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1. Introduction and preliminaries

In this paper we study some first-order properties of the theory of
modules over a fixed ring A. In particular we investigate first-order
definability of injectivity and related notions and, as a consequence,
prove that the theory of modules over A has a model-completion if and
only if A is coherent.

Throughout this paper “‘ring’’ means associative ring with identity
1 # 0 and “module” means unitary left module. For any ring A, let L,
be the first-crder language whose only non-logical constants are the
equality syrabol, a constant 0, and the following function symbols:

a binary function f, and for each » € A, a unary function g , . (For the
definitions of logical terms see e.g. Bell-Slomson {5].) We write x +y
for f(x, y), Ax forg, (x), —x for —1x. A A-module becomes a structure
for L, in the obvious way.

We axiomatize the theory of A-modules in L, ; consider the follow-
ing sentences:

1.1 Vxpz[(x +y)+z=x+(y +2)]
{1.2) Vx[x+ 0=x)

(1.3) Vx(x+(~x)=0]
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(1.4) Vxylx+y=y+x]

(1.5) Vx(lx =x].

Forany A,0,7 € A, such that7 =\ + o,

(1.6))\,0,1 Vx[{Ax +ox=17x] .

Forany A € A,

(1.7, Vxy[A(x +y)=xx +Ay] .

For any A, 0, p € Asuch that Ao =p,

(1.8)

NP Vx[A(ox)=px] .

M is a model of (1.1) - (1.8), , ,if and only if M is a A-module.
Thus, by the Completeness Theorem, if X, is the deductive closure of
(1.1) - (1.8), 4., K, is the theory of A-modules, i.e. the set of sen-
tences of L, true in all A-modules.

We introduce in § 2 a natural generalization of model-completion,
viz. the model-companion of a theory, which is convenient for our pur-
poses. Also in § 2 for motivational reasons we give a proof of the exist-
ence of a model-completion of the theory of abelian groups (i.e. Z-
moaules).

The generalization of the result of § 2 to modules over other rings re-
quires a stuly of injective modules, which is of some independent inter-
est we believe. In particular we prove:

The property of being an injective A-module is first order if and only
if A is noetherian (Theorem 3.19).

We define some generalizations of the notion of injective, in particular
a notion of Ny-injective in which *“fi..itely generated ideal” replaces
“ideal” in the definition of injective (Definition 3.5).

A ring A is called (left) coherent if every finitely generated (left)
ideal of A is finitely presented. (The class of noetherian rings is a proper
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subclass of the class of coherent rings: see § 3.) The crucial characteri-
zation of coherent rings (for our purposes) is given by:

The property of being an Ry-injective A-module is first-orcer if and
only if A is coherent (Theorem 3.16).

Our principal result on model-completions is:

K, has a model-completion if and only if A is coherent (Theorems
4.1 and 4.8).

The model-completion is given as the theory of a certain explicitly de-
fined module M, (see §4). In the case that A is either commutative
noetherian or artinian we give an expiicit axiomatization of the model-
completion and a structure theorem for the models of the model-com-
pletion (§ S, 6).

In § 7 we introducc for any first-order theory a definition of algebra-
ically closed structures and relate it to the question of the existence of a
model-companion. We interpret our r2sults on modules in that setting.
We also prove:

The theory of (non-abelian) groups does not have a model-completion
(Theorem 7.17).

We would like to thank Eli Bers for his stimulating presence. More
precisely, we are grateful to Jon Bar vise and Abraham Robinson for
many edifying discussions. We are especially indebted to Abraham
Robinson for showing us an unpublished manuscript in which we first
learned the definition of injective used in § 3. We would also like to
thank Ed Fisher for patiently listening to our arguments and percep-
tively pointing out the holes in many of them. *

Notation. «, 8, v, 8, and x denote cardinals; y and ¢ denote formulas
of L, , and other lower-case Greek letters denote elements of A. Lower-
case Latin letters will be used for eilements of a A-module. If M is a A-
module M®) denotes the direct sum of k copies of M.

* Recently the authors have shown inrer alia that the property of being (left) projective (resp.
flat) is first-order if and only if A is left perfect and right coherent (resp. right coherent). A
detailed development will appear in: Definability problems for modules and rings.
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2. The model-completion of abelian groups

We begin by recalling some basic definitions. Let X be a theory (i.e.
a deductively-closed consistent set of sentences) in a first-order language
L. K is model-complete if for any model A of K, KX U D(9) is com-
plete, where D (%) is the diagram of U (see [32] p. 24). If K and K* are
theories in L, K* is model-consistent relative to K if for any model
of K, K* U D(¥) is consistent; K* is model-complete relative to K if
for any model % of K, K* U D() is complete. K* is called the model-
completion of K if K € K* and K* is model-consiste1it and model-com-
plete relative to K.

A theory K is called inductive if it is the deducuve closure of a set of
V'3 -sentences. Lquivalently K is inductive if the class of models of X is
closed under unions of chains ([32] Theorem 3.4.7).

A generalization of the notion of model-completion has teen sug-
gested by Eli Eers. We say that K* is the model-companior. of X if
K € K* and K* is model-consistent r:lative to K and model-complete.
(The definition of model-companion given in [4] is equivalent to ours
when X is inductive.) The model-companion of X, if it exists, is unique
({4] Theorem 5.3); the model-completion of X, if it exists, is the
model-companion. (As an example, we note that the theory of formally
real fields has a model-companion but not a model-completion.)

We say K has the amalgamnation property if whenever 9, 4, , %, are
models of K and f;: A ~» B, are embeddings (i = 1, 2) then there is a
model € of K and embeddings g;: ¥, - € such that the following
diagram is commutative.

The following lemma is due to Eli Bers.

Lemma 2.1. Let K be a theory which has a model-companion K*. Then
K has the amalgamation property <= K has a model-completion.
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Proof. (=) We need to show that K* is model-complete relative to K.
So let % be a medel of K and B, ¥ ; models of K* such that A € %,,
AC B,. Since K € K™* and since K has the amalgamation property,
there is a model € of K such that the following diagram is commutative:

B
c

| ¢
-

8,

in

N

Since K* is nfodel-consistent relative to K, we may assume in fact that
€ is a model’nf K*. Then, because K* is model-complete, B; is an ele-
mentary substructure of € (¢ = I, 2) and it follows immediately that
(B, -'a)aE o = (\Bl’a ac A*

(=) The proof of this implication is implicit in Robinson [32]. Let
fitA->B,, i=1,2, be embeddings of models of K. We can in fact
assume *nat A< B; and f; is the inclusion map. Since K* is model-
consé,tent relative to K, we can embed %; in a model 8 of K*. Let
Dy, D}, D3 be the respective diagrams of 9%, % 1, % 5 formulated in
terins of the individuals of the corresponding structures. It suffices to
show that K* U D U D3 is consistent. The proof is then exactly as in
{321, Theorem 5.5.13.

Since abelian groups have the amalgamation property (see the proof
of Lemma 3.2) we can confine ourselves to looking for the model-
companion of the theory of abelian groups. Let K be the theory of
abelian groups either in the usual language L, in which we have only
two function symbols — for x + y and —x — or in the language L, of
Z-modules, in which there is a function for every n € Z: it will be clear
that our results apply to both cases.

Consider the following set of sentences (either in L, or Lz ):
ForeachO#neZ,

(2.2), Vx3ylny=x].
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For each prime p and each m > 0,

m
.3 Ax, . X, [in (xis&xj)/\‘/\l 0+ x;Apx;=0)] .

1=

)p, m

The class of models of (2.2), — (2.3)1,,,,, is the class D of all divisible
abelian groups A such that 4 contains, for each p, an infinite number of
elements of order p. Thus 4 € D = 4 = (¥ Z(p~)*P))(®) Q*) where

P
Kp 2 Rg, &k 2 0and Z(p~) is the group of all complex p”-th roots of
unity. (For the structure of divisible abelian groups and other algebraic
facts about aoelian groups see Kaplansky {23].) Let KX* be the theory
of D.

Theorem 2.4. K* is the model-companion (and hence the model-
completion) of K, the theory of abelian groups.

Proof. (Since a more general theorem will be proved in § 5, we only
sketch a proof here.) Any abelian group can be embedded in a divisible
abelian group ([ 23] Exercise 5, p. 12), and hence can be embedded in a
model of K*. Thus K* is model-consistent relative to K. A Lowenheim-
Skolem argument ([5] p. 80) shows that to prove K* model-complete

it suffices to consider countable models A € B of K* and prove that B

is an elementary extension of 4. Let D be a non-principal ultrafilter on
I={n€Z:n>0}andlet 4* = A!/D, B* = B!/D. Then Card(4*)=c¢ =
= Card (B*) where ¢ = 250 ([5) p. 129). We claim that

A* =3 Z(p")(c) ® Q) = 3* .
P

It suffices to prove that 4* contains ¢ elements of order p for each

prime p and a torsion-free subgroup of cardinality c. But if Z(p) is the

cyclic group of order p, A* 2 (Z(p)(?'*o))l /D which is a set of elements

of order p; and if p,, is the nth prime, 4* 2 Il Z(p,,)(xo)/D, which is a
n

torsion-free group. We now have
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A*  B*
I
A S B

where th.: vertical maps are elementary embeddings. Since 4 is divisible,
A*=A(G) Ay, B¥=A () B, and since 4 is countable

A4 = (D2 ®QW =B, .
p

It follows immediately that A4 is an elementary substructure of B. This
completes the proof.

The divisible abelian groups are precisely the injective Z-modules. In
order to generalize the above theorem it will be necessary to study the
injective A-modules; we undertake that task in the next section.

3. a-injective and injective modules

In this section A denotes a fixed ring with 1, M a fixed (unitary) left
A-module ana « a fixed cardinal > 2. By ideal, we mean a left ideal of
A. By module, we mean a left A-module. By homomorphism, we mean
a A-module homomorphism. We will follow in general the terminology
of N.Bourbaki.

Definition 3.1. An a-system is a set of fewer than a equations in a
single variable x, all of the form X\;x = q; where \; € A and q; € M.

If & = {\;x =g, : i € 9} is such a system, we denote by C($) or €
the set {A;} of coefficients of $ and by /(J) or / the ideal generated ty
€. With this notation we have

Lemma 3.2. The following assertions are equivalent:
(i) S has a solution in an extension of M.
(ii) A linear relation of the formzu N =0 implieszp,-ai = Q.
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(iii} There is a homomorphism g : [ > M such that g(\;) = a; for all
i€g.

Proof. The implications (i) = (ii) and (ii) = (iii) are obvious.

(iii) = (i): Let i be the inclusion mapping of / into A. Let M (P, A
denoted the amalgamated sum of M and A with respect to g and i, that
is the module quotient of M X A by the submodule {(g(»), — i(»)) :
ve I} (cf. [6], p. 258, ex. 5). Let g’ (respectively i) denote the canon-
ical homomorphism of A (respectively M) into M (), A. It is easy to
verify that i’ is one-one and that g’(1) is a solution of S in M (®; A.

Definition 3.3. An a-system d is consistent if one of the equivalent
assertions of Lemma 3.2 is verified.

It is clear that an a-system J is consistent if and only if every finite
subsystem of J (i.e. Ry-subsystem) is consistent.

Lemma 3.4. The following conditions are equivalent:

(i) Every consistent a-system has a solution in M.

(il) For every ideal I having a generat'ng subset of less than « elements,
any homomorphism of I into M can he extended to a homomorphism
of A into M.

Proof. (i) = (ii): Let J be an ideal having a generating subset € of less
than a elements. For any homomorphism f of I intc M we define an
a-system S, = {Ax =f(A): A €@ }. It is clear that (s ;) = € and

I(S f) =J. From Lemma 3.2 it then follows that & Fis consistent. Let s
be a solution of d, in M. The homomorphism of A into M which sends
u into us extends f.

(ii) = (i): Let S be a consistent a-system = {\;x =a; : i€ 9} . From
Lemma 3.2 it follows that there exists a homomorphism f of /() into
M such that f(\;) = q;. If g is a homomorphism of A into M which ex-
tends f, g(1)is a solution ot § in M.

Definition 3.5. A module M is a-injective if one of the equivalent con-
ditions of Lemma 3.4 is satisfied.
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Definition. 2.2 1,2, Let ¥ = y(A ) denote the smallest cardinal such that
every ideal has a generating subs:t of less than v elements. It is clear
that a module is g-injective for all cardinals 8 > 2 if and only if it is -
injeciive. Such a modu'e will be called injective.

This definition coincides with the usual one: more precisely, one has
the following classical result.

Proposition 3.6 (Baer) ([2] or [6], p. 265-266 ex. 11). The following
assertions are equivarent:

(i) M is injective.

(ii) For any module P and any submodule Q of P, any homomorphism
of Q into M can be extended to a homomorohism of P into M.
(iii) M is a direct summand of any module which contains it.

The concept of an injective envelope, due to Eckmann and Schopf
{14], will play an important part in the following sections.

Definition 3.7. An injective module £ is an injective envelope of M if E
contains M and if any one-one homomorphism of M into an injective
module N can be extended to a one-one homomorphism of E into N.

Proposition 3.8 (cf. [b], p. 268--269, ex. 18). M can be embedded in
an injective envelope of M. Furthermore, if E(M) and E'(M) are two in-
Jjective envelopes of M, there exists an isomorphism of E(M) onto E'(M)
which leuves the elements of M invariant.

For any module N, E(V) will denote a fixed injective envelope of N.
(By abus de langage, E(N) will be called the injective envelope of N.)

It is well-known that for any modules P and Q one has E(P (3) Q) =
= E(P) ® E(Q) (cf. [6], p. 269, ex. 21).

The two following results are immediate generalizations of well-
known ones.

Proposition 3.9. A direct product Q P, of modules is a-injective if and
1€g

only if each of the P_ is a-injective.
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Proof. Easy.

Proposition 3.10. If « < W, a direct sum of a-injective modules is a-
injective.

Proof. Let P= (D P, be the direct sum of a family {P, } req Of a-in-

TE9

jective modules. Let f be a homomorphism of a finitely generated ideal
I into P. Since I is finitely generated there exists a finite subset F of T
such that 7 ¢ F implies (p, » f)(I) = {0}, where p, denotes the canoni-
cal projection of P onto P,. We can then consider f as a homomorphism

of I into the module @ = @ P,. According to the preceding proposi-
TEYF

tion, Q is a-injective. Therefore, if / has a generating subset of less than
« elements, f can be extended to a homomorphism g of A into Q. If A is
the canonical embedding of Q into P, the homomorphism 40 g of A nto
P extends f.

We will henceforth be concerned with the elementary properties of
a-injective modales, particularly o1’ Xj-injective and injective modules.
One of our main tools will be the notion of ultraproduct, for the defini-
tion and properties of which one may consult [5], Chapter 5.

Lemma 3.11. Every ultraproduct of a-injective modules is a-injective if
and only if every ultrapower of an a-injective module is a-injective.

Proof. We assume that every ultrapower of an a-injective module is a-

injective. Let P= [] P_[D be an uitraproduct of a family {P,} .o, of
TEY

a-injective modules. We want to show that P is a-injective.

Let Q denote the direct product [1 P_; by Proposition 3.9, Q is a-
TC9T

injective, and therefore, by hypothesis, Q 7/D is a-injective. We prove

that P is a direct summand of Q 7/D by defining homomorphisms

f:Q%ID~> P, g: P~ Q7D such that fo g = identity on P. Let f be the

map: Q7 -~ @= [ P, induced by the family of maps f, = p, aq, :
€9

Q7 - P, whereq, : Q7 = Q, p, : Q> P, are the canonical projectio::s.

Let g be the map: @ » Q7 induced by the family of mapsg, =j,° p, .
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Q - Q wherej, : P, = Q is the canonical embedding. Then f - g = iden-
tity on Q, because

p,ofog=fcg=p.cq,°8=p,cg =p.ojep =p,

for all T € 7. It is then easy to see that f and g induce the maps fand g
on the ultraproducts, as desired. Therefore P is a direct summand of
Q 7/D and by Proposition 3.9, P is a-injective.

Remark. What we have really done is to show the following general
fact: LEvery ultraproduct of a family of modules is a direct summand of
an ultrapower of the product of this family. The same proof shows that
such an ultraproduct is also a direct summand of an ultrapower of the
direct sum of this family.

Before stating the main results of this section, let us recall the follow-
ing well-known definitions: A classM of structures (of the same type) is
said to be elementary in the wider sense if ‘M is the class of models of a
first-order theory. M is said to be elementarily closed if any structure
elementarily equivalent to an element of ‘M belongs to M.

Theorem 3.12. If a < R, the following conditions are equivalent:
(1) T:e a-injective modules constitute an elementary class in the wider
sense.
(iiy Any ultraproduct of injective modules is a-injective.
(iii) For every positive integer n less than o, A satisfies the following
property (C,):
The kernel of every homomorphisri of A" into A is finitely generated.

Proof. It is enough to show that (ii) implies (iii) and (iii) implies (i).

(ii) = (iii): Let n be a positive integer less than « and f a homomorphism
of A™ into A. One sees immediately that therz exist A, ..., X,, € A such
that

n
Vg o ) €A™ Flly s )= 2 B,
i=1

Assuming that the kernel of f, Kerf, is not finitely generated, we will
exhibit an ultraproduct of injective modules which is not a-injective.
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Let 8 denote the smallest cardinal such that there exists a generating
subset {a, } , 5 of Kerf of cardinai g. 8 is infinite and if (a,), <, denotes
the submodule of Kerf generated by {a, }, ., one has

() VYv<pI'<Ba,¢@),, .
For each » < § we can embed the quotient module A”/(a,), ., in an in-
jective module E,, (cf. Proposition 3.8). Let D be a uniform ultrafilter

on 3. We claim that the ultraproduct [1 E, /D is not a-injective.
v<g

Indeed, for each i between 1 and n let e; be the element of A" whose
ith component is equal to 1 and all other components are equal to 0.
For each v less than § let e; , be the image of e; under the canonical
homomorphism of A” onto A”[(a,).,. Let ¢; be the equivalence class
medulo D of (¢; ), « 3. It is enough to show that the system of equa-

tions {A;x = €;} < ;< , is consistent but has no solution in I'TE ,ID.
-7 »<g

This system is consistent: By Lemma 3.2 and Definition 3.3, it is suf-

n
ficient to show that for each (g, ..., u,) € Kerf we have 2 u,;; = 0.
i=1

Clearly we can restrict ourselves to the case where (u,, ..., #,) is an ele-

n
ment a, of the generating subset {a, }, 5. But in this case 2 i€, is
i=
the image of @, under the canonical homomorphism of A” onto A"/
(@,), <, for each v’ < . It then follows that for each v’ greater than v

n
and less than 8 the element 2 u;e; ,+ is equal to 0. But then, since
i=1

n
{v'lv <»' < B € D (because D is uniform), we have 2 r;€;=0.
i=1
This system has no solution in I E,[D: let us suppose that there
v<§p

exists an element (s,), <4 in I1 E, whose image under the canonical
v<p

homomorphism of I ] E, onto [T E,/D is a solution of this system.
v<p v<gp

In this case there would exist an index » < g such that \;s, = ¢; , for all
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i between 1 and ». It would follow that for each element a, =
(1}, ..., uy,) of the generating subset {a,} ., we would have

1t
‘21 uie; , = G ora, €(a,), <, which would contradict (1).
1 =

(iii) = (i): Let F, denote the set of (finite) non-empty sequences €

of elements of A of length < «. We are going to define for every element
€ ={X;, ..., A\, } of F, a first-order sentence ¢ , such that the module M
is a-injective if and only if M is a model of the set {¢, 1€ € Fy { . Let
S ={Nx =a;} < ;< bean a-system such that €($) =€ . LetJ =Je
denote the kernel of the homomorphism f of A" into A defined by:

n
flug, v uty)= 23; uh;. LetB=B, = {bj}lgjgm denote a finite gener-
3-’:

ating subset of J. If b; = (¢ ;. ..s “nJ) the a-system o is consistent if
and only if

m n

A (2 #;;4,=0).
j=1 i=1

If p,, is the sentence:

m n

n
va,..a, (A (;'; Hija = 0)> 3x (A Nx=a;))),
= = i=

it is easy to verify that the module M is a-injective if and only if M is a
model of the set {@e € € Fy}. The proof is complete.

It is rather remarkable that the condition (C,,) appears in the litera-
ture in a slightly different form: We have the following easy

Lemma 3.13. For every positive integer n, the two following conditions
are equivalent:

(C,): The kernel of every momomorphism of A" into A is finitely gen-
erated.
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(C,,): Every ideal of A having a generating subset of n elements is finite-
ly presented.

Proof. (C,)= (C,,): Let I be an ideal of A having a generating subset of
n elements. There exists a homomorphism f of A” onto I. The kernel of
[ is finitely generated, which yields a finite presentation of /.

(C,) = (C,): This implication follows immediately from ([8], p. 37,
Lemme 9).

The following defiaition is due to Bourbaki (cf. [8], p. 62—63, ex. 11
and 12), although the coherent rings were first studied by Chase (cf.
(zn.

Definition 3.14. A is coherent if every finitely generated ideal of A is
finitely presented, i.e. if % satisfies (C,) for every positive integer 2.

Clearly any noetherian ring is coherent. Examples of coherent rings
which are not necessarily noetherian are semihereditary rings [ 12}
(which include Priifer rings * [11] and hence valuation rings [ 10] ) and
rings of polynomials (in any number, finite or infinite, of indetermin-
ates) over a commutative noetherian ring.

The following proposition due to Chase subsumes some of the
known characterizations of the coherent rings. It will not be used here
and is given without proof for the information of the reader.

Proposition 3.15. A is coherent if and only if it satisfies one of ihe two
following equivalent conditions:

(i) Any product of flat right modules is flat.

(ii) The annihilator of every element of A is finitely generated and the
intersection of any two finitely generated ideals is finitely generated.

The following theorem is essentially a restatement of our Theorem
3.12 and gives new characterizations of the coherent rings.

Theorem 3.16. The ollowing conditions are equivalent:

* For example, Peano rings, i.2. rings elementarily equivalent to the ring Z of integers, are
Priifer rings.
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(i) The Ry-injective modules constitute an elementary class in the
wider sense.

(ii) The Ry-injective modules constitute an elementarily closed class.
(i) Any ultrapower of N-injective modules is R y-injective.
(iv) Any ultraproduct of Ry-injective modules is Ro-injective.

(v) A is coherent.

Proof. One shows (i) = (ii) = (ili) = (iv) = (v) = (i). (i) = (ii) is trivial.
(ii) = (iii) follows from the properties of ultrapowers. (iii) = (iv) follows
from Lemma 3.11. (iv) = (v) follows from Theorem 3.12. (v) = (1) is
contained in Theorem 3.12.

Lemma 3.17. 1) Ev ry elementary substructure of an X,-injective
module is 8g-injeciive,

2) If A is coherent, ever:' Ry-injective module is an elemer tary sub-
structure of an ‘njective module.

Proof. 1) We assume P R-injective and M < P. Let {\;x =

a;} 1< i<, =9 be aconsistent 8,-system where 7 is an integer and all
the a; belong to M. One can consider J as a consistent 8, -system whose
“parameters” a; belong to P. Since P is Rj-injective, ¢ has a solution in
P. Since M < P, S has a solution in M.

2) From Theorem 1.7, p. 220 of [ 5], it follows that every module is
an elementary substructure of an a-saturated module for arbitrarily
large cardinals a. Let M be Rj-injective. We have M < P where Pisa v-
saturated module. Since A is coherent, P is Ry-injective. But it is imme-
diate to verify that an ®-injective module which is y-saturated is v-
injective. Since a y-injective module is injective, the proof is complete.

Proposition 3.18. The following assertions are equivalent:
(i) Every Ry-injective module is injeciive.
(ii) For every countable sequence of cyclic modules {M,} . the

direct sum () E(M,) is injective.
ncw

(iil) A is noetherian.

Proof. (i) = (ii): This is an immediate consequence of Propositicn 3.10.
(i) = (iii): This implication is proved, although it is not stated, in
({12], p- 471), where it s attributed to Bass.
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(iii) = (i): This implication is obvious.

Theorem 3.19. The following conditions are equivalent:

(i) The injective modules constitute an elementary class in the wider
sense.

(ii) The injective modules constitute an elementarily closed class.
(iii) A is noetherian.

Proof. It is enough to show that (ii) implies (iii) and (iii) implies (i).

(ii) = (iii): By assumption any ultrapower of injective modules is in-
jective. From Lemma 3.11 it then follows that any ultraproduct of in-
jective modules is injective, therefore is Ry-injective. By Theorem 3.12
and Definition 3.14 this implies that A is coherent. By Lemma 3.17
every R -injective module is then elementarily equivalent to an injective
module. Therefore every 8,-injective module is injective. One applies
then the preceding proposition.

(iii) = (i): Since A is noetherian, A is coherent and the injective
modules are the Ry-injective modules. The result then follows from
Theorem 3.16. The proof is complete.

Remarks. We will present here some results which are not necessary for
understanding the remaining sections: we will therefore be content with
giving a sketch of the proofs.

1. Let « be a cardinal (sirictly) greater than 8,. One may ask when
the a-injective modules constitute an elementary class in the wider
sense. This is clearly the case if A is noetherian. The converse is also
true: if the a-injective modules constitute an elementary class in the
wider sense, one may show, as in the proof of Theorem 3.19, that every
Ry-injective module is X -injective. But it then follows from ({12], p.
471) that A is noetherian.

2. The reader will have noti:ed that the Theorems 3.16 and 3.19 are
not exactly parallel. The reaso1 is that, although we are not able to
characterize the rings A such taat any ultraproduct of injective A-
modules is injective, it is easy to see that such a ring is not necessarily
noetherian. It may be of interest to point out first the following:
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Proposition 3.20. The following conditions are equivalent:

(1) Any ideal having a generating suhset of less thar « elements is pro-
Jective,

(ii) Any quotient of an a-injective module is a-injective.
(iii) Any quoticnt of an injective module is a-injective.

We omit the proof which is very similar to that given in ({11],
Theorem 5.4, p. 14).

It follows from the preceding proposition (or from the above refer-
ence) that, if A is (left) hereditary, i.e. if every (left) ideal of A is a pro-
jective module, any quotient of an injective module is injective. Since
any product of injective modules is injective, we can deduce that, if A is
hereditary, any ultraproduct of injective modules is injective. But it is
well-known that a hereditary ring is not necessarily noetherian.

3. Let us recall the following definition, which is equivalent to one
given by P.M.Cohn [13].

Definition 3.21. A submodule N of a mo:dule M is pure in M if any
finite set of linear equations (over A) with constants in N which has a
solution in M has a solution in V.

The following definition has been introduced in ([27], p. 1595).

Definition 3.22. A moduie is absolutely pure if it is a paire submodule
of any module which contains it.

We would like to comipare the notions of injective, absolutely pure
and R,-injective modules. One has clearly:
Injective = absolutely pure = R,-injective .
Proposition 3.23. If A is coherent, every Ry-injective module is abso-
lutely pure.

Proof. By the second part of Lemma 3.17, if A is coherent, every R,-
injective module is an elementary substructure of an injective module.
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Since an injective module is absolutely pure, one completes the proof
by observing that every elementary substructure of an absolutely pure
module is absolutely pure (cf. the proof of the first part of Lemma
3.17).

The preceding proof has a metamathematical flavour. It is possible
to replace it by a simple “algebraic” argument which the interested
reader may provide. We do not know for what rings the Ry-injective
modules are absolutely pure.

In the case where A is a Prafer ring, a better result than Proposition
3.23 is available: in this casc a submodule N of a module M is pure (°n
M) if and only if foreachA € A AM N N=aAN (cf. [9], ». 132, ex. 6,
where A is assumed to be a valuation ring, which is enough, by localiza-
tion, or [36], p. 706, Corollary 5). It is then immediate that, if A isa
Prufer ring, every 2-injective module is absolutely pure.

The following proposition, which is essentialiy a restatement of Prop-
osition 3.18, answers a question left open in [27].

Proposition 3.24. The following assertions are equivalent:
(i) Every Ry-injective module is injective.

(ii) Every absolutely pure module is injective,

(iii) A is noetherian.

4. The 2-injective modules have been studied, under the name of
divisible, in a paper by Hattori ([17] ). One of the results of this paper
is that every module is 2-injective if and only if A is a regular ring in the
sense of Von Neumann. Such a ring is coherent ([34]) and has the prop-
erty that every firitely generated ideal is principal. The following propo-
sition is then immeadiate.

Proposition 3.25. The following conditions are equivalent:
(i) Every module is absolutely pure.

(ii) Every module is Ry-injective.

(iii) A is regular in the sense of Von Neumann.
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4. The model-completion of X,

Since K, has the amalgamation property (see the proof of Lemma
3.2), K, has a model-completion if and only if it has a model-compan-
ion (Lemma 2.1).

Theorem 4.1. If K, has a model-companion, then A is coherent.
We first prove 4 lemma.

Lemma 4.2. Ler M; S N; be modules with M; R-injective for all i € 1.
Let ) be an ultrafil:er on I and M* =[ I M,/D, N* =l IN,/D. If N* is -
! 1

injective, then M* is R,-injective.

Proof. Let 5= {.\jx = a;“ :j=1, .., n} be a consistent finite system of
equations with coefficients eteEM *. Choose a representative element
(@;()); inl IM; for each a¥, so that a* = (a;(i))/D. Since M* < N*

I

and N* is Rj-injective, ¢ has a solution b* = (b(i)/D in N*. Then the
system of equations (i) = {¥;x =g;(i) :j =1, ..., n} has a solution b(i)
in N; for i in a set of D. But then since M, is Ry-injective and M; € N,
J(#) has a solution in M, for i in a set of D. Hence $ has a sclution in
M*_ Since this is true for any consistent finite system &, M* is ¥,-
injective.

Proof of 4.1. By Theorem 3.16, it suffices to prove that any ultra-
product[ [ M ;/D of Ry-injectives M, is Ry-injective. If K, has a model-
I

companion — say K* — then each M; can be embedded in a model N; of
K* (K* is model-consistent relative to X, ).
If we show that N* =n1\i‘,-/D is B,-injective, then by Lemma 4.2 we
{

are done. But if = {\;x =aq;} is a consistent finite system of equations
with q; € N*, then there is an N; 2 N* such that S has a solution in V, .
Since K* is model-consistent relative to K we may assume that NV, isa
model of K*. Now N* is also a model of K*, so N, is an elementary ex-
tension of N* (because K* is model-complete). Therefore the sentence
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which asserts the existence of a solution for & is true in N* since it is
true in N, . This completes the proof of 4.1.

Let ¢={E(A/I): Ianidealin A} i.e. € = the set of all injective en-
velopes of cyclic modules. Index € by a setJ so that €= {E jeJ}.

Let My =@ E(RO) and let KX = Th(M,) = set of all sentences of L,
jieJ

true in M. Note that M, is X,-injective (Proposition 3.10). We will
prove that if A is coherent then K is the model-completion of K, .
Our first results, however, do .ot depend on the fact that A is co-
herent.

We first prove a technical lemma.

Lemma 4.3. Let A and B be modules. Suppose F(B) is a family of sub-
mo-dules of A such that for any B' € F(B), B' = B and for any B’,

¥ € F(B), either B" = B" or B" N B' = {0} . Suppose F(B) has cardin-
aity x and suppose A = C, @ C, where Card(C,) < . Then C, con-
te.ns a submodule isomorphic to B.

Proof. We may suppose 4 = C, ® C, is an internal direct sum, so that
C;is asubmodule of A (i=1,2). Letp; : 4 ~ C;, i =1, 2, be the canon-
ical projections. Then it suffices to show that p, | B’ is one-one for some
B' € F(B).Nowif B',B" € ¥(B), B'# B",and b’ € B', b" € B" are
non-zero elements such that p,(b') = 0= p, (b"), then b’ = p, (d') and

b" = p, (b") are distinct elements of C, (B' N B" = {0} ). Since

Card (F(B)) = x and Card(C,) < «, it follows that p,|B’ is one-one for
some B’ € F(B). This completes the proof of 4.3:

For the sake of brevity we will write “F is i.e.f.g.” if E is the injective
envelope of a finitely generated module, that is, if E = E(A("/R) for
some 1 < w and some submodule R of A{("), Let x be a cardinal such

that k > {Card(E) : E isi.e.f.g.}. Note that M{¥ = @® E("‘ is a model
jE€J

of KX (cf. [16]).
If M and N are modules,4 €M, BC Nand f: A - B is a set bijec-
tion we write

(A’!, a)aeA = (N’f(a))aEA
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if for any formula ¢(v; ...v,}4a L, andanya;, ...,q, S A

ME olay ..a,] = NFEolfla))..fa,)] .

Lemma 4.4. Let M, N be injective modules which contain submodules
isomorphic to M(()"). Let f: A - B be an isomorphism of modules where
A S Mand B C N are finitely generated. Then

(M.a),c s EWNS@), ey -

Proof. In fact we prove that

M, a)ae,q = .0 N, f(a))aeA .

By ruplacing 4 and 2 by their injective envelopes, we can assumz that 4
and B are i.e.f.g.

Let 9 = the set of all isomorphisms g : $; - T such that g is an ex-
tension of fand §; € M, T, € N are i.e.f.g. We will prove that for any
¢ €M (resp. d € N) and any g € 9 there exists g' = 9 such that g’ ex-
tends g and ¢ € domain of g’ (resp. d < range of g'). If we prove this,
then the conclusion of the lemma follows easily by an induction on for-
mulas (cf. [24]). Soletg : S| > T, and let ¢ € M (the proof that we
can extend the range of g to d € N is identical). Since S| and T are in-
jective, we can write M = S, ® Sy, N=T, ® 7,. We can assum:
c€ S, (since if ¢ =c; + ¢, where c; € S; (i = 1, 2) it suffices to extend
g tocy, €8S,). Then E(Ac) is a direct summand of S, ; we have:

M=5, ®EAe) DS,

and S, @ E(Ac) is i.e.f.g. (see the remark following Proposition 3.8).
Now since N 2 M})"), there is a family F(E(Ac)) »f submodules of N
satisfying the hypothesis of Lemma 4.3 such that F(E(Ac)) is of car-
dinality « . Since T, is of cardinality < x (by choice of x : T isi.e.f.g.)
Lemma 4.3 implies T, contains a submodule — say T, — isomorphic to
E(AJ). Clearly we can extend g to an isomorphism g’ : S, ® E(Ac) ~»

+T, ®T;.
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Remark. If we take 4 = B= {0} in Lemma 4.4 we obtain: if M, N are
injective modules which contain submodules isomorphic to Mg"), then
M=N.

A natural question to ask is whether two injectives which contais, M,
are elementarily equivalent. We shall give an affirmative answer to this
question in the case that A is coherent. First we need a general model-
theoretic fact. '

Lemma 4.5. Let U,B be structures for a language L such that B € A
(resp. B<W). If B' is elementarily equivalent to B, then there is an
embedding (resp. elementary embedding) of B' into an elementary ex-
tension A’ of U.

Proof. Since 8= %', by Frayne’s Lemma there is an elementary em-

bedding f of B’ into an ultrapower B7/D of B. But then the composi-
tion of f with the canonical embedding of 8//D into A//D = A’ is an
embedding of B’ into %', which is elementary if 8<X%.

Corollary 4.6. Let L be a language with a distinguished constant 0 (so
that the direct sum of structures for L is definable). Let A, B be struc-
tures for L and let a be a cardinal > R,,.

(a) BRo) = gl (where the notation denotes direct sum) [16].

(b) If A contains a substructure elementarily equivalent to ‘B(&O), then
there is an elementary extension of U which contains a substructure
isomorphic to B(®,

Proof. (a) In fact N0 = _  B(® (see, for example, [3] Lemma 1.8);
(b) follows immediately from (a) and the preceding lemma.

Corollary 4.7. Asst.me A is coherent.

(1) Let M, N be R-injective modules which contain submodules ele-
mentarily equivalent to M. Let f : A - B be an isomorphism of mod-
ules where A € M and B € N are finitely generated. Then

) EMp=M, . M, a),c 4 = (N, f@), 4 -
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Proof. (1) Since My = M§™0_ it follows from Corollary 4.6 that M{*)
can be embedded in an elementary extension M’ (resp. N') of M (resp.
N). Since A is coherent, M’ and N’ are R, -injective (Theorem 3.16).
Therefore by Lemma 3.17, there is an elementary extension M” (resp.
N") of M' (resp. N') sich that M” and N" are injective. The conclusion
follows from Lemma 4.4 applied to M" and N".

(2) By Lemma 3.17, there is an elementary extension M, of M, which
is injective. By (1), E(My) =M, .

Remark. We do not kncw if the corollary remains true if we drop the
assumption that A is coherent.

Theorem 4.8. If A is coherent, then K is the model-companion (and
hence tae model-completion) of K, .

Proof. We prove first that K is model-consistent relative to K, . Let M
be any module; then M C E(M)@ M, which is a model of K:'{ by Cor-
ollary 4.7.

To show that K} is model-complete, consider M; € M, where M,
and M, are models of K} . Since M; = My, (i = 1, 2), there are elemen-
tary embeddings 1; : M; = N; of M; into an extension N; of M. (For
example, use Frayne’s Lemma). By Theoram 3.16 N, is ®y-injective. Let
¢(v) ...v,) beaformulaof L, andleta,, .., a, €M, such that
M, E vla; ...a,1. Since h, is an elementary embedding,

Ny Eolhyta,) ... h,(a,)). Let A; =hy(Aay + ...+ Aa,) S N;. There is
an isomorphism f : 4, > 4, such that

A, ~————-—> A,
commutes. Since 4, is finitely generated

Ny, a8)ycq, = Ny F)), ¢ 4,



274 P.Eklof and G.Sabbagh, Model-completions and modules

by Corollary 4.7. Therefore N; = ¢[h;(a,) ... h,(a,)] implies

N, E ¢olfhy(a)) ... fhy(a,)] which, by the commutativity of the dia-
gram, is the same as N, F o[h,(a,) ... h,(a,)). Since h, is an elemen-
tary embedding we conclude that M, = ola; ...a,]. Thus M, < M,
and the proof is complete.

Remark. It is an open question whether for any coherent ring A and
any model N of K,,, K U D(N) has a prime model. However we can
give an affirmative answer to this question when A is commutative no-
etherian or artiniar.

Proposition 4.9. All models of K,"{ are injective if and only if A is no-
etherian.

Proof. It follows immediately from Proposition 3.18 ((ii) and (iii)) that
if M is injective, A is noetherian. (By definiticn of My, (® EM,) is

new
a direct summand of M, for any countable sequence {M, = A/, } of
cyclic modules.) Theréfore if all models of K5 are injectivs, A is no-
etherian. Conversely, if A is noetherian, by Froposition 3.18 ((i) and
(iii)), M, is injective and, since the injective modules constitute an ele-
mentarily closed class (Theorem 3.19), all models of K, are injective.

5. Commutative noetherian rings

Throughout this section A is a commutative noetherian ring. In this
case we are able to give additional information about the model-
completion K,"{ of K, . Our principal tools are the Krull Intersection
Theorem and results of Matlis [28] on injectives over noetherian rings.

Let P = the set of proper prime ideals in A, M = the set of maximal
ideals. Also let

‘mf={QeCm:A/Qisfinite} ,

wm; = {Q e : A/Q is infinite } .
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Then ary injective E can be written in the form

(5.1) Ex @ EA/P P
Fe ?

where ap > 0 ([28], Theorems 2.5, 3.1). Moreover, the ap are uniquely
determined by £ ({ 1], Theorem 1).

By abus de langage we will refer to the latter fact as the “‘uniqueness
of the decomposition (5.1)” (although the isomorphism in (5.1) is not
unique). In another instance of abus de langage we will freely confuse
the notions of inclusion and embedding. For example we will say “E
contains E(A/P){®P}” when we should strictly say “E contains a sub-
module isomorphic to E(A /P){&P)>

We will prove:

Theorem 5.2. Let E be a A-module. The following assertions are equiv-
alent:
(1) E isinjective and if E is decomposed as in (5.1):
a) ap > 0 forall PEM;
b) IfPE‘mf, ap 2 Ry.
(11) E is a model of K, .

The fact that any mode! of K,"{ is injective fotlows from Proposition
4.9. The rest of the proof of 5.2 will be given in the form of two prop-
ositions (5.4 and 5.6). First we prove a lemma that gives a criterion for
ap > 0. (If a € M, Ann(a) denotes the annihilator of a, i.e. the set
{(AeA:na=0})

Lemma 5.3. Let E= ® E(A/P)®P) Then ap > 0 <= there exists
PE?

a € E such that Ann(a) = P.

Proof. (=) Forany 0# a€ A/PC E(A/P), Ann(a) = P, because P is
prime.
(=) Ifa€ E, a+# 0, we can write a uniquely in the forma =
a, +... +a, where each g; is non-zero and for some P; € ?, is an ele-
ment of a summand E(A /P;) of (é) E(A/P)\*P)_ Then
PE?
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n
Ann(a)= N Ann(q,).
=1

]
Hence if Ann(a) = P, then Ann(q;) = P for some i (because

n
[T Ann(g;) € P). But Ann(g;) is a P;-primary ideal ([28], Lemma 3.2).

i=1

Therefore if Ann(q;) = P, thei. P= P;.

Remark. Ifa=a, +... +a, as above and Ann(a) = P where P is 'naxi-
mal, then Ann(a;) = P for all i, because P = Ann(a) & Ann(a;) # A.

If Q €M choose a finite basisuy, ..., u, for Q and let Yo (x) be the
formula

r
x#0A AN (u;x=0).
i=1

Thus M [ ¥, [a] if and only if Ann(a) = Q. (Since Q is maximal,
Ann(@)=Q <= a# 0and Ann(a) 2 Q.) Let e’é be the sentence

(3x1)...(3xn)[ ./\l \[/Q(x,.)/\ Q (x,.;éxj)] .
i= IE]

Let T, be a set of axioms for the theory of injective modules (Theorem
3.19) and let

T=T0U{HIQ :Qe‘?f(i}u{e'é tn>0; QeEM,}.

Proposition 5.4. E is a model of T <= E satisfies (1) (a) and (b) of Theo-
rem 5.2.

Proof. If we write an injective E as in (5.1) then by Lemma 5.3,
ag>0=E[ o}z, for each Q €M. If Q €M, {a € E(A/Q) :

Ann(a) 2 Q} = A/Q, which is finite ([28] Theorem 3.4 (4)). Therefore
it follows from Lemma 5.3 and the remark followirg it that

ag 2Rye={ackE: Ann(a) = Q} is infinite < E 8’(’2 foralln> 0.
The proof is complete.
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Since M, obviously satisfies (1)(a) and (b) it follows that T C K\
and hence any model of K: satisfies (I) (a) and (b). This proves the
implication (11) = (I) of Theorem 5.2. We begin the proof of the oppo-
site implication with a lemma that establishes a criterion for E to be a
model of K} .

Lemma 5.5. If E is an injective which contains E(A /P)(NO) for each
PeP thenE=M,.

Proof. By definition My 2 E(A /P)mO) for each P € P, Therefore

Mo = @ E(A/PYP where §p 2 R for all P& ? (by the uniqueness of
PE?

the decomposition (5.1)). If M' = ® E(A/PY®0) then M' = M, {by
pPE?

Corollary 4.6(a) and [ 16]). By hypothesis, if we write £ as in (5.1)
then ap > R, forall P€ ?. Thus M’ € E and it follows from Corollary
4.7 that E=M,.

Now define

M= @ EQQPD + ® En/Q).
Qé’mf pEm;

I

By the uni¢ieness of the decomposition (5.1), E contains (a submodule
isomorphic to) M, if and only if E satisfies (I)(a) and (b) of Theorcm
5.2. Therefore we will have proved the implication (I) = (II) of 5.2 if
we prove:

Proposition 5.6. If E is an injective which contains M, then E is a
model of K’ .

Proof. First of all we observe that there is an elementary extensior. £
of E which contains E(A/Q) 0 for each Q €M, (i.e. E; 2 M{R0). In
fact let § > max {Card E(A/Q) : Q €M} ; by taking a su*able ultra-
power E//D of E we obtain an elementary extension of E which for
each @ €M ; contains § elements whose annihilator is Q (viz. the non-
zero elements of (A/Q)! /D). Now by the remark following Lemma 5.3
and since 8 > Card E(A/Q), we see that E//D 2 E(A/Q)®).
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We claim that to prove the proposition it suffices to prove that for
any module /N containing M}NO), there is an elementary extension NV, of
N such that forallP€ P —M, Ny 2 N @ E(A/P). If this is the case,
then we obtain by induction on n an increasing chain of modules N,
such that Ny =E,, N,_, <N, , and foreach P€ ? -,

N, 2 N,_; ® E(A/P). Taking the union of the chain we obtain an
elementary extension N, of N such that for each P€ 2,

N, 2 E(A/P)(SO). N, is injective by Theorem 3.19 because N = E.
Thus by Lemma 5.5, N, = M and hence E = M, i.e. E E K . Thus to
complete the proof of 5.6 it suffices to prove:

Lemma 5.7. Let D be a non-principal ultrafilteronl={n€Z . n> 0}.
Let N be a module containing M(le) and let Ny = N'|D. Then for any
PEP —M, Ny 2 N® E(A/P).

Proof. Let P€ ? —M and Q €M such that P C Q. We will prove fisst
that (E(A /Q)(Fo))’ /D contains a submoduie isomorphic to E(A/P). By
the Krull Intersection Theorem. P= N (Q" + P) ([36] Theorem 12',
>0
p. 217). Now Q" + P is a Q-primary ideal ([36], Corollary 1, p. 153).
Write Q" + P=J, ;N ...NJ,  asan intersection of irreducible ideals: then
each J, ;. is an irreducibte Q-primary ideal. so by (128]. Lemma 3.2) there
is an element x, , € E(A/Q) such that Ann(x, ;)= J, ;. Mo1eover we can
choose the x,, ; to lie in different copies of E(A/Q). Then if y, =

Tn

Xyt tx Ann(y,)= le Ann(x, )= rkw ok =Q" +P. If we

n,rn?

let y* be the element of (E(A/Q)(NO))’ /D represented by (y,),, then
for any A € A, Ay* = 0 implies Ay,, = O for arbitrarily large # (D is non-
principal); so A € N (Q" + P) = P. Thus Ann(y*) C P; the opposite in-

n

clusion is clear, and hence Ann(y*) = P. It follows from Lemma 5.3
that (£(A/Q)X0) /D contains a submodule A isomorphic to E(A/P).

Now E(A/Q)(RO))’/D — and hence A — may be regarded as a sub-
module of N, . We claim that if d : N > N is the diagonal embedding,
AN dWN)={0}. Indeed, dIN) N (EA/QYRON jp = d(E(A/Q)(No)).
Thus if 0 # a € A N d(N), a € dEA/Q)F) and so E(A/Q) RO con-
tains a submodule isomorphic to E(Aa). But also E(Aa) = 4 = E(A/P)
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because A4 is indecomposable ([28] Prop. 2.2), which contradicts the
uniqueness of the decomposition (5.1). Hence we have proved

A N d(N)= {0} and consequently N; 2 d(N) () 4. This completes the
proof of Lemma 5.7, Proposition 5.6, and Theorem 5.2.

Corollary 5.8. For any model N of K, , K} U D(N) has a prime model
which is unique up to isomorphism over N.

Proof. If N is a module, write

EN)= @ E@\/P)eP),
PE?

For P €M ;, define Bp = Ry if ap < Ry Bp = U otherwise. For PEM;,
define 8p = 1 if ap = 0; Bp = 0 ctherwise. Let

Eg=EN)® ® EM/P)PP).

PEM

Then N C E(N) € E, and E, is a prinie model of K U D(N). Cleatly
any prime model of K: U D(N) is isomorphic to EO by an isomorphism
which fixes N.

6. Artinian rings

When A is artinian, we can also give a structure theorem for the mod-
els of K and a set of axioms for K} .

We first handle the case where A is semi-simple artinian. We begin by
indicating three mathematical facts about A and A-modules which will
be used in the proof.

n

(6.1). (Artin-Wedderburn Theorem) A = (B A e, where each Ae,

i=1

is a simple lejt ideal and {e;} | < ;< , IS a finite set of orthogonal

iderapoteits. T

Clearly we may assume that there is an integer m < n such that
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(6.1a) if 1 <i, j< mand i+ | the left A-modules Ae; and Ae; are
not isomorphic.

(6.1b) if m< i< n thereis aj< msuch that the «eft A-modules
Ae; and Ae; are isomorphic.

(6.2). Any module M is semi-simple and therefore can be written as
a direct sum of simple modules:

m
M= @ Lgai)
i=1

where L; = Ae;.

The cardinals a; are uniquely determined by M, which allows us, as
in § 5, to refer to the uniqueness of the decomposition without further
comment.

(6.3). A simple module L is isomorphic to Ae; if and only if there is
an element a € L such that e;a # 0.

For 6.1 and 6.2 one may see, e.g., [7] or [20]. 6.3 may be easily
checked by tie reader. The main interest of (6.3) is that it gives a firss-
order sentence which a simple module L satisfies if and only if L is iso-
morphic to Ae;.

Remark. An immediate consequence of 6.2 is the fact that any module
is injective. It is well known (cf. [20]), but will not be needed here,
that this gives a characterization of the artinian semi-simple rings.

We consider now the module M, defined in § 4. Clearly we have:

m
My = @ (Ae;)®) where each a; is > Ry. By Corollary 4.6(a) and [16]
i=1 m
it then follows that M, is elementarily equivalent to @ (Ae;)(R0).
i=1
For any i = 1, ..., m and for any integer k > O let ap::‘ be the sentence

k

(Fx) .. (3x ) (A €;X; # 0)A( ./\_’ ex; # e,.xl.')
/=1 J#]
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Let & be the set {il1 < i< m and Aeg, is finite} . Let T be th- set
{of k>0, ieF}u{y! :i¢F}.

Theorem 6.«. Let A bz semi-simple artinian and M a A-module. The
following assertions ure equivalent:
(i) M isamode! of T.
(ii) The decompositicon given in (6.2) satisfies:
a) «; > 0foralli;
b)Y Ifi€F then o; 2> R
(iii) M is a model of K .

Proof. (i) (ii): This is an easy consequence of (6.3). (ii) = (iii): We
suppose that M satisfies (ii) and we have to show M = M, or

m

M= @ (Ae;)3%0 . By Corollary 4.6(a) and [16}, we are done if we
i=1

show that

(6.5) i ¢ F implies Ae; = (Ae,)(F0).

It follows easily irom (6.3) that for any module N elementarily equiva-
lent to Ae;, any simple submodule of N is isomorphic to Ae;. Let us
suppose now that Ae; is infinite; there exists (by the Lowenheim-
Skolem theorem) a module N elementarily equivalent to Ae; and of
cardinal > cardinal (Ae;). Since any simple submodule of N is isomor-
phic to Ae;, by (6.2) (and the uniqueness of the decomposition) one has

N= (Ae)'® with a> N8,

By Corollary 4.6(a), one then has N = (Ae, )(No) and therefore
Ae; = (Ae)) RO .
(m) = (i): Immediate, since My = T. This completes the proof.

Now let us suppose only that A is artinian (not necessarily semi-
simple). Since nc new idea is involved, we will be content with briefly
indicating how this case may be reduced to the case where A is semi-
simple artinian.

Let J be the Jacobson radical of A. It is well known that A/J is semi-
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simple artinian. We can then apply (6.1) to A/J and obtain a decompo-
sition of A/J as a direct sum having the properties mentioned in (6.1):

Al = @l (A/)e,

(where €; € A/J denotes the class of an element ¢; € A). We introduce
also for A/J an integer m having the properties (6.1a) and (6.1b). For
any A-module M we define the ‘semi-simple part of 4 S(M) =
{x€M:Jx=0}.S(M) can be endowed in a canonica! way with the
structure of a A/J module.

The following results are due to Morita, Kawada and Tachikawa [29]
and méy be considered as a counterpart cf the results of Matlis which
were used in § 5.

Theorem 6.6. Let A be artinian and let E, E' be injective A-modules.
Then E and E' are isomorphic if and only if S(E) and S(E') are isomor-
phic.

Theorem 6.6%. Let A be artinian and E be an injective A-module.
a) E is indecomposable if and only if S(E) is simple.

n
b) E= @ E*) where E; is a (injective) A-module such that
i=1
S(E)) = (A/)E,.
Remark. A consequence of Theorem 6.6 is that M, is elementarily
m
equivalent to ) E(R0).
i=1
We may then state the main result of this section.
Theorem 6.7. Let A be artinian and M be a A-module. The following
assertions are equivalent: m
(i) M is injective and if M = @) E(e;) is the decomposition giver. by
i=1

(6.6%2b), then
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a) a;> 0foralli

b) If (A/D)e; is finite, o; 2 Ry.
(1) M is injective and S(M) is a model of K: /-
(iii) M is ¢ model of K’ .

The proof is lefi to the reader. We also leave to the reader the task of
writing down an explicit set of axioms for K ,"{ using 6.7(ii). This re-
quires defining a formula 8 (x) which asserts Jx = 0 (sucii a formula may
be written in our language since J is finitely generated) and ‘“‘relativizing
the sentences of 7T (see Thecorem 6.4) to 6.

Asin § 5, we obtain, as a consequence of Theorem 6.7, the following
Corollary whose proof we also leave to the reader.

Corollary 6.8. Let A be a-tinian. Every model N of K, can be em-
bedded in a priine model of KI": U D(N) which is unique up to isomor-
phisn: over N.

Remark. For the casc when A is a field, the fact that the theory Kx is
model-complete appears as Theorem 3.6.9 of [31] (with a differert
terminology). The proof in [31] seems also to cover the case when A is
a division ring.

7. Algebraically closed structures

In this section ‘M denotes a fixed class of structures of the same type.
All the structures considered are assumed to belong toM. As the reader
will observe, much of this section is implicit in the work of A.Robinscn
on model-completeness (see e.g. {32] Chapter 4).

Definition 7.1. A substructure N of a structure M is algebraically closed
in M if any finite set of equations with constants in N which has a solu-
tion in M has a solution in N.

Definition 7.2. A substructure N ot a structure M is exis.entially closed
in M (one could also say strongly algebraically closed in A1) if any finite
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set of equations and inequations with constants in N which has a solu-
tion in M has a solution in N.

In other words, a substructure N of a structure M is existentially
closed in M if any primitive sentence (cf. [32], p. 92) which is defined
in N holds in M only if it Liolds in N. It is easy to see that a substructure
N of a structure M is existentially closed in M if and only if any existen-
tial sentence which is defined in N hol.i; in M only if it holds in N.

The two following results are imm- diate.

Proposition 7.3. Let M, N, P be structures such that PC N C M and P
is algebraically (resp. existentially) closed in N and N is algebraically
(resp. existentiully) closed in M. Then P is algebraically (resp. existen-
tially) closed in M.

Proposition 7.4. If /.! and N are structures such that N < M, then N is
existentially closed in M.

Definition 7.5. A structure is algebraically (resp. existentially) closed
if it is algebraically (resp. existentially) closed in every extension.

Remarks. 1. The preceding definitions have been introduced for the
class of groups, with a slightly different terminology, by W.R.Scott
({331).

2. For each cardinal a, notions of a-algebraically closed and a-exist-
entially closed structures might be defined, which for a = 8, would
coincide with those introduced above.

From now on, we will assume that W is clnsod under ultrapowers.

Proposition 7.6. Let N, M, M, be structures such that NC M,,

N C M,. If Nis existentially closed in My, there exists a structure M
which is an elemeatary extension of M, and which contains M, such
that the following diagram is commutative.
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N <M,
Ni N
M, <M

Proof. Since N is existentially closed in M, there exists (cf. [5],
Lemma 3.9, p. 187) an embedding of M, in an ultrapower N//D of N
such that the following diagram is commutative:

N Cc M,

5

NI/D

(d denotes the canonical embedding of N into N//D).
The following diagram is clearly commutative and all its maps are
embeddings:

N ¢©M
J, 2
N'ip ¢ mMi/D

One may then take for M the ultrapower Mé /D.

Corollary 7.7. Let N be a substruc.ure of a structure M. If N is exist-
entiaily closed in M and if M is algebraically (resp. existentially) closed,
then N is an algebraically (resp. existentially ) closed structure.

Proof. Let us suppose that M is existentially closed (the case where M
is algebraically closed is similar). Let ¢ be a primitive sentence defined
in N which holds in an extension M, of N. By the preceding proposi-
tion there exists an extension M’ of M, and of M such that the follow-
ing diagram is commutative:
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N cM
N N
M, S M

Since ¢ holds in M, , ¢ holds in M’ and therefore, since M is exicten-
tially closed, ¢ holds in M. Since N is existentially closed in A, it fol-
lowes that ¢ holds in N. Therefore N is existentially closed and th=
proof is complete.

Corollary 7.8. Any elementary substructure c;j an algebraically (resp.
existentially) clcsed structure is an algebraically (resp. existentially)
closed structure.

Corollary 7.9. If for every structure M €M every substructure of M is
existentialiy closed in M, thenM has the amalgamation property.

Remarks. 1. An immediate consequence of Corollary 7.9 is the fi.ct,
already proved in § 2, that a model-complete theory has the amalgama-
tion property.

2. It may be shown (ser Appendix) that an algebraically closed sub-
structure in an algebraically closed structure need not be algebraically
closed, although this is the case if W has the amalgamation property
(proof as in Corollary 7.7).

In the remainder of this section, we will assume that W is th« “of
models of a first-order theory K. § will denote the cardinal of
guage of K.

Proposition 7.10. If K has a model-companion K * the models of K*
are exactly the existentially closed models of K.

Proof. Let M be a model of K*. Let P be an extension of M and let ¢
be an existential sentence defined in M which holds in P. Since K* is
model-consistent relative to K, we may assume that P is a model of K*.
But, in this case, since K* is model-complete, # is an elementary sub-
structure of P and ¢ holds in M. It follows that M is existentially closed.
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We suppose now that M is an existentially closed model of K. Since
K* is inductive (cf. [26]), it is enough to show that M is a model of the
V3 sentences of K*. Let

0= (VX))o (Y2, )A)) e (BP0 (g s Xy s V1o V)

(where ¢ is quantifier-free) be an V3 sentence of K*. Since K* is
model-consistent relative to K, there exists a model Q of K* containing
M. For any elements a,, ..., a,, of M the existential sentenee

By ..3y)v @y, ....a,,,Y,, .., yy) is defined in M and holds in @;
therefore it must hold in M. It follows that M is a model of ¢ and the
proof is complete.

Proposition 7.11. The class of algebraically (resp. existentially) :losed
structures is elementary in the wider sense if (and only if) it is closed
under ultraproducis.

Proof. Let s denote the class of algebraically (resp. existentially)
closed structures. It is enough to show that « is elemeniarily closed if

o is closed under ultraproducts (cf. [S], p. 151). Since M is elemen-
tarily closed, it is enough to show that, if M €M and 4 €+, then M= A
implies M € «A. But by Frayne’s Lemma M = A4 implies that M is elemen-
tary embeddable in an ultrapower of A. The result then follows from
Corollary 7.8.

Before continuing, let us give a simple example. We take for K the
theory T of semigroups with an unspecified identity. The non-logical
symbols of T are the equality = and a function f of two variablss
(f(x, y) will be denoted by xy) and the axioms of T are:

(Vx)(Vy)(Vz) ((xy)z =x(yz))
Ax)(Vy) Gy =yx=y)
Since every semigroup M can be emtedded in a semigroup M’ whose

identity is different from the identity of 4, it is easy to see that no
model of T is existentially closed.
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That situation does not arive if we assume that X ‘s an inductive
theory. We have indeed the following result which was rediscovered by
Eli Bers.

Theorem 7.12. If K is inductive, any model of K can be embedded in
an existentially closed structure.

Proof. With minor modifications, the proof given in [33] works.

Remark. Any model M of cardinal 8 > § can be embedded in an exist-
entially closed structure of cardinal 8. Indeed, if M' is an existentially
closed structure containing M, there exists, by the Lowenheim-Skolem
theorem, a structure M" such that: M C M" , M" < M', Card(M") = 8. By
Corollary 7.8, M" is existentially closed.

Corollary 7.13. Let K be inductive. K has a model-companion if and
onlv if the existentially closed models of K constitute an elementary
class in the wider sense.

Proof. If K has a model-companion, it follows from Proposition 7.10
that the existentially closed models of K constitute an elementary class
in the wider sense.

To show the converse, let us denote by K* the first-order theory of
the existentially closed models of K. One has clearly X € K* and it
follows from Theorem 7.12 that K™* is model-consisient relative to K.
By applying the model-completeness test ([32], p. '2), one sees imme-
diately that X* is model-complete. Therefore, K* is the model-
companion of K and the proof is complete.

Corollary 7.14. If K has a model-completion, then the algebraically
closed models of K constitute an elementary class in the wider sense.

Proof. By Proposition 7.11 it is enough to show that the class of alge-
braically closed structures is closed under ultraproducts. Let M* =

ﬂ M,/D be an ultraproduct of a family of algebraically closed struc-
i€l

tures. For every i € I there exists an existentially closed structure V;
which contains M; (cf. Proposition 7.10). Let us denote by N* the
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ultraproduct ﬂ N,;/D. For every extension Q of M*, there exists an
i€l

extension P of N* and ¢ such that the following diagram is commuta-

tive (since K has the amalgamation property, «f. Lemma 2.1):

M* C N*
Nl Nl
Q ¢P

It follows that every finite set of equations ¢ def.ned in M* which
holds 11 Q holds in P and therefore nolds in N* since N* is existentially
closed. One then finishes the proof as in Lemina 4.2.

The followiig short proof of a theorem of P.Lindstrom {26] resulied
from a discussion with E.Fisher.

Corollary 7.15. If K satisfies the three following conditions:
(1) K is categorical in 2 cardinal « 2 6 -

(i1) K is inductive;

(iii) all models of K are infinite;

then K is model-complete.

Proof. By the model-completeness test ([32], p. 92), it is clearly
enough to show that every model of KX is existentially closed. We will
show that, under the assumptions (i) and (ii), every infinite mod=l M cf
K is existentially closed. By Corollary 7.8, since every infinite model of
K is an elementary substructure of a model of cardinal > «, we may
restrict ourselves to the case where the cardinal of M is > «. If the car-
dinal of M is equal to a, the result is ann immediate consequence of
Theorem 7.12 and of the remark following it. In the general case, if the
cardinal of M is > «, for any primitive sentence ¢ defined in M, there
exists a substructure M’ of M of cardinal & such that ¢ is defined in M'.
If v holds in an extension of M, ¢ holds in M’ since M’ is existentially
closed, and therefore ¢ holds in M. The proof is complete.

Our next result deals with the inductive hull of K {cf. [21]). It has
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been shgwn by K.Kaiser that if X is inductive there exists a (unique)
theory K, called the inductive hull of X, which has the following prop-
erties:

() KSK

(ii) K is model-consistent relative to K.
(iii) X is inductive.
(iv) Any theory satisfying (i), (ii) and (iii) is contained in K.

Corollary 7.16. If K is inductive, K is the deductive closure of the set
of Y3 sentences which hold in cll existentially closed models of K.

Proof. Let us denote by K’ the deductive closure of the set of V3 sen-
tences which hold in all existentially closed models of K. It is obvious
that K’ satisfies (i) and (iii) and it follows from Theorem 7.12 that K’
satisfies (ii). We have then K’ C X.

Tc show the inclusion K € X, it is enough to prove that, for any V3
senteice ¢ of K and any existentially closed model M of K, ¢ holds in
M. This is done by embedding M in a model of ¢, which is possible since
K is model-consistent relative to XK.

W: are now going to restate some of our results about modules in the
terminology of this section. The algebraically closed modules were
called absolutely pure in the remarks at the end of § 3. It was found
that the existentially closed modules constitute an elementary class in
the wider sense if and only i: the algebraically closed modules consti-
tute an elementary class in the wider sense (compare with Corollary
7.14 of this section) if and only if A is coherent. It was proved that
each existentially closed module is injective if and only if A is no-
etherian.

It may be shown that for any ring A the inductive hull of the theory
K, of A-modules is the set of ccnisequences of the set of V3 sentences
which hold in an explicit'y given module, namely the module M, which
was defined in § 4.

It may be of interest to point out that a Z-module, namely an abelian
group, is algebraically closed if and only if it is divisible, i.e. injective,
and that a divisible abelian group, for example the additive group of
rationals Q, is not always existentially closed. It then seems natural to
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look at the theory of groups, since it is well-known that c: group is in-

jective (in the categorical sense of the woid) if and only ii" it is trivial

(see e.g. [ 15]) and since it has been shown by B.H.Neum:nn that a

non-trivial group is existentially closed if and only if it is “lgebraically

closed ([30}1). In this connection we have

Theorem 7.17. The theory T, of groups has no model-companion.

Proof. We find it convenient (but this is inessential) to axiomatize T}
with a function symbol of two variables (for the multiplication), a
function symbol of one variable (for the inverse) and a constant symb i
e (for the identity). There is no need to write the axioms.

We prove the theorem by showing that the class of existentially
closed groups is nct closed 'nder ultraproducts and by applying Corol-
lary 7.13. More precisely, we show that, for any w-incomplete ultra-
filter D over any set [ and any existentially closed group G, the ultra-
power G!/D is not existentially closed.

For every positive integer m the sentence

(¢,) (3)xM =en A x! # e)
j<m

holds in an extension H of G (one may take H = G X Z(m)). It follows
that for every positive integer m, G has an element of order m.

Now let (i1,), e (v, )pe, be two striclty increasing sequences of
positive integers such that foranyn € w u, #v,. Foreachn € w let
a, (resp. b,) be an element of G of order u, (resp.v,). Let (/,)),¢,, be
a sequence of subsets of / such that:

Vm*¥newd, NI =¢); V cwl, ¢&D);

I=u 1.
nEw

Let a (resp. b) be the element of G! whose itl} component q; (resp. b;)
isequal to g, (resp. b,) if i € 1,,. Let a (resp. b) be the image of a (resp.
b) under the canonical homomorphism of G/ onto G//D. It is easy to
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verify that g and b are not of finite order. It then follows from a result
due to G.Higman, B.H.Neumann and H.Neumann ([ 18]}, Corollary or
Theorem I', p. 249) that the equation x~1ax = b has a solution in an
extension of G!/D. The proof will be complete if we show that the
equation x~1ax = b has no solution in G//D.

Let us assume that the equation x—1ax = b has a solution in G//D. In
this case the equation x~1a;x = b; would have a solution in G for some
i € I, which is clearly impossible since a; and b; do not have the same
order.

Remarks. 1. This result, namely the fact that the existentially closed
groups do not constitute an elementary class in the wider sense, answers
a question implicit in ([22], p. 129).

2. From Theorem 7.17, it follows that every theory T such that

@711,

(ii) T’ is model-consistent relative to T,
has a model which is not an existentially closed group (if not, T would
be the model-companion of T;). Therefore if one takes for T the in-
ductive hull of T} or the forcing-companion of T} (14]), T’ has a (in-
finite) model which is not existentially closed.

3. The following question has been raised by Eli Bers and seems
open: are two existentially closed groups elementarily equivalent?

4. Let us denote by T, the theory of monoids (i.e. the theory of
semi-groups with a specified identity e) whose axioms are:

(Vx)(Vy)V 2) ((xy)z = x(y2))
(Vx)(xe=ex =x)
By appropriately modifying the proof of Theorem 7.17 and by using,

instead of the Higman-Neumann-Neumann result, a generalization of it
(Theorem 1 of [19]), one may show that T, has no model-companion.
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Appendix

We given an example of a theory 7 with models %, B such that % is
a substructure of B, A is algebraically closed in B, B is algebraically
closed, but ¥ is not algebraically closed.

Let L be a language with equality and two binary relations P and Q.
Let T be the deductive closure of

) Vx Qx,x)

Q) Vx[(3yPx,y)vP(y,x3)=
Vz((Q(x,2)v Q(z, ¢)) = x =2)]

1
Let B={b,, by, b3} ard let {; = the model of T wi‘n universe B cn
which the relations Q(b,, b,), Q(b,, by), Q(by, by), Q(b,, by),
Q(b3, by), and P(b3, b;) are imposed. We claim 8 is algebraically closed.
Indeed, suppose € = (C, ...) is an extension of B such that in ¢ there is
a solution to a system & of equations of the form

Q(a, ) or P(a,B)

where the «, § are either variables x; or elements b; of B. We have to
snow ¢ has a solution in 8. We can assume no variable x; occurs in both
a relation of the form P(«, §) and in one of the form Q(«, 8). In fact, if
we have P(x;, 8) and Q(x;, B') (the other possibilities are handled simi-
larly), then by (2), x; = g’; thus we can (by (1)) remove Q(x;, 8') from
and eliminate x; from J by replacing x; by g’ everywhere. If b3 occurs
in a relation of the form Q(x;, b3) or Q(b;, x;) then by (2) x; = b3. Thus
we can assume that by does not occur in any relation Q(«, 8) of $ . Note
also ttat b, and b, do not occur in any relation P(a, §) of S . (This fol-
lows from (2) because Q(b, b,)). Hence we get a solution to & in B by
setting x;, = b, for any variabie x; occurring in a relation of the form
Q(x;, ) or Q(a, x;) and by seiting x; = by for any x; occurring in a rela-
tion of the form P(x;, §) or P(a, x;).

Now let U be the substructure of B with universe 4 = {b;, b3 }.
Th' n A is a model of T (T is universal) and an argument similar to that



294 P.Eklof and G.Sabbagh, Model-completions and modules

above shows that ¥ is algebraically closed in 8. On the other hand, 9 is
not algebraically closed; in fact, there is a model D=(D, ...) of T which
is an extension of Y and contains an element ¢ € D — / such that

Dk Plc, b,]. Thus Px, b;) has a solution ‘n D but nc: in %.
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