between patients with two different types of leukemia. Here the whole process is tested, including the binarization.
The behavior of the LSC and QSC models with different values of α is analyzed.

5.1. Thrombin data set

Thrombin data set was extracted from KDD competition [28] for testing the performances of various procedures
for data mining. The problem of analyzing the molecular bioactivity of drugs w.r.t. a receptor, in order to separate the
active (binding) compounds from the inactive (non-binding) ones was proposed. The data set1 includes compounds
that binds to thrombin, a key receptor in blood clotting, and compounds that do not bind. The problem was to identify
a small set of sites of the compound molecules that allow us to separate active vs inactive compounds. Two sets
of data are provided: the training data set includes 1909 known molecules (42 actively binding thrombin), the test
data set includes 639 new compounds with unknown capacity to bind thrombin; 139.351 binary features describe the
three-dimensional properties of each compound. The chemical structures of these compounds are not relevant for our
analysis and are not included. The definitions of the individual bits are not included — we do not know what each
individual bit means, only that they are generated in an internally consistent manner for all compounds. Thrombin data
set was not preprocessed since it is a binary data set and was used straightforwardly to generate the LSC problem. The
performance of our method is compared with the Jie Cheng method, the winner of the KDD cup 01 [28], that used a
Bayesian network predictive model.

Table 1 reports the results obtained when the LSC method is used, for values of α ranging from 10 to 80. Each
experiment is obtained by a 50% random split of the available data into training and testing, repeated 8 times and then
averaged. The level of the recognition percentages is comparable with those characterizing the best results obtained
on the same data available in the literature [28], when the value of α reaches 80. The best formulas obtained use
approximately 60 features, and it explains why the good results are obtained when α reaches that value.

It is of some interest to compare the results of Table 1 with those obtained using a subset of features selected by the
optimal solution of the associated QSC. Such solutions have been obtained at an unpractical computational cost by a
Branch & Cut algorithm that uses the latest version of the ILOG Cplex solver for integer programming. The minimal
test is composed of only 41 features, but the performances measured with the same metric are significantly worse than
the ones obtained with LSC. Moreover, the optimal solution of 41 features is not unique, and the many solutions of that

1 The data set has been provided by DuPont Pharmaceuticals for the KDD Cup 2001 competition.
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Table 2
Leukemia data set: Correct recognition rate and solution dimensions for testing set with LSC FS and increasing value of α

Values of α Dimensions of features set Used features Correct on A Correct on B Total correct

1 2 1 0.900 0.500 0.735
2 3 3 0.950 0.500 0.765
3 5 4 1.000 0.643 0.853
4 6 3 0.700 0.571 0.647
5 7 3 0.850 0.857 0.853

10 14 4 0.950 0.643 0.824
15 20 3 0.950 0.714 0.853
20 26 2 0.900 0.929 0.912
30 39 3 0.900 0.643 0.794
35 46 2 0.900 0.929 0.912
65 85 2 0.900 0.929 0.912
75 97 2 0.900 0.929 0.912

Table 3
Leukemia data set: Correct recognition rate and solution dimensions for testing set with QSC FS and increasing value of α

Values of α Dimensions of features set Used features Correct on A Correct on B Total correct

1 2 2 0.650 0.643 0.647
2 4 2 0.850 0.929 0.882
3 6 2 0.850 0.429 0.676
4 7 3 1.000 0.357 0.735
5 9 2 0.950 0.500 0.765

10 17 3 0.850 0.929 0.882
15 23 3 0.850 0.929 0.882
30 31 2 0.850 0.571 0.735
35 49 2 0.900 0.286 0.647
50 58 3 1.000 0.214 0.676
65 75 2 0.900 0.929 0.912

dimension show high variances in their performances. It so appears that better FS solutions are obtained by enforcing
a significant level of redundancy in the information retained by the selected features, devolving to the classification
algorithm (Lsquare, in this case) the task of selecting a good separating model and the features that support it.

5.2. Leukemia data set

The other data set was derived from microarray experiments. It is a collection of 72 samples from leukemia patients;
each sample gives the expression level of 7130 genes [29]. The collection includes 47 samples from type I leukemias
(called AL L) and 25 from type II leukemias (called AM L). The collection is split into two sets, the first with 38
samples (AL L/AM L = 27/11) serving as a training set, and the other 34 (20/14) as a test set. Here, we deployed
also the preprocessing and the binarization stage. Each feature was initially divided into intervals with high granularity
(according to the scheme described in Section 4). From each feature we derived 30 intervals, obtaining 213,900 initial
features, that were then reduced to approximately 120,000 using the proposed procedure. Such a still large set of
features were used to build the formulation of the LSC and QSC, that were then solved with different values of α. A
synthesis of the results obtained is given in Tables 2 and 3, where we report the values of α, the correct recognition
percentages, the size of the feature set selected by the solution of the LSC and QSC models respectively, and also the
number of features effectively used by the classification algorithm to build the separating logic model.

Comparing the two tables, it is easy to see that the LSC model performs as good as the QSC one, at times
even better, although computationally less expensive. But the very interesting result in this case is that, besides
having recognition percentages that match in quality with those obtained by many other methods presented in the
literature [10], the size of the good formulas obtained is very small, usually composed of only 2 features, regardless
of the dimension of the set of features selected by the solution of LSC/QSC. This implies that we can indicate not
only the two genes that seem to differentiate the two types of leukemia, but also the levels at which such genes should
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express in order to be significant. For example, if we consider one of the separating formulas obtained on 2 features,
we may “translate” it into its original values and describe it as follows:
IF the expression of gene in position 5 is less than −429.99
OR larger than −420.77
AND the expression of gene in position 6 is below −148.1325
THEN the item is of type ALL,
ELSE is of type AML.

Obviously such a statement may lack significance for a geneticist, but its compactness surely makes it
understandable and potentially interesting from the semantic point of view. We recall that the rule above is able
to separate exactly the observations in the training set, while it achieves an overall precision of 0.922 on provided
testing data.

6. Conclusions

In this work, an approach for the solution of classification problems in data sets with a large number of features
has been presented. The method is based on the representation of data in binary/logic form; when the data is not
naturally available in this form, discretization procedures as the one presented in Section 4 of this paper can be used.
The feature selection step is the main focus of the paper. We propose an alternative and more compact formulation as a
Generalized Set Covering (where the rhs may assume values larger than 1) and solve it using a GRASP metaheuristic
for the quite large data sets used for the experiments. The results obtained show that the method has some potential
and its simplicity does not seem to affect the quality of the results. Additional considerations have to be drawn as
conclusive remarks to the work done.

First, we note that the computationally challenging Set Covering formulation, known also as the minimal test
collection, does not always produce guaranteed quality feature subsets. The objective of minimizing the number of
features that guarantee separability may give results too strict, and produce solutions that completely overlook certain
aspects of the data that are useful for predictive and interpretative purposes. Some degree of redundancy may come
in use, as proposed and experimentally validated in this paper. Moreover, the simpler and lighter formulation here
presented as LSC turns out to be experimentally effective and more robust.

Second, the use of mathematical formulations as (1) and (3) allows the use of costs associated with features in
the objective function. Such costs may very well represent prior knowledge of domain experts, and could be used to
drive the solution towards those features that are more interesting or significant in the particular application. Another
interesting aspect in the use of costs with binarized data is that they can be used to mitigate the effect of noise in the
data, by assigning higher costs to those features that are associated with intervals close to the center of the measuring
scale of the original numeric feature, and smaller costs to those with extreme values. In this way, the solution would
tend to use features whose binary value is less affected by measuring errors and noise.

Last but not the least, the approach presented is strongly characterized by the representation of both data and
separating model in logic form. This implies that the knowledge extracted from the data is easier to understand,
to combine with previously existing knowledge, and to interact with, for domain experts. In our opinion, such
a characteristic is extremely important in a research field where the previous experience has to be combined
with knowledge extracted directly from data, and where the results of a mathematical/algorithmic tool have to be
understood and validated ex post before they may be transferred to real applications.
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