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1. Introduction and 13reliminaries 

In this paper we study some first-order properties of the theory of  
modules over a fixed ring A. In particular we investigate first-order 
definability of injectivity ~nd related notions and, as a consequence, 
prove that the theory of  modules over A has a model-completion if and 
only if A is coherent. 

"lhroughout this paper "r ing" means associative ring with identity 
1 4 :0  and "module"  means unitary, left module. For any ring A, let L^ 
be the f'trst-crder language whose only non-logical constants are the 
equality sy,.abol, a constant O, and the following function symbols: 
a binary function f, and for eat, h ~, ~ A, a unary function g x. (For the 
definitions of  logical terms see e.g. Bell-Slomson [ 51.) We write x + y 
for f (x ,  y), ),x forgx(x) ,  - x  for - I x .  A A-module becomes a structure 
for L a in the obvious way. 

We axiomatize the theory of  A-modules in L~, ; consider the follow- 
ing sentences: 

(1.1) Vlxyz [ (x  + y )  + z = x + ( y  + z)] 

(1.2) V x l x +  O = x ]  

(1.3) V x [ x  + ( - x )  = 0] 
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(1.4) V x y [ x  + y = y + x ]  

(1.5) V x ( l x  = x ]  . 

For  any ?~,, o, r ~ A, such that  r = ~, + o, 

(1.6)x,o, ~ V x [ X x  + ox = rx l  . 

For  any ~, ~ A, 

(1.7)~, V x y [ X ( x  + y )  = ~x + ~y] 

For any ~,, o, p ~ Asuch that  Xo = p, 

(l .8)x,o, p V x l X ( o x )  = p x l  . 

M is a mode l  o f  (1.1) - ( l .8)x,o,  p if and only  i f M  is a A-module .  
Thus, by the Comple teness  Theorem,  if K A is the deduct ive  closure o f  

(1.1) - (l .8)x, o, p, K A is the  theory  of  A-modules,  i.e. the set of  sen- 

tences o f  L A true in all A-modules.  
We in t roduce  in § 2 a natural  general izat ion of  model -comple t ion ,  

viz. the mode l -compan ion  o f  a theory,  which is convenient  for our  pur- 

poses. Also in § 2 for mot ivat ional  reasons we give a p roof  o f  the exist- 

ence of  a mode l -comple t ion  of  the theory  o f  abelian groups (i.e. Z- 

modules) .  
The generalization o f  the result of  § 2 to modules  over o ther  rings re- 

quires a stu, ly o f  injective modules ,  which is o f  some independen t  inter- 
est we believe. In particular we prove: 

The proper ty  o f  being an injective A-module  is f irst  order i f  and only" 

i f  A is noetherian (Theorem 3.19). 

We define some general izat ions of  the no t ion  of  injective, in particular 
a no t ion  of  ~0-injective in which "fi , , i tely generated ideal" replaces 
" ideal"  in the  def in i t ion  o f  injective (Defini t ion 3.5). 

A ring A is called (left)  coherent  if every finitely generated (left)  
ideal o f  A is f initely presented.  (The class of  noether ian  rings is a proper  
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subclass of  the class of  coherent rings: see § 3.) The crucial characteri- 
zation of  coherent rings (for our purposes) is given by: 

The property o f  bein~7 an ~o-injective A-module is first-order i f  and 
only irA is coherent (qheorem 3.16). 

Our principal result on model-completions is: 

K A has a model-completion i f  and onlv i f  A is coherent (Theorems 
4.1 and 4.8). 

The model-completion is given a,a the theory of  a certain explicitly de- 
fined module M 0 (see § 4). In the case that  A is either commutative 
noetherian or artinian we give an explicit axiomatization of  the model- 
completion and a structure theorem for the models of the model-com- 
pletion (§ 5, 6). 

In § 7 we introduce for any first-order theory a definition of  algebra- 
ically closed structures and relate it to the question of the existence of  a 
model-companion. We interpret our results on modules in that setting. 
We also prove: 

The theory o f  (non-abelian) groups does not have a model-completion 
(Theorem 7.17). 

We would like to thank Eli Bers for his stimulating presence. More 
precisely, we are grateful to Jon Bat ,,ise and Abraham Robinson for 
many edifying discussions. We are especially indebted to Abraham 
Robinson for showing us an unpublished manuscript in which we first 
learned the definition of injective used in § 3. We would also like to 
thank Ed Fisher fer patiently listening to our arguments and percep- 
tively pointing out the holes in many of  them. * 

Notation. a, #, "r, 8, and K denote cardinals; ~o and ¢, denote formulas 
of L A , and other lower-case Greek letters denote elements of A. Lower- 
ca~e Latin letters will be used for elements of  a A-module. I fM is a A- 
module MCK) denotes the direct sum of ~: copies of  M. 

* Recently the authors have shown inter alia that the property of being (left) projective (reap. 
fiat) is ftrst-order if and only if A is left perfect and right coherent (resp. right coherent). A 
detailed development will appear in: Definability problems for modules and rings. 
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2. The model-completion of abelian groups 

We begin by recalling some basic definitions. Let K be a theory (i.e. 
a deductively-closed consistent set of  sentences) in a f'trst-order language 
L. K is model-complete if for any model 91 of  K, K o D(~I) is com- 
plete, where D ( ~ )  is the diagram of  ~l (see [32] p. 24). I f K  and K* are 
theories in L, K* is model-consistent relative to K if for any model 
of K, K* w D(~I) is consistent; K* is model-complete relative to K if 
for any model '~l of  K, K* w D(gl) is complete. K* is called the model- 
completion of K if K c_ K* and K* is model-consiste'it and model-com- 
plete relative to K. 

A theory K is called inductive if it is tile deduc~tve closure of  a set of  
8 3  -sentences. Equivalently K is inductive if the class of  models of  K is 
cl-'Jsed under unions of chains ([32] Theorem 3.4.7). 

A generalization of the notion of  rtodel-completion has been sug- 
gested by Eli F~ers. We say that K* is the model-companiot: of K if 
K c_ K* and K* is model-consistent r~lative to K and model-complete. 
(The definition of model-companion given in [4] is equivalent to ours 
when K is inductive.) The model-co]npanion of  K, if it exists, is unique 
([4] Theorem 5.3); the model-completion of  K, if it exists, is the 
model-companion. (As an example, we note that the theory of formally 
real fields has a model-companion but not a model-completion.) 

We say K has the amalgamation property if whcnever ~1, ,.'~ l ,  ~ 2 are 
models of K and fi: 9! --, '.3i are embeddings (i = 1 ,2)  then there is a 
model ~ of K and embeddmgs g i  : ~ i ~ ($" such that the following 
diagram is commutative. 

i , / /  
7 ¢ . ' -> . .  

/ g2 
~2 

The following lemma is due to Eli Bers. 

Lemma 2. I. Let  K be a theory which has a model-companion K*. Then 
K has the amalgamation property ¢=* K has a model-completion. 
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Proof. (=,) We need to show that K* is model-complete relative to K. 

So let 91 be a model of K and \~1,23 2 models of K* such that 91 c N l ,  
91 c_ 23 2. Since K c_ K* and since K has the amalgamation property,  
there is a model g of K such that the following diagram is commutative: 

231 
c c 

'~2 

Since K* is n~odel-consistent relative to K, we may assume in fact that 
is a m o d e l ~ f  K*. Then, because K* is model-complete, 23i is an ele- 

mentary substructure of tS (5 = 1, 2) and it follows immediately that  

(231, a ) ~  ,.,4 = (232, a ) ~  ,?~. 
('=) The proof of this implication is implicit in Robinson [32] .  Let 

f i  " ?l -~ 23 i, i = 1, 2, be embeddings of models of K. We can in fact 
assume tilat 91 cz 23i and f / i s  the inclusion map. Since K* is model- 
consLtent relative to K, we can embed 23i in a model 23* of K*. Let 

D o , D~, D*_ be the respective diagrams of ~1 , ~3 ~', ~,., 2" formulated in 
tenns of the individuals of the corresponding structures. It suffices to 
show that K* u D~ t.) D~' is consistent. The proof is then exactly as in 
[32] ,  Theorem 5.5.1 3. 

Since abelian groups have the amalgamation property (see the proof 
of l..emma 3.2) we can confine ourselves to looking for the model- 
companion  of the theory of abelian groups. Let K be the theory of 
abelian groups either in the usual language Lab in which we have only 
two function symbols - for x + y and - x  - or in the language L z of 
Z-modules, in which there is a flmction for every n ~ Z : it will be clear 
that our results apply to both cases. 

Consider the following set of sentences (either in Lab or L z ): 
For each 0 4: n ~ Z, 

(2.2) n V x 3 y [ n y  = x l  • 
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For each prime p and each m > 0, 

/11 

(2.3)p,m :Ix I ...xm [ A (x i~  x / ) ^  A 
i : ~ j  i---1 

(O~ x i ^ p x  i =0)] . 

The class of  models of  (2.2)n - (2.3)p,m is the class ~ of all divisible 
abelian groups A such that A contains, for each p, an inf'mite number of 
elements of order p. Tl',us A ~ ~ ,=~ A ~ ( @  Z(p')(~p))(~) Q(~) where 

P 

Kp >_ ~0, K _> 0 and Z(p')  is the group of all complex pn.th roots of 
unity.  (For the structure of divisible abelian groups and other algebraic 
facts about aoelian groups see Kaplansky [23] .) Let K* be the theory 
oft/). 

Theorem 2.4. K* is the model-companion (and hence the model- 
completion) o f  K, the theory o f  abelian groups. 

Proof. (Since a more general theorem will be proved in § 5, we only 
sketch a proof here.) Any abelian group can be embedded in a divisible 
abelian group ([23] Exercise 5, p. 12), and hence can be embedded in a 
model of K*. Thus K* is model-consistent relative to K. A Ltiwenheim- 
Skolem argument ([5] p. 80) shows that to prove K* model-complete 
it suffices to consider countable models A c_ B of K* and prove that  B 
is an elementary extension o fA .  Let D be a non-principal ultrafilter on 
1 = {n ~ Z : n.> 0} and l e t A *  =ArID, B* =BI[D. Then Card(A*) = c = 
= Card(B*) where c = 2 ~0 (15] p. 129). We claim that  

A* "~ (~ Z(p**) (c) (~) Q(C) ~ B *  . 

P 

It suffices to prove that A * contains c elements of order p for each 
prime p and a torsion-free subgroup of  cardinafity c. But if Z(p) is the 
cyclic group of  order p, A* 3- (Z(p)(No))/[D which is a set of elements 
of order p; and ifPn is the n th  prime, A * 3_ ]7 Z(pn)~O)]D ' which is a 

n 

torsion-free group. We now have 
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A* B* 

t T 
A C _ B  

where the vertical maps are elementary embeddings. Since A is divisiSle, 
A* = A Q) A 1, B* = A ~)  B 1 and since A is countable 

A 1 ( @ Z(P ")(c) ) Q ( C )  - B I  • 
P 

It follows immediately that A is an elementary substructure of B. Tttis 
completes the proof. 

The divisible abelian groups are precisely the injective Z-modules. In 
order to generalize the above theorem it will Le necessary to study the 
injective A-modules; we undertake that task in the next section. 

3. ~-injective and injective modules 

In this section A denotes a fixed ring with 1, M a fixed (unitary) left 
A-module and a a fixed cardinal > 2. By ideal, we mean a left ideal of 
A. By module, we mean a left A-module. By homomorphism, we mean 

a A-module homomorphism. We will follow in general the terminology 
of N.Bourbaki. 

Definition 3.1. An a - s y s t e m  is a set of fewer than a equations in a 

single variable x, all of  the form Xi x = a i where X i E A and a i ~ M.  

If o3 - { X i x  = a i : i ~ 9} is such a system, we denote by C (o3) or e 
the set {Xi} of coefficients of 3 and by I(~5) or I the ideal generated ky 
e .  With this notat ion we have 

Lemma 3.2. The  f o l l o w i n g  asser t ions  are equ iva len t :  

(i) o3 has a s o l u t i o n  in an e x t e n s i o n  o f  M. 

(ii) A l inear re la t ion  o f  the  f o r m ~ # i X  i = 0 i m p l i e s ~ i a i a  i = O. 
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(iii) There is a h o m o m o r p h i s m  g : I -~ M such that  g(X i) = a i f o r  all 

i E g .  

Proof. The impl icat ions  (i) =, (ii) and (ii) =, (iii) are obvious. 
(iii) =, (i): Let i be the  inclusion mapping  o f / i n t o  A. Let  M ( ~ l  '~ 

denoted  the amalgamated  sum o f  M and A with  respect  to g and i, tha t  
is the  module  quo t i en t  o f M  X A by the submodule  {(g(v), - i(v)) : 

v ~ I}  (cf. [ 6 ] ,  p. 258, ex. 5). L e t g '  (respectively i ')  denote  the  canon- 
ical homomorph i sm of  A (respectivel3 M) into M (~)t A. It is easy to 
verify that  i' is one-one and tha t  g'(1 ) is a solut ion o f  c5 in M (~)t A. 

Defini t ion 3.3. An a-system e5 is consistent  if one o f  the equivalent  
assertions o f  Lemma 3.2 is verified. 

It is clear tha t  an a-sys tem c5 is consis tent  if  and only  if every finite 

subsystem of  ~ (i.e. ~0-subsys tem) is consistent .  

Lemma 3.4. The fo l lowing  condit ions are equivalent: 

(i) Every  consistent  a - sys tem has a ~alution in M. 

(ii) For every ideal I having a generat:ng subset o f  less than a elements,  

any h o ~ o m o r p h i s m  o f  1 into M can b~ e x t e n d e d  to a h o m o m o r p h i s m  

o f  A into M. 

Proof. (i) =, (ii): Let  ! be an ideal having a generat ing subset e o f  less 
than  a elements.  For  any  homomorp,hism f o f / i n t o  M we define an 
a-system 6 f  = {~,x = f ( ~ )  : ~, E e }. It is c lear  that  e (cI/)  = e and 
l(cSf) = I. From Lemma 3.2 it then follows tha t  cJf is consis tent .  Let s 
be a solut ion o f  c~f m M. The homomorph i sm of  A into  M which sends 

into t~s ex tends  f .  
(ii) -~ (i): Let ~ be a consis tent  a-sys tem = { ~ix  = a i : i E 9 } .  From 

Lemma 3.2 it fol lows that  there exists a h o m o m o r p h i s m  f o f  I(c3 ) into 
M such that  f(~.i) = a i. I f g  is a h o m o m o r p h i s m  of  A into  M which ex- 

tends f.  g(1 ) is a solut ion of  c5 in M. 

Def ini t ion 3.5. A module  M is a-in]ective if one of  tile equivalent  con- 

di t ions o f  Lemma 3.4 is satisfied. 



§ 3. Or-inject, ve and iniective modules 259 

Definitiot. 3.~ 1/2. Let 7 = 3'(A J denote the smallest cardinal such that  
every ideal has a generating subs,.~t of less than 3' elements. It is clear 
that a module is/3-injective for all cardinals/3 >_ 2 if and only if it is 7- 
injecdve. Such a module will be called injective. 

This definition coincides with the usual one: more precisely, one has 
the following classical result. 

! 

Proposition 3.6 (Baer) ([21 or [61, p. 265 -266  ex. 11). The following 
assertions are equivalent: 

(i) M is injective. 
(ii) For any module P and any submodule Q of  P, any homomorphism 

of  Q into M can be extended to a homomorphism o f  P into M. 
(iii) M is a direct summand o f  any module which contains it. 

The concept of  an injective envelope, due to Eckmann and Schopf 
[ 14], will play an important  part in the following sections. 

Definition 3.7. An injective module E is an injective envelope of M if E 
contains M and if any one-one homomorphism of M into an injective 
module N can be extended to a one-one homomorphism of E into N. 

Proposition 3.8 (cf. [o] ,  p. 268 -269 ,  ex. 18). M can be embedded in 
an injective envelope o.f M. Furthermore, if E(M) and E'(M) are two in- 
jective envelopes o f  M, there exists an isomorphism of  E(M) onto E'(M) 
whict, leaves the elements o f  M im'ariant. 

For any module N, E(N) will denote a fixed injective envelope of N. 
(By abus de langage, E(N) will be called the injective envelope of  N.) 

It is well-known that for any modules P and Q one has E(P (~) Q) ~- 
~- E(P) (~) E(Q) (cf. [6] ,  p. 269, ex. 21). 

The two following results are immediate generalizations of  well- 
known ones. 

Proposition 3.9. ,4 direct product 1-I 
rEOr 

only if  each o f  the Pr is ~-injective. 

Pr of  modules is a-injective if and 
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Proof. Easy. 

Proposition 3.10. I f  t~ <_ R0, a direct sum of  a-in]ective rood,des is a- 
in]ective. 

Proof. Let P = (~  Pr be the direct sum of  a family {Pr } rE ~ of  a-in- 
r E  

jective modules. Let f be a homomorphism of  a finitely generated ideal 
I into P. Since I is finitely generated there exists a finite subset 5 r of 5 r 
such that r ~ 5 r implies (Pr ° f ) ( l )  = {0},  where pr denotes the canoni- 
cal projection of  P onto  Pr" We can then consider f as a homomorphism 
of  I into the module Q = (~  Pr. According to the preceding proposi- 

tion, Q is a-injective. Therefore, if I has a generating subset of less than 
a elements, f can be extended to a homomorphism g of  A into Q. If h is 
the canonical embedding of  Q ipto P, the homomorphism ho g of A into 
P extends f. 

We will henceforth be concerned with the elementary properties of  
a-injective modules, particularly of  ~0-injective and injective modules. 
One of our main tools will be the notion of  ultraproduct,  for the defini- 
tion and properties of  which one may consult [ 5],  Chapter 5. 

I.emma 3.11. Every ultraproduct o f  a-injective modules is a-injective if 
and only if every ultrapower o f a n  a-injective module is a-injective. 

Proof. We assume that every ultrapower of  an a-injective module is a- 
injective. Let P = 1-] Pr/D be an ultraproduct of a family {P~} r e  ~ of  

rE0" 

a-injective modules. We want to show that  P is a-injective. 
Let Q denote the direct product I--I Pr; by Proposition 3.9, Q is ,~- 

r E ~  

injective, and therefore, by hypothesis, Q ~[D is a-injective. We prove 
that  P is a direct summand of Q ~/D by defining homomorphisms 
f :  Q ~/D -~ P, ~ : e -~ Q ~[D such that 7* g = identity on P. Let f be the 
map: Qsr .+ Q = I-I Pr induced by the family of m a p s f  r = p r ~ q r  : 

Q~ -~ Pr where qr : Q~ "* Q, Pr : Q -~ Pr axe the canonical projectio:~s. 
Let g be the map: Q ~ Q ~ induced by the family of  maps gr = ]r o Pr • 
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Q ~ Q where ],  : Pr ~ Q is tile canonical embedding. Then f o g = iden- 
tity on Q, because 

Pr ° f °  g =fr ° g = Pr ° qr ° g =Pr  ° gr =Pr  ° Jr ° Pr = Pr 

for all r c 7 .  It is then easy to see that f and g induce the maps l a n d  
on the ultraproducts, as desired. Therefore P is a direct summand of 
Q ~/D and by Proposition 3.9, P is 0~-injective. 

Remark. What we have really done is to show tile following general 
fact: Every ultraproduct of a family of modules is a direct summand of 
an ultrapower of the product of this family. The same proof shows that 
such an ultraproduct is also a direct summand of an ultrapower of the 
direct sum of this family. 

Before stating the main results of this section, let us recall the follow- 
ing well-known definitions: A classC/~of structures (of the same type) is 
said to be elementary in the wider sense ifg?~ is the class of models of a 
first-order theory, qg is said to be elementarily closed if any structure 
elementarily equivalent to an element of C//t belongs toC~. 

Theorem 3.12. I f  a <_ ~o, the following conditions are equivalent: 
(i) T ~e t~-injective modules constitute an elementary class in the wider 

sense. 

(ii) Any  ultraproduct o f  injective modules is a-injective. 
(iii) For every positive integer n less than t~. A satisfies the following 

property (C n ): 
Tile kernel o f  every homomorphisr7 o f  A n into A is finitely generated. 

Proof. It is enough to show thai: (ii) implies (iii) and (iii) implies (i). 
(ii) =, (iii): Let n be a positive integer less than a and f a homomorphism 
of A n into A. One sees immediately that there exist ~'l, ".', ~n E A such 
that 

n 

V(/ t  I, . . . , /an) E A n f(/a I . . . .  , / an )=  ~ /ai)~i • 
i=1 

Assuming that the kernel o f f ,  Kerr, is not finitely generated, we will 
exhibit  an ultraproduct of injective modules which is not ~-injective. 
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Let ~ denote the smallest cardimd such that there exists a generating 

subset {a t } r<a  of Kerr  of  cardinal ~. ~ is infinite and if ( a t ) r <  p denotes 
the mbmodule  of  Kerfgenerated by {a, } t<v one has 

(1) V v < ~ 3 v ' < ~ a v ,  q~a , . ) t< , , .  

For each v < ~ we can embed the quotient  module A n/(ar)t<~, in an in- 
]ective module E v (cf. Proposition 3.8). Let D be a uniform ultrafilter 
on ~. We claim that the ultraproduct ~[ Ev/D is not  a-injective. 

Indeed, for each i between 1 and n let e i be the element of  A" whose 
ith component  is equal to 1 and all other components are equal to 0. 
For each v less than ~ let el, v be the image of  e i under the canonical 
homomorphism of A n onto  A n / ( a t ) r <  v. Let ei be the equivalence class 
modulo D of  (ei, v)v< ~. It is enough to show that the system of  equa- 
tions {Xix  = ei} l < i < n  is consistent but has no solution in ]-[ Ev/D.  

This system is consistent: By Lemma 3.2 and Definition 3.3, it is suf- 

ficient to show that for each (/al, -.-, tan) ~ Kerfwe  have ~ ui~ i = O. 
i=1 

Clearly we can restrict ourselves to the case where (u 1 . . . .  ,/a n ) is an ele- 
?/ 

ment a~ of  the generating subset {a t } ~<0" Bu~ in this case ~ laiei, v, is 
i = 1  

the image of  at, under the canonical h o m o m o ~ h i s m  of A n onto  A n / 
(a~)r<~,, for each v' </~. It then follows that for each z,' greater than v 

n 

and l¢ss than 13 the element ~ / a i e i ,  u, is equal to 0. But then, since 
i = 1  n 

{J,'J v < u' < # ~ ~ D (because D is uniform), we have ~ / a i ~ i  = O. 
~=1 

This system has no solution in l--I E,,[D: let us suppose that  there 

exists an element (sv)v< a in 1-I E~ whose image under the canonical 

homomorphism of [-[ E~ onto  [ l  E~/D is a solution of  this system. 
v<# v<~ 

In this case there would exist an index v < # such that h i s  u = el, v for all 
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i between f and a. It would foflow that Kor each element aP, = 

(Pi, ***, pn) cd the generating subset (a, f T<P we would have 

5 cl+, V = G or o,, E &z,),<, which would contradict (1). 
i=r ’ 

(iii) * (i): Let FLY denote the set of (finite) non-empty sequences (? 
of elements of A of length < 01. We are going to define for every element 
e = {A,) ..*, & ) of F& a first-order sentence ‘p c such that the module M 
is a-injective if and only if M is a model of the set (qe I c? E Far] . Let 

4 = (xix =q) r<i.& be an a-system such that C(d) =e . Let 9‘ = Je ’ 

denote the kerna 03 the homomorphism f of An into A defined by: 

f(P 1 I . . . . /in) = 2 &liXi* Let B = Bc 
i=l 

= (t)i ) 1 5 i<m denote a finite gener- 

ating subset of J. If bj = (~r,~> . . . . P,,~) the a-system J is consistent if 

and only if 

ii ( f_l pi,pi = 0). 
j=l i= 1 

If qP is the sentence: 

it is easy to verify that the module M is a-injective if and only if A4 is a 
model of the set (qe IC E Far) . The proof is complete. 

It is rather remarkable that the condition (C,) appears in the litera- 
ture in a slightly different form: We have the following easy 

Lemma 3.13. For every positive integer n, the two foliowivag conditions 
are equivalent: 
(C,l ): The kerm?l of every momomorphism of Aft into A is fZnite& gen- 
erated. 
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(C' n ): Every ideal o f  A having a generating subset o f  n elements is finite- 
ly presented. 

Proof. (C n ) :~ (C~): Let I be an ideal of  A having a generating subset of 
n elements. There exists a homomorphism f of  A n onto I. The kernel of  
f is finitely generated, which yields a finite presentation of  1. 

(C' n ) =~ (C n ): This "replication follows immediately from ([ 81, P. 37, 
Lemme 9). 

The following defi:fition is due to Bourbaki (cf. [ 8] ,  p. 6 2 - 6 3 ,  ex. 11 
and 12), although the coherent nngs were first studied by Chase (cf. 
[121). 

Definition 3.14. A is coherent if every finitely generated ideal of  A is 
finitely presented, i.e. i f ;  satisfies (C n) for every positive integer n. 

Clearly ally noetherian ring is coherent. Examples of  coherent rings 
which are not necessarily noetherian are semihereditary rings [ 12] 
(which include Pr[ifer rings * [ 11 ] and hence valuation rings [ 10l ) and 
rings of polynomials (in any number, finite or infinite, of indetermin- 
ates) over a commutative noetherian ring. 

The following proposition due to Chase subsumes some of the 
known characterizations of  the coherent rings. It will not be used here 
and is given without  proof  for the information of the reader. 

Proposition 3.15. A is coherent i f  and only if  it satisfies one off'he two 
following equivalent conditions: 

(i) Any product o f  flat right modules is flat. 
(ii) The annihilator o f  every element o f  A is finitely generated and the 

intersection o f  any two finitely generated ideals is finitely generated. 

The following theorem is essentially a restatement of  our Theorem 
3.12 and gives new characterizations of  the coherent rings. 

111eorem 3.16. The £ollowing conditions are equivalent: 

* For example, Peano rings, i.e. rings elementarily equivalent to the ring Z of  integers, ate 
l'rfifer rings. 
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(i) The ~o-injective modules constitute an elementary class in the 
wider sense. 

(ii) The So-in/ective modules constitute an elementarily closed class. 
(iii) Any  ultrapower o f  ~,o-injective modules is So-injective. 
(iv) A n y  ultraproduct o f  So-injective modules is So-injective. 
(v) A is coherent. 

Proof.  One ~ o w s  (i) ~, (ii) =~ (iii) =, (iv) = (v) =, (i). (i) =~ (ii) is trivial. 
(ii) :* (iii) fol lows from the propert ies  o f  ul trapowers.  (iii) = (iv) fol lows 
from Lemma 3.11. (iv) = (v) follows from Theorem 3.12. (v) =~ (0  i.~ 
conta ined  in Theorem 3.12. 

Lemma 3.17. 1 ) E v  :ry elementary substructure o f  an So-in]ective 
nzodule ,:s ~o-injec,'ive. 

2) I r A  is coherent, every' ~o-injective module is an elementary sub- 
structure o f  an injective module. 

Proot.  i )  We assume P S0-injective and M -< P. Let {Xi x = 
ai} 1 ~i~.n = ¢j be a consis tent  S0-system where n is an integer and all 
t h e  a i belong to M. One can consider  e5 as a consis tent  ~0"system whose 
"pa ramete r s "  a i belong to P. Since P is t~0-injective, c5 has a solut ion in 
P. Since M -< P, 6 has a solut ion in M. 

2) From Theorem 1.7, p. 220 of  [51, it fol lows tha t  every module  is 
an elementary" subst ructure  o f  an c~-saturated module  for arbi t rar i ly  
large cardinals a. Let M be S0-injective. We have M -< P where P is a 7- 
saturated module.  Since A is coherent ,  P is S0-injective. But  it is imme- 
diate to verify tha t  an ~0-injective module  which  is ~,-satural:ed is ~- 
injective. Since a ~,-injective module  is injective, the  p roo f  is complete .  

Proposition 3.18. The following assertions are equivalent: 
(i) Every So-in]ecti~,e module is injec~ive. 

(ii) For every countable sequence o f  cyclic modules { M n } nc~ ~ , the 
direct sum (~  E(M n ) is injective. 

FIE 

(iii) A is noetherian. 

Proof.  (i) =, (ii): This  is an immedia te  consequence  of  Proposi t ion  3.10. 
(ii) ~* (iii): This impl ica t ion  is proved,  a l though it is no t  stated,  in 

([ I 2 ] ,  p. 471),  where  it is a t t r ibu ted  to  Bass. 
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(iii) =* (i): This implication is obvious. 

Theorem 3.19. The following conditions are equivalent." 
(i) 7he injective modules constitute an elementary class in the wider 

sense. 
(ii) The injective modules constitute an elementarily closed class. 

(iii) A is noetherian. 

Proof. It is enough to show that  (ii) implies (iii) and (iii) implies (i). 
(ii) =~ (iii): By assumption any ultrapower of  injective modules is in- 

jective. From Lemma 3.11 it then follows that any ultraproduct of  in- 
jective modules is injective, therefore is R0-injective. By Theorem 3.12 
and Definition 3.14 this implies that  A is coherent. By Lemma 3.17 
every ~0-injective module is then elementarily equivalent to an injective 
module. Therefore every ~0-injective module is injective. One applies 
then the preceding proposition. 

(iii) ~, (i): Since A is noetherian, A is coherent and the injective 
modules are the ~0-injective modules. The result then follows from 
Theorem 3.16. The proof  is complete. 

Remarks. We will present here some results which are not necessary fol 
understanding the remaining sections: we will therefore be content with 
giving a .sketch of  the proofs. 

1. Let a be a cardinal (strictly) greater than ~0. One may ask when 
the t~-injective modules constit.ute an elementary class in the wider 
sense. This is clearly the case if A is noetherian. The converse is also 
true: if the a-injective modules constitute an elementary class in the 
wider sense, one may show, as in the proof  of  Theorem 3.19, that every. 
~0-injective module is ~1-injective. But it then follows from ([ 121, p. 
471 ) that A is noetherian. 

2. The reader will have noti,:ed that the Theorems 3.16 and 3.19 are 
not exactly parallel. The reaso a is that, although we are not able to 
characterize the rings A such Llat any ultraproduct of  injective A- 
modules is injective, it is easy to see that such a ring is not necessarily 
noetherian. It may be of  interest to point out first the following: 
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Proposition 3.20. The following conditions are equivalent: 
(i) Any ideal having a generating su.")set o f  less thai, c~ elements is pro- 

jective. 
(ii) Any quotient o f  an ~-injective module is a-injective. 

(iii) Any quot:.znt o f  an injective module is a-injective. 

We omit the proof which is very similar to that given in ([ 11 ], 
Theorem 5.4, p. 14). 

It follows from the preceding proposition (or from tile above reeer- 
ence) that, if A is (left) hereditary, i.e. if every (left) ideal of  A is a pro- 
jective module, any quotient  of  an injective module is injective. Since 
any product of  injective modules is injective, we can deduce that,  if A is 
hereditarT, any ultraproduct of  injective modules is injective. But it is 
well-known that a hereditary ring is not necessarily noetherian. 

3. Let us recall the follo~ving definition, which is equivalent to one 
,given by P.M.Cohn [ 13]. 

Definition 3.21. A submociule N of a module M is pure in M if any 
finite set of linear equations (over A) with constants in N which has a 
solution in M has a solution in N. 

The following definition has been introduced in ( [27] ,  p. 155). 

Definition 3.22. A module is absolutely pure if it is a pure submodule 
of  any module which contains it. 

We would like to compare the notions of injective, absolute ly pure 
and ~0-injective moduIes. One has clearly: 

lnjective ~ absolutely pure =* ~0-injective. 

Proposition 3.23. l f  A is coherent, every ~o-in]ective mod~,.le is abso- 
lutely pure. 

Proof. By the second part of Lemma 3.17, if A is coherent, every t~ 0- 
injective module is an elementary substructure of an injective module. 
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Since an injective module is absolutely pure, one completes the proof  
by observing that  every elementary substructure of an absolutely pure 
module is absolutely pure (cf. the proof  of  the first part of  Lemma 
3.17). 

The preceding proof  has a metamathematical  flavour. It is possible 
to replace it by a simple "algebraic" argument which the interested 
reader may provide. We do not  know for what rings the ~0-injective 
modules are absolutely pure. 

In the case where A is a Prfifer ring, a better resu!t than Proposition 
3.23 is available: in this case a submodule N of a module M is pure (:n 
M) if and only if for each ?, ~ A ~.M n N = ~,N (cf. [9] ,  2. 182, ex. 6, 
where A is assumed to be a valuation ring, which is enough, by localiza- 
tion, or [361, p. 706, Corollary 5). It is then immediate that, if A is a 
Prefer ring, every 2-injective module is absolutely pure. 

The following proposition, which is essentially a restatement of  Prop- 
osition 3.18, answers a question left open in [27].  

Proposition 3.24. The following assertions are equivt, lent: 
(i) Every 8o-injective module is injective. 

(ii) Ever), absolutely pure module is injective. 
(iii) A is noetherian. 

4. The 2-injective modules have been studied, under the name of  
divisible, in a paper by Hattori ([ 17 ] ). One of  the results of this paper 
is that every module is 2-injective if and only if A is a regular ring in the 
sense of  Von Neumann. Such a ring is coherent ([341) and has the prop- 
erty that every f i r i te ly generated ideal is principal. The following propo- 

sition is then immediate. 

Proposition 3.25. The following conditions are equivalent: 
(i) Every module is absolutely pure. 

(ii) Every module is ~o-in]ective. 
(iii) A is regular in the sense o f  Von Neumamz. 
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4. The model-completion of K A 

Since K A has the amalgamat ion proper ty  (see the p roof  o f  L e m m a  
3.2), K A has a mode l -comple t ion  if and only if it has a mode l -compan-  
ion (Lemma  2.1 ). 

Theorem 4.1. I f  K a has a model-companion,  then A is coherent.  

We first prove a !emma. 

Lemma 4.2. Let  M i c N i be modules  with M i ~)-in]ective f o r  all i ~ L 
Le t  D be an ultrafil, er on I and M* = ~  Mi/D,  N*  = [-I Ni /D.  I f  N*  is ~o" 

I I 

in]ective, then M* is No-#~]ective. 

Proof. Let c~ = { .~/x = a/* : ] = 1, ..., n } be a consistent  f inite system o f  
equat ions  with coeff ic ients  ap E M*. Choose a representat ive e l emen t  

(a](i))i~ I in l -JMi for each a/*, so that  aj* = (a:(i))/D. Since M* c_- N*  
I 

and N*  is N0-injective, c.~ has a solut ion b* = (b(i) /D in N*.  Then  the  

system of  equat ions  eS(i) = { Xlx = a](i) : j = 1, ..., n } has a solut ion b(i) 
in N i for i 
c5 (i) has a 
M*. Since 

injective. 

in a set of  D. But then  since M i is N 0-injective and M i c_ Ni,  
solut ion in M i for i in a set o f  D. Hence 6 has a solut ion in 
this is true for any consis tent  f inite system 6 ,  M* is N 0- 

Proof  o f  4.1. By Theorem 3.16, it suffices to  prove that  any ultra- 

productl--IMi/D of  N0-injectives M i is N0-injective. If  K A has a model -  
I 

compan ion  - say K* - then  each M i can be e m b e d d e d  in a mode l  N i of  
K* (K* is model -cons is tent  relative to K A). 

If  we show that  N* =~-I)~jD is N0-injective, then  by L e m m a  4.2 we 
1 

are done.  But if e5 = { Xix = a i } is a consis tent  finite system o f  equat ions  
with a i E N* ,  then  there  is an N 1 _~ N *  such that  e5 has a solut ion in N 1 . 
Since K* is model -cons is tent  relative to K we may assume tha t  N~ is a 
model  o f  K*. Now N*  is also a mode l  o f  K*, so N 1 is an elementat2¢ ex- 
tension o f  N*  (because K* is model -comple te ) .  Thereeore the  sentence  
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which asserts the .exis tence o f  a solut ion for c5 is t rue in N*  since it is 
true in N t . This comple tes  the p roo f  o f  4.1. 

Let 6 = {E(A/1): I an ideal in A } i.e. 6 = the set o f  all injective en- 
velopes of  cyclic modules .  Index 6 by a set J so that  6 = {E i : / ~ J }. 

Let M 0 = (~) E~ b~0) and let K A = Th(M 0) = set o f  all sentences  o f  L A 

true in M 0. Note  that  M 0 is ~0-injective (Proposi t ion 3.10). We will 
prove that  if  A is coheren t  then  K~ is the  mode l -comple t ion  o f  K A . 
Our first results, however ,  do no t  depend  on the fact that  A is co- 
herent .  

We first prove a technical  lemma. 

Lemma 4.3. Le t  A and B be modules. Suppose  fir(B) is a fami ly  o f  sub- 

modules  o f  A such that f o r  any B' ~ fir(B), B' ~ B and f o r  any B' ,  

'" ~ ~r(B), either B" = B' or B" n B' = { 0 } .  Suppose  fir(B) has cardin- 

al (ty ~ and suppose A = C 1 ( ~  C 2 where Card (C 1 ) < ~:. Then C 2 con- 
ta.ns a submodule  isomorphic to B. 

Proof. We may  suppose A = C 1 (~) C 2 is an internal  direct  sum, so that  

C i is a submodule  o f A  (i = 1, 2). Let  Pi : A -* C i, i = 1, 2, be the canon- 
ical projections.  Then  it suffices to show that  P2 I B' is one-one for some 
B' ~ fir(B). Now if B', B" ~ fir(B), 11' ~ B", and b' ~ B', b" ~ B" are 

non-zero e lements  such that  P2(b')  = 0 = P2 (b"), then b' = Pt (b') and 
b" = Pl (b") are dist inct  e lements  of  C 1 (B' n B" = {0} ). Since 
Card (fir(B)) = r and Card (C 1) < K, it follows that  P21B ' is one-one  for 
some B' ~ ~I(B). This comple tes  the  p roo f  o f  4.3: 

For the sake o f  brevity we will write "E  is i.e.f.g." if E is the injective 
envelope of  a finitely generated module ,  that  is, i f E  --- E(ACn)/R) for 
some n < co and some submodule  R of  A (n). Let K be a cardinal such 
that  K > {Card(E)  • E is i.e.f.g. } Note  that  M(0~) ~ O E(~;' is a mode l  • = j 

/ E J  

o f g ~  (cf. [16] ) .  
I f M  and N are modules ,  A c_ M, B _c N and f : A ~ B is a set bijec- 

t ion we write 

A - A 
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"h ° 

if for  any formula  ¢(v 1 ... v n ,.~1 L A and any a I , ..., a,. ~. A 

M ~ ¢[a I ... a n ] ¢=,. N ~ ¢ [ f ( a  I ) ... f (a , , ) ]  . 

L e m m a  4.4.  L e t  ,14, N be inject ive  m o d u l e s  which  conta in  s u b m o d u l e s  

i somorph ic  to Mto K). L e t  f " A ~ B be an i somorph i sm  o f  m o d u l e s  where  

A ~ M and  B C N are f i n i t e l y  generated.  Then 

(M, a)aE A = (N,  f ( a ) ) a ~  A . 

Proof.  In fact we prove that  

(At, a) a E a = ®,~ (N. f ( a ) ) a ~  A . 

By rL.placing A and B by their  injective envelopes,  we can assume tha t  A 

and B are i.e.f.g. 

Let 9 = the set o f  all i somorphisms g : S 1 --, T 1 such tha t  g is an ex- 

tension o f f  and S l c_ M, T 1 c_ N are i.e.f.g. We will prove tha t  for  any 

c ~_ M (resp. d ~ N) and any g ~ 9 there  exists g' ~ 9 such tha t  g' ex- 

tends g and c ~ domain  o f g '  (resp. d '~ range o f g ' ) .  If we prove this, 

then the conclus ion of  the l emma follows easily by an induc t ion  on for- 

mulas (cf. [ 24] ). So let g : S l -+ T 1 and let c ~ M ( the p roof  tha t  we 

can ex tend  tl~e range of  g to d ~ N is identical) .  Since S l and T 1 are in- 

jective,  we can wri te  ht = S 1 (~) S 2 , N = T l +(+(+~ T 2 . We can assume 

c E S 2 (since if c = c 1 + c 2 where  c i ~ S i (i = 1: 2) it suffices to  ex tend  

g to c 2 E S? ). Then  E(Ac)  is a direct  summand  of  S 2 ; we have: 

M=s  ®E(Ac)®S' 2 

and S 1 ( ~  E(Ac)  is i.e.f.g. (see the remark  fol lowing Propos i t ion  3.8). 

Now since N ~ M~0 K), there  is a family CJ(E(Ac)) 9f submodu les  o f  N 

satisfying the hypothes i s  o f  L e m m a  4.3 such thal  ~7(E(Ac)) is o f  car- 

d inah ty  ~ Since T, is o f  cardinal i ty  < ~ (by choice  o f  r : T 1 is i.e.f.g.) 

Lemrna 4.3 implies T 2 conta ins  a submodu le  - say T~ - i somorphic  to 

E(A, ). Clearly we can extent~ g to an i somorphism g' : S 1 ( ~  E (Ac)  
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Remark.  If  we  take A = B = { 0 }  in Lemma 4.4 we obtain: i f  M, N are 
injective modules which contain submodules isomorphic to Mt0~), then 
M = N .  

A natural question to ask is whether two injectives which contait, M 0 
are elementarily equivalent. We shall give an affirmative answer to this 
question in the case that  A is coherent. First we need a general model- 
theoretic fact. 

Lemma 4.5. Let 92,~ be structures for  a language L such that ~ c_C_ ~.[ 
(resp. ~ -< 9.I ). I f  YS' is elementarily equivalent to fS, then there is an 
embedding (resp. elementary embedding) o f  fS' into an elementary ex- 
tension ~ '  o f  92. 

Proof. Since ~8 - ~ ' ,  by Frayne's  Lemma there is an elementary em- 
bedd ingf  of  ~3' into an ultrapower ~31/D of ~ .  But then the composi- 
tion of f with the canonical embedding of  fOI/D into 9~I/D = 9~' is an 
embedding of  ~ '  into 92 ', which is elementary if ~3 < 9,t. 

Corollary 4.6. Let  L be a language with a distinguished constant 0 (so 
that the direct sum o f  structures for  L is definable). Let  92, Y~ be struc- 
tures for  L and let ~ be a cardinal >_" ~o. 
(a) ~8C~o ) - ~8 ta) (where the notation denotes direct sum) [ 16]. 
(b) I f  92 contains a substructure elementarily equivalent to ~3 ~o) ,  then 
there is an elementary extension o f  92 wh;.ch contains a substructure 
isomorphic to ~(a) .  

Proof. (a) In fact ~(~0) - .0~o~(a) (see, for example, [3] Lemma 1.8); 
(b) follows immediately from (a) and the preceding lemma. 

Corollary 4.7. Asst~me A is coherent. 

(1) Let M, N be t~o-injective modules which contain submodules ele- 
mentarily equivalent to M O. Let  f : A -* B be an isomorphism o f  mod- 
ules where A c_ M and B c_ N are finitely generated. Then 

(2) E(M 0)-- M 0 . (M, a)aE,4 - (N, f (a))aEA . 
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Proof. (1) Since 3t o -~ M~ ~0), it follows from Corollary 4.6 that M~0 ~) 
can be embedded in an elementary extension M'  (resp. N ' )  o f M  (resp. 
N). Since A is coherent, M' and N'  are ~0-injective (Theorem 3.16). 
Therefore by Lemma 3.17, there is an elementary extension M" (resp. 
N " )  ofM'  (resp. N ' )  sich that M" and N "  are injective. The conclusion 
follows from Lemma 4.4 applied to M" and N " .  

(2) By Lemma 3.17, there is an elementary extension M l o f M  0 which 

is injective. By ( 1 ), E(M 0 ) = M l . 

Remark. We do not knew if the corollary remains true if we drop the 

assumption that A is cot:.erent. 

111eorel.~ 4.8. / f  A is coherent ,  then K A is the m o d e l - c o m p a n i o n  (and 

he ,we  the  m o d e l - c o m p l e  t ion)  o f  K A . 

Proof. We prove first that K~ is model-consistent relative to K A. Let M 
be any module; then M ~ E ( M ) ( ~ )  M o, which is a model of K A by Cor- 

ollary 4.7. 
To show that K* is model-compleze, consider M 1 c_ M 2 where M 1 

and M 2 are models e f  K~. Since M i ~ M 0, (i = 1, 2), there are elemen- 
tary embeddings h i : M i ~ N i o f  M i into an extension N i o f  M o. (For 
example, use Frayne's  Lemma). By Theorrm 3.16 N i is ~0-injective. Let 

9(o I ... on) be a formula of L A and let a I . . . .  , a n ~ M 1 such that 
M l ~ ,p[a I ... a n I. Since h I is an elementary embedding, 
N 1 ~ ¢[h I ta~ ) ... hn(an)] .  Let A i = h i (Aa  I + ... + Aa  n)  c Ni" There is 
an isomorphism f : A 1 -~ A 2 such that 

A l - f ) A  2 

Aa I + ... + Aa n 

commutes. S~nce A 1 is finitely generated 

, = '~N2, f ( a ) )  c (NI a ) a ~ A l  E A I  
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by Corollary 4.7. Therefore  N 1 ~ ~[h  I (a l )  ... h I (an) ] implies 

N 2 ~ ~ [ f h  I (a 1 ) .'. f h  I (an)l which,  by the c o m m u  tativity o f  the  dia- 
gram, is the same as N 2 ~ ~[h  2 (a I ) ... h 2 (an) l . Since h 2 is an e lemen-  
tary embedding  we conclude  that  M 2 ~ ~[a 1 ... an]. T h u s M  1 -< M 2 
and the p roof  is comple te .  

Remark.  It is an open  ques t ion  whe the r  for any coheren t  ring A and 
any model  N of  K A , K ~  u D ( N )  has a pr ime model .  However  we can 
give an affirmative answer to this ques t ion  when  A is commuta t ive  no- 
etherian or artiniar~. 

Proposi t ion 4.9. Al l  models  o f  K A are injective i f  and onO, i f  A is no- 
etherian. 

Proof. It follows immedia te ly  f rom Proposi t ion 3.18 ((ii) and (iii)) that  

i f M  0 is injective, A is noether ian.  (By def in i t ion  o f  M0, (+~ E(M n) is 
n ~ t o  

a direct summand  o f M  0 for  any countable  sequence {M n = A / I  n } o f  
cyclic modules . )  Therefore  if all models  of  K A are injective, A is no- 
etherian. Conversely, if A is noether ian ,  by Proposi t ion 3.1 $ ((i) and 

(iii)), M 0 is injective and, since the injective modules  cons t i tu te  an ele- 
mentar i ly  closed class (Theorem 3.19),  all models  of  K A are injective. 

5. Commutative noetherian rings 

Throughout  this sect ion A is a commuta t ive  noether ian  ring. In this 

case we are able to  give addi t ional  in format ion  about  the model-  

comple t ion  K A of  K A . Our principal tools  are the Krull Intersect ion 
Theorem and results o f  Matlis [28] on injectives over noether ian  rings. 

Let (9 = the set of  proper  prime ideals in A, c~ = the set o f  maximal  
ideals. Also let 

cliff = { Q e c ~  : A / Q  is finite} , 

9It i = { Q Ecrlt : A / Q  is infinite } . 
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Then ar'.y injective E can be written in the form 

(5.1) E ~  @ E ( A / P )  (aP) ,  
PE 

where u e >_ 0 (128], Theorems 2.5, 3.1). Moreover, the a t, are uniquely 
determined by E t [ 1 ] ,  "I'heorem 1). 

By abus de langage we will refer to the latter fact as the "uaiqueness 
of the decomposition (5.1)" (although the isomorphism in (5. l ) is not 
unique). In another instance of abus de langage we will freely confuse 
the notions of inclusion and embedding. For example we will say "E  
contains E(A /P)  ~ae)'' when we should strictly say "E  contains a sub- 

module isomorphic to E ( A / P )  tap) ' ' .  

We will prove: 

Theorem 5.2. Let  E be a A-module .  The fo l lowing  assertions are equiv- 

alent: 

(I) E is injective ana i f  E is decomposed  as in (5.1): 

a) ae > OforalIPEC[l~; 

b) l f P ~ g t ~ y ,  a e >_ ~o" 
(11) E is a mode l  o f  K* a . 

The fact that any model of K A is injective fo~,lows from Proposition 
4.9. The rest of tile proof of 5.2 will be given in the form of two prop- 
ositions (5.4 and 5.6). First we prove a lemma that gives a criterion for 
a t, > 0. ( l f a  ~ M, Ann(a) denotes the annihilator of a, i.e. the set 
{x h : Xa= 0} ) .  

Lemma 5.3. Let  E = (T~ EI,X/P)CaP ). Then a t, > 0 ¢=~ there exists 
P E  S* 

a ~_ E such that Ann(a) = P. 

Proof. (=) For any 0 4= a ~ A /P  c_ E(A /P) ,  Ann(a)  = P, because P is 
prime. 

(~)  I f a  ~ E, a 4: 0, we can write a uniquely in the fo rma  = 

a I + ... + a n where each a i is non-zero and for some Pi ~ 7~, is an ele-. 
ment of a summand E(A/Pi )  of ('~ E(A /P)  taP). Then 

P ~ 9  
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t l  

Ann(a)  = iq Ann(a i ) .  
i=l  

Hence if Ann(a) = P, then Ann(ai)  = P for some i (because 

n 

~ Ann(ai)  _C p). But Ann(ai)  is a Pi-primary ideal ( [28] ,  Lemma 3.2). 
i=l  

Therefore if Ann(ai)  = P, then P = Pi. 

Remark. If a = a 1 + ... + an as above and Ann (a) = P where P is :na.~'t- 
mal, then Ann(ai)  = P for all i, because P = Ann(a)  c_ Ann(a/) ~ A. 

I f Q  ~c//t choose a finite basis ta I . . . .  , is• for Q and let ¢/Q(X) be the 

fol'mula 

x ~ 0 ^  A ( t ~ i x = 0 ) .  
i=1 

ThusM ~ ~kQ [a] if and only if Ann(a)  = Q. (Since Q is maximal, 
n be the sentence Ann(a) = Q ¢=* a ~ 0 and Ann(a)  D_ Q.) Let 0Q 

n 

( B x  l)  ... ( 3 x  n) [ A ¢o(x~) ^ A 
i=1 i~j 

(x~:xi)l. 

Let T O be a set o f  axioms for the theory of  injective modules (Theorem 

3.19) and let 

T =  T 0 u { o l  0 " QECYlti} u {O ~ " n > 0 ;  QEc/~/}  . 

Proposition 5.4. E is a mode l  o f  T ~ E satisfies (I) (a) and (b) o f  Theo- 

rem 5.2. 

Proof. If we write an injective E as in (5.1) then by Lemma 5.3, 
,~Q > 0 '=* E ~ 0~,  for each Q ~9.'~. If Q ~97Q, {a ~ E ( A / Q )  • 
Ann(a) ~ Q} --- A/Q,  which is finite ([281 Theorem 3.4 (4)). Therefore 
it follows from Lemma 5.3 and the remark followir.,g it that 
t~Q >_ ~0 ¢~ {a ~ E • Ann(a)  = Q} is infinite ¢=, E ~ 0~ for all n > 0. 

The proof  is complete. 
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Since M 0 obviously satisfies (1)(a) and (b) it follows that T c_ Ki~x 
and hence any model of  K A satisfies (1)(a) and (b). This proves the 
implication (11) =, (I) of  Theorem 5.2. We begin the proof of the opp0- 
site implication with a lemma that establishes a criterion for E to be a 
model of K A ~ 

Lemma 5.5. I f  E is an injective which contains E(A/P) t~o) for each 
P ~_ 9 ,  then E =- M o. 

Proof. By definition M o 3_ E(A/p)(~o) for each P ~ 9 .  Therefore 

M o ~ ~') E(A/P) ae where/3 t, >_ N 0 for all P ~ 9 (by the uniqueness of 
p~ .~  

the decomposition (5.1)). IfM'--- ~ E(A/P) tN0) t h e n M  '=- M o (by 
P E  9 

Corollary 4.6(a) and [ 16] ). By hypothesis, if we write E as in (5.1) 
then ~ ,  >_ S0 for all P ~ 9 .  Thus M' c_ E and it follows from Corollary 

4.7 that E -- M 0. 

Now define 

M l - (~  E(A/Q) t~O) + (~  E(A/Q) .  

By the uniq'le~less of the decomposition (5.1), E contains (a submodule 
isomorph!c to) M 1 if and only if E satisfies (I)(a) and (b) of Theorem 
5.2. Therefore we will have proved the implication (1) =, (II) of  5.2 if 
we prove: 

Proposition 5.6. I rE  is an injective which contains M 1 , then E is a 
model o f  K,*. 

Proof. First of  all we observe that  there is an elementary extensior. E 
of E which contains E(A/Q) (~o) for each Q ~9?~ i (i.e. E 1 ~_ M~0) ) . . I n  
fact let 8 > max {CarriE(A/Q) : Q ~gfti} ; hy taking a su"able ultra- 
power Et/D of E we obtain an elementary extension o r E  which for 

each Q ~gft i contains 8 elements whose annihilator is Q (viz. the non- 
zero elements of (A/Q)I[D). Now by the remark following Lemma 5.3 
and since 8 > CardE(A/Q), we see that Et[D D_ E(A/Q)(6). 
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We claim that  to prove the proposition it suffices to prove that for 
any module N containing M]~0 ), there is an elementary extension N 1 of 
N such that  for all P ~ 9 -9 t f ,  N l ~_ N (~) E(A/P). If this is the case, 
then we obtain by induction on n an increasing chain of modt-les N n 
such that N o = E l ,  Nn_ 1 -< Nn, and for each P E 9 -~7/~, 
Nn ~- Nn-1 (~  E(A/P). Taking the union of  the chain we obtain an 
elementary extension N,o of N such that for each P ~ 7', 
Nw 3_ E(A/p)(~o ). N is injective by Theorem 3.19 because N ,  = E. 
Thus by Lemma 5.5, N,,, - M 0 and hence E - M 0 i.e. E ~ K ] .  Thus to 
complete the proof of 5.6 it suffices to prove: 

Lemma 5.7. Let D be a non-principal ultra filter on I = { n E Z : n > 0 }. 
Let  N be a module containing M] ~o) and let N 1 = NI /D. Then for  any 
P ~ 7~ -9?l,  N 1 ~_ N Q E(A/P).  

Proof. Let P E 9 - c # / a n d  Q ~cr/t such that P c Q. We will prove fi,st 
that (E(A/Q)Cl" o))t/D contains a submodule isomorphic to E(A/P). By 
the Krull Intersection Theorem, P =  I"1 (Qn +p)  ([361 Theorem 12', 

-~>0 

p. 217). Now Qn + p is a Q-primary ideal ( [36] ,  Corollary 1, p. 153). 
Write Qn + p = Jn,1 n ...NJn,r n as an intersection of irreducible ideals: then 
each Jn," is an irreducib!e Q-primary ideal, so by (128], Lemma 3.2) there 
is an element xn. k E E(A/Q)  such that Ann(x,~.k) = Jn.k" Moleover we can 
choose the xn, k to lie in different copies ~ffE(A/Q). Then if y ,  = 

xn, 1 + ... + X,,rn , A n n ( y , )  = fl Ann(x,.,,g) = [1 J,,,k = Qn + p. If we 
k = l  k 

let y*  be the element of (E(A/Q)t~o)) t /D represented by O', )n ,  then 
for any ~, ~ A, ~,y* = 0 implies ~Yn = 0 for arbitrarily large n ~D is non- 
principal); so ~ ~ f'l (Qn + p) = p. Thus Ann(),*) _c P; the opposite in- 

n 
clusion is clear, and hence Ann(y* )  - P. It follows from Lemma 5.3 
that (L(A/Q)(~o)) t /D contains a submodule A isomorphic to E(A/P). 

Now E(A/Q)(~o)) t /D - and hence A - may be regarded as a sub- 

module o f N  l . We claim that if d : N-~ N ! is the diagonal embedding. 
A n d(N) = {0}.  Indeed, d ( N ) n  (E(A/Q)~t~o)~t/O = d (E(A/Q)~o) ) .  

Thus i f 0  4: a ~ A n d(N), a ~ d(E(A/Q) ~ o ) )  and so E(A/Q) (~o) con- 

tains a submodule isomorphic to E(Aa). But also E(Aa) ~- A ~ E(A[P) 
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because A is ir~decomposable ([28] Prop. 2.2), which contradicts the 
uniqueness of the decomposition (5.1). Hence we have proved 
A n d(bl) = { 0 } and consequently N 1 ~_ d(N) E / A .  This completes the 
proof of Lemma 5.7, Proposition 5.6, and Theo~ em 5.2. 

Corollary 5.8. For any model  N o f  KA, K ] u D(N) has a prime model  
which is unique up to isomorphism over N. 

Proof. If N is a module, write 

E(N) =:- (~  E(A/p) t~v) .  
PE~ 

ForP~qKl , ,  define #p = ~0 i f a e  < ~0; 13p = 0 otherwise. F o r P ~ Q g i ,  
define ~e = 1 if a e = 0; t3 t, "- 0 otherwise. Let 

E 0 = E(N) (~  (~  E(A/P)  (~1") . 
P E ~ t  

Then N c E(N) c_ E 0 and E o is a prince model o, K A o D(N). Clearly 
any prinae model of K* u D(N) is isomorphic to E 0 by an isomorphism 
which fixes N. 

6. Artinian rings 

When A is artinian, we can also give a structure theorem for the mod- 

els of K A and a set of axioms for K,~. 
We first handle the case where A is semi-simple artinian. We begin by 

indicating three mathematical facts about A and A-modules which will 
be used in the proof. 

n 

(6. i ). (Artin-Wedderburn Theorem) A = ( ~  A e where each Ae i 
i=1 

is a simple left ideal and {el} l ( i < n  is a f inite set o f  orthogonal 
idempote~lts. 

Clearly we may assume that  there is an integer m _< n such that  
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(6. la) i f  ! <_ L ] <_ m and  i ~ ] the lef t  A - m o d u k s  Ae i and Ae /a re  
no t  isomorphic. 

(6.1 b) i f  m < i <_ n there is a~ <_ m such that the ~eft A-modules  

Ae  i and Ae/ are isomorphic. 

(6.2). A n y  modu le  M is semi-simple and therefore can be writ ten as 

a direct sum o f  simple modules:  

m 

M = Q Z~ Oti) 
i=1 

where L i ~- Ae  i. 

The cardinals ot i are uniquely determined by M, which allows us, as 
in § 5, to refer to the uniqueness of  the decomposition without  fl~rther 
comment. 

(6.3). A simple modu le  t is isomorphic to Ae  i i f  and only  i f  there is 

an e lement  a E L such that eia q: O. 

For 6.1 and 6.2 one may see, e.g., [71 or [20].  6.3 may be easily 
checked by ti~e reader. The main interest of  (6.3) is that it gives a Jirst- 

order sentence which a simple module L satisfies if and only if L ~,s iso- 
morphic to Ae i. 

Remark. An immediate consequence of  6.2 is the fact that any module 
is injective. It is well known (cf. [201 ), but will not be needed here, 
that this gives a characterization of  the artinian semi-simple rings. 

We consider now the module M 0 defined in § 4. Clearly we have: 

m 

M 0 -~ ( ~  (Aei)(t~i) where each ai is>_ ~0" By Corollary 4.6(a) and 116] 
i=1 m 

it then follows that M 0 is elementarily equivalent to @ (Aei) tb~0). 
i=1 

. 

For any i = 1, ..., m and for any integer k > 0 let ~ be the sentence 

k 
( 3 X l ) . . . ( 3 X k ) (  A e i x / ~  O) n (  A e i x j ~ e i x / , )  

i=] / =/= j '  
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Let 57 be the set {il 1 _< i <_ m and Ae i is f ini te}.  Let T be tb~ set 

Theorem 6.4. L e t  A b c  semi-s#nple artinian and M a A-module .  The 

fo l lowing  assertions are equivalent: 

(i) M is a mode !  o f  T. 

(ii) The decompos i t i en  given in (6.2) satisfies: 

a) a i > O f o r  all i; 

b) I f  i E 9- then ai ~ ~ "  

(iii) M is a mode l  o f  K* A . 

Proof. ( i ) '  (ii): This is an easy consequence of  (6.3). (ii) ~ (iii): We 
suppose that M satisfies (ii) and we have to show M -- M 0 or 

m 

M = +(~ (Aei) (~0). By Corollary 4.6(a) and [ 16], we are done if we 
i=1 

show that 

(6.5) i ~ 9" iraplies Ae i = (Aei) (t~0). 

It follows easily ~rom (6.3) that for any module N elementarily equiva- 
lent to Aei ,  any simple submodule of  N is isomorphic to Ae i. Let us 
suppose now that Ae i is infinite; there exists (by the LSwenheim- 
Skolem theorem) a module N elementarily equivalent to Ae i and of 
cardinal > cardinal (Aei). S;nce any simple submodule o f  N is isomor- 
phic to Ae  i, by (6.2) (and the uniqueness of  the decomposit ion) one has 

N ~  (Aei) (cO with a > ~0 • 

By Corollary 4.6(a), one then has N = (Aei) (~;0) and therefore 

Ae  i =- (Aei)(N0). ,- 
(iii) =, (i): Immediate, since M 0 ~ T. This completes the proof. 

Now let us suppose only that  A is artinian (not necessarily semi- 
simple). Since no new idea is involved, we will be content  with br.iefly 
indicating how this case may be reduced to the case where A is semi- 
simple artinian. 

Let J be the Jacobson radical of  A. It is well known that  A / J  is semi- 
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simple artinian. We can then apply (6.1) to A/J  and obtain a decompo- 
sition of A/J as a direct sum having the properties mentioned in (6.1): 

n 

A/J= ® 
i = 1  

(where ~i ~ A /J  denotes the class of an element e i ~ A). We introduce 
also for A/J  an integer m having the properties (6.1 a) and (6.1 b). For 
any A-module M we define the "semi-simple part of  3~" S(M) = 
{x ~ M : Jx = 0}.  S(M) can be endowed in a canonic,-', way with the 
structure of  a A/J  module. 

The. following results are due to Morita, Kawada and Tachikawa [29] 
and may be considered as a counterpart  c.f the results of  Matlis which 
were used in § 5. 

Theorem 6.6. Let  A be artinian and let E, E' be in]ective A-modules. 
Then E and E' are isomorphic i f  and only i f  S(E) and S(E') are isomor- 
phic. 

Theorem 6.6%. Let  A be artinian and E be an injective A-module. 
a) E is indecomposable i f  and only i f  S(E) is simple. 

n 

b) E ~- (~] E~ai ) where E i is a (injective) A-module such that 
i = 1  

S(E i) ~- (A/J) e'i. 

Remark. A consequence of  Theorem 6.6% is that M 0 is elementarily 

m 

equivalent to @ E} ~o). 
i = 1  

We may then state the main result of  this section. 

1~eorem 6.7. Let  A be artinian and M be a A-module. The following 
assertions are equivalent: m 

(i) M is in]ective and i f  M ~- ~ )  Ei(t~ i) is the decomposition given by 
i= l  

(6.6½b), then 
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(ii) 
(iii) 

a) t~ ! > 0 f o r  all i. 

b) / f (AH)~ ' i  is f inite.  ¢t i ~_ ~0" 
M is in]ective and S(M)  is a mode l  o f  K * / j .  

M is c mode l  o f  K* A . 

The proof is lefL to the reader. We also leave to the reader the task of 
writing down an explicit set of axioms for K* using 6.7(ii). This re- A 

quires defining a formula O(x) which asserts Jx - 0 (such a formula may 
be written in our language since J is finitely generated) and "relativizing 
tile sentences of T (see ~[hcorem 6.4) to 0 ". 

As in § 5, we obtain, as a consequence of Theorem 6.7, the following 
Corollary whose proof we also leave to the reader. 

Corollary 6.8. Let  A be a: tinian. Every mode l  N o.f K A c a n  be em- 
bedded in a pr ime mode l  o f  K,* u D(N)  which is unique up to isomor- 

phism over N. 

Remark. For the cast. when A is a field, the fact that the theory K~ is 
model-complete appears as Theorem 3.6.9 of [31 ] (with a differer, t 

terminology). The proof in [ 31 ] seems also to cover the case when A is 
a division ring. 

7. Algebraically closed structures 

In this section ~ denotes a fixed class of structures of the same t y p e  
All the structures considered are assumed to belong t o ~ L  As the reader 
will observe, much of this section is implicit in the work of A.Robinson 
on model-completeness (see e.g. [32] Chapter 4). 

Definition 7.1. A substructure N of a stnacture M is algebraically closed 
in M if any finite set of equations with constants in N which has a solu- 
tion in M has a solution in N. 

Definition 7.2. A substructure N or a structure M is exis,entially closed 

in M (one could also say strongly algebraically closed in M) if any finite 
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set of  equations and inequations with constants in N which has a solu- 
tion in M has a solution in N. 

In other words, a substructure N of  a structure M is existentially 
closed in M if any primitive sentence (cf. [321, p. 92) which is defined 
in N holds in M only if it holds in N. It is easy to see that a substructure 
N of  a structure M is existentially closed in M if and only if any existen- 
tial sentence which is defined in N hold;  in M only if it holds in N. 

The two following result~ are imm' .'Hate. 

Proposition 7.3. Let  M, N, P be structures such that P c_ N c_ M and P 
is algebraically (resp. existentially) closed in N and N is algebraically' 
(resp. existentially) closed in M. Then P is algebraically (resp. existen- 
tially) closed in M. 

Proposition 7.4. I f  £! and N are structures such that N < M, then N is 

existentially closed in M. 

Definition 7.5. A structure is algebraically (resp. existentially) closed 
if  it is algebraically (resp. existentially) closed in every extension. 

Remarks. 1. The preceding definitions have been introduced for the 
class of  groups, with a slightly different terminology, by W.R.Scott 

([331). 
2. For each cardinal a, notions of a-algebraically closed and a-exist- 

entially closed structures might be defined, which for a = ~0 would 
coincide with those introduced above. 

From now on, we will assume that 91t is clos-d under ultrapowers. 

Proposition 7.6. Let N, M 1 , M 2 be structures s,wh that N c_ MI,  
N c_ M2" I f N  is existentiall.v closed in M 1 , there exists a structure M 
which is an elementary extension o f  M 2 and which con!ains M 1 such 
that the following diagram is commutative. 
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N ~ 311 

nl nl 

M 2 - < M  

Proof. Since N is existentially closed in M1, there exists (cf. [ 5 ], 
Lemma 3.9, p. 187) an embedding o f M  1 in an ultrapowerNl/D of N 
such that the following diagram is commutative: 

N C _ M  1 

N~/D 

(d denotes the canonical embedding of N into NI/D). 
The following diagram is clearly commutative a ad all its maps are 

embeddings: 

N c 

NI/D c_ M~/D 

One may then take for M the ultrapower M12/D. 

Corollary 7.7. Let N be a substruc,ure of  a structure M. I f  N is exist- 
entiaily closed in M and if M is algebraically (resp. existentially) closed, 
then N is an algebraically (resp. existentially) closed structure. 

Proof. Let us suppose that  M is existentially closed (the case where M 
is algebraically closed is similar). Let ~0 be a primitive sentence defined 
in N which holds in an extension M 1 of  N. By the preceding proposi- 
tion there exists an extension M' of  M1 and of M such that the follow- 
ing diagram is commutative: 
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N C_M 

nl n! 

M 1 C M' 

Since ~0 holds in M1, ¢ holds in M' and therefore, since M is existen- 
tially closed, ~0 holds in M. Since N is existentially closed in M, it fol- 
lewes that ¢ holds in N. Therefore N is existentially closed and th~ 
proof is complete. 

Corollary 7.8. Any elementary substructure cj an algebraically (resp. 
existentially) closed structure is an algebraically (resp. existentially) 
closed structure. 

Corollary 7.9. I f  for ever), structure M ~c.~ every substructure e l M  is 
existentially closed in M, thenffl~ has the amalgamation property. 

Remarks. 1. An immediate consequence of Corollary 7.9 is the f~:ct, 
already proved in § 2, that a model-complete theory has the amalgama- 
tion property. 

2. It may be shown (see Appendix) that an algebraically closed sub- 
structure in an algebraically closed structure need not be algebraically 
closed, although this is the case ifff/t has the amalg~unation property 
(proof as in Corollary 7.7). 

In the remainder of this section, we will assume that c'f/t is th, 
models era  first-order theory K. ~ will denote the cardinal of  
guage of  K. 

-of 

Proposition 7.10. If K has a model-companion K*. the models o f  K* 
are exactly the existentially closed models o f  K. 

Proof. LetM be a model of  K*. Let P be an extension of  M and let 
be an existential sentence defined in M which holds in P. Since K* is 
model-consistent relative to K, we may assume that P is a model of K*. 
But, in this case, since K* is model-complete, M is an elementary sub- 
structure of  P and ~ holds in M. It follows that M is existentially closed. 
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We suppose now that M is an existentially closed model of  K. Since 
K* is inductive (cf. [ 26] ), it is enough to show that M is a model of the 
V3 sentences of  K*. Let 

= ( V x  1 ~ ... ( V x  m ) ( 3 y l  ) "'" ( 3 y n ) ~  (Xl, ..., X m , Y l , . . . , y n  ) 

(where ~ is quantifier-free) be an V 3 sentence of K*. Since K* is 
model-consistent relative to K, there exists a model Q of  K* containing 
M. For any elements a 1, ..., a m of M the existential sentence 

( q Y 1)... ( 3 Yn) ~ (al . . . .  , am, Y 1, "", Yn) is defined in M and holds in Q; 
therefore it must hold in M. It follows that  M is a model of  ~ and the 
proof  is complete. 

Proposition 7.11. Tile class o f  algebraically (resp. existentially),:losed 
structures is elementary in the wider sense i f (and  only if) it is closed 
under ultraproduc,s. 

Proof. Let ~ denote the class of  algebraically (resp. existentially) 
closed structures. It is enough to show that s~ is elementarily closed if 
s~ is closed under ultraproducts (cf. [ 5 ], p. 151 ). Since c~ is elemen- 
tarily closed, it is enough to show that, i fM ~cr/t and A ~M, then M --- A 
implies M c ~ .  But by Frayne's Lemma M = A implies that  M is elemen- 
tary embeddable in an ul trapo~er of A. The result ther, follows from 
Corollary 7.8. 

Before continuing, let us give a simple example. We take for K the 
theory T of  semigtoups with an unspecified identity. The non-logical 
symbols of  T are the equality = and a function f of  two variables 
( f (x ,  y )  will be denoted by xy)  and the axioms of T are: 

( V x ) ( ' ¢ y ) ( V z )  ( (xy)z  = x(yz))  

(3 x ) ( V y )  ( x y = y x = y )  

Since every semigroup M can be embedded in a semigroup M' whose 
identity is different from the identity of  M, it is easy to see that  no 
model of  T is existentially closed. 
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That situation does not  arive if we assume that K !s an inductive 
theory. We have indeed the following result which was rediscovered by 
Eli Bers. 

Theorem 7.12. I f  K is inductive, any model o f  K can be embedded i,~ 
an existentially closed structure. 

Proof. With minor modifications, the proof  given in [ 33 ] works. 

Remark. Any model M of  cardinal # >_ 8 can be embedded in an exist- 
entially closed structure of  cardinal/3. Indeed, i fM' is an existentially 
closed structure containing M, there exists, by the L6wenheim-Skolem 
theorem, a structure M" such that: M c_ M", M" ~ M', Card(M") = #. By 
Corollary 7.8, M" is existentially closed. 

Corollary 7.13. Let K be inductive. K has a model-companion i f  and 
only i f  the existentially closed models o f  K constitute an elementary 
class in the wider sense. 

Proof. If K has a model-companion, it follows from Proposition 7.10 
that the existentially closed models of K constitute an elementary class 
in the wider sense. 

To show the converse, let us denote by K* the first-order ~ e o r y  of  
the existentially closed models of K. One has clearly K c_ K* and it 
follows from Theorem 7.12 that K* is model-consistent relative to K. 
By applying the model-completeness test ([321, p. 92), one sees imme- 
diately that K* is model-complete. Therefore, K* is the model- 
companion of  K and the proof  is complete. 

Corollary 7.14. I f  K has a model-completion, then ~he algebraically 
closed models o f  K constitute an elementary class iN the wider sense. 

Proof. By Proposition 7. l l it is enough to show that the class of alge- 
braically closed structures is closed v nder ultraproducts. Let M* = 
17 Mi/D be an ultraproduct of  a family of  algebraically closed struc- 

i E I  

tures. For every i ~ I there exists an existentially closed structure N i 
which contains M i (cf. Proposition 7. l 0). Let us denote by N* the 
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ultraproduct I--I Ni/D.  For every extension Q o fM ~, tiaere exists an 
i E l  

extension P of N* and Q such that the followiag d ia~am is commuta- 
tive (since K has the amalgamation property, of. Lemma 2.1 ): 

M* c N* 

nl n} 

Q c p 

It follows that every finite set of equations ¢ deLned in M* which 
holds ua Q holds in P and therefore holds in N* since N* is existentially 
closed. One then finishes the proof  as in Lemma 4.2. 

The followi~;g short proof  of  a theorem of  P.Lindstr6m [ 26] resulted 
from a discussion with E.Fisher. 

Corollary 7.15. I f  K satisfies the three fo l lowing  conditions: 
(i) K is categorical in ~ cardinal t~ >_ ,5 : 

(ii) K is inductive; 
(iii) all models  o f  K arc infinite; 
then K is model-complete .  

Proof. By the model-completeness test ( [32] ,  p. 92), it is clearly 
enough to show that  every mode! of K is existentially closed. We will 
show that, under the ass~:mptions (i) and (ii), every infinite mod,~l M ef  
K is existentially closed. By Corollary 7.8, since every infinite model of  
K is an elementary substructure of  a model of  cardinal >_ a, we may 
restrict ourselves to the case where the cardinal of  M is >_ a. If the car- 
dinal of M is equal to a, the result is aJl immediate consequence of  
Theorem 7.12 and of the remark folIowing it. In the general case, if the 
cardinal of M is ~ t~, for any primitive sentence ~0 defined in M, there 
exists a substructure M' of M of cardinal a such that  ~0 is defined in M'. 
If ¢ holds in an extension of M, ¢ holds in M' since M' is existentially 
closed, and therefore ~0 holds in M. The proof  is complete. 

Our next result deals with the inductive hull of K (cf. [ 21 ] ). It has 
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been shown by K.Kaiser that if K is inductive there exists a (unique) 
theory K, called the inductive hull of  K, which has the following prop- 
erties: 

(i) K _ 
(ii) K is model-consistent relative to K. 

(iii) K is inductive. 
(iv) Any theory satisfying (i), (ii) and (iii) is contained in K. 

Corollary 7.16. I f  K is inductive, K is the deductive closure o f  the set 
o f  v13 sentences which hold in ell existentially closed models o f  K. 

Proof. Let us denote by K' the deductive closure of the set of ~'=1 sen- 
tences which hold in all existentially closed models of  K. It is obvious 
that K' satisfies (i) and (iii) and it follows from Theorem 7.12 that  K' 
satisf.ies (ii). We have then K' c_ K. 

To: show the inclusion K c_ K', it is enough to prove that, for any V :1 
sentellce ~0 of  K and any existentially closed model M of K, ~0 holds in 
M. This is done by embedding M in a model of  ~, which is possible since 
K is model-consistent relati'/e to K. 

W~ are now going to restate some of our results about modules in the 
termi~ology of  this section. The algebraically closed modules were 
called absolutely pure in the remarks at the end of  § 3. It was found 
that the existentially closed modules constitute an elementary class in 
the wider sense if and only if the algebraically closed modules consti- 
tute an elementary class in the wider sense (compare with Corollary 
7. | 4 of this section) if and only if A is coherent. It was proved that 
each existentially closed module is injective if and only if A is no- 
etherian. 

It may be shown that for any ring A the inductive hull of  the theory 
K A of A-modules is the set of  cc-1:sequences of  the set of V3 sentences 
which hold in an explicitly given module, namely the module M 0 which 

was defined in § 4. 
It may be of  interest to point out that a Z-module, namely an abelian 

group, is algebraically closed if and only if it is divisible, i.e. injective, 
and that a divisible abelian group, for example the additive group of  
rationals Q, is not  always existentially closed. It then seems natural to 
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L 
look at the theory of groups, since it is well-known that ~! group is in- 
jective (in the categorical sense of the wozd) if and only i~" it is trivial 
(see e.g. [ 15 ] ) and since it has been shown by B.H.Neum~mn that a 
non-trivial g~oup is existentially closed if and only ff it is !'tlgebraically 
closed ( [30]) .  In this connection we have 

Theorem 7.17. Tt 'e  t h e o r y  T 1 o f  g r o u p s  has no  m o d e l - c o m p a n i o n .  

Proof. We find it convenient (but this is inessential) to axiomatize T 1 
with a function symbol of two variables (for the multiplication), a 
function symbol of one variable (for the inverse) and a constant  symb ~1 
e (for the identity).  There is no need to write the axioms. 

We prove the theorem by ~howing that the class of existentially 
closed groups is net  closed ,ruder ultraproducts and by applying Corol- 
lary 7.13. More precisely, we show that, for any to-incomplete ultra- 
filter D over any set I and any existentially closed group G, the ultra- 
power G I l D  is not existentially closed. 

For every positive integer m the sentence 

( % , , ) ( 3 x ) ( x  r e = e ^  A x i  ~ e) 
j<rn  

holds in an extension H of G lone may take H = G × Z ( m ) ) .  It follows 
that for every positive integer rn, G has an element of order m. 

Now let (Un)n~,, , , (Vr)n~,,, be two striclty increasing sequences of 
positive integers such that for any n ~ to u n 4: v n . For each n ~ to let 

a n (resp. b n) be an element of G of order u n (resp. on). Let ( In)n~,~ be 
a sequence of subsets of I such that: 

V m  4: n E to ( l  m (h I n = q~); V m E ¢O(Irn griD) ; 

I = U 1 n • 
?| ~ t.D 

Let a (resp. b) be tile element of G i whose ith component  a i (resp. bi) 

is equal to a n (resp. b n) if i ~ i n . Let ~ (resp. b) be the image o f a  (resp. 
b) under the canonical homomorphism of G t onto G t / D .  It is easy to 
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verify that  ~ and b are not  of finite order. It then follows from a result 
due to G.Itigman, B.H.Neumann and H.Neumann ([ 18], Corollary oi" 
Theorem I', p. 249) that the equation x -  l~x = b has a solution in an 
extension of  GILD. The proof  will be complete if we show that  the 
equation x - l ~ x  = b has no solution in GilD.  

Let us assume that  the equation x - l ~ x  = b has a solution in GI/D.  In 
this case the equation x -  1 ai x = bi would have a solution in G for some 
i e I, which is clearly impossible since a i and b i do not  have the same 
order. 

Remarks. 1. This result, namely the fact that the existentially closed 
groups do not  consti tute an elementary class in the wider sense, answers 
a question implicit in ([221, p. 129). 

2. From Theorem 7.17, it follows that every theory T' such that 
(i)  T 1 c_ T' ,  

(ii) T' is model-consistent relative to T~ 
has a model which is not an existentially closed group (if not, T'  would 
be the model-companion of  T 1). Therefore if one takes for T' the in- 
ductive hull of T 1 or the forcing-companion of T 1 (141), T' has a (in- 
finite) model which is not  existentially closed. 

3. The following question has been raised by Eli Bers and seems 
open: are two existentially closed groups elementarily equivalent? 

4. Let us denote by T 2 the theory of  monoids (i.e. the theory of  
semi-groups with a specified identity e) whose axioms are: 

(V  x ) ( V  y ) ( V  z) ((xy)z = x(yz))  

( V x ) ( x e  = ex = x )  

By appropriately modifying the proof  of  Theorem 7.17 and b~ using, 
instead of  the Higman-Neumann-Neumann result, a generalization of it 
(Theorem 1 of [ 19] ), one may show that T 2 has no model-companion. 
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Appendix 

We given an example of  a theory T with models 9[, ~ such that 9.I is 

a substructure of  ~ ,  '~I is algebraically closed in 23, 2~ is algebraically 
closed, but $I is not algebraically closed. 

Let L be a language with equality and two bina_ry relations P and Q. 
Let T be the deductive closure of 

(1) V x  Q ( x , x )  

(2) ' q x [ ( r l y ( P ( x , y ) v P ( y , x ) )  =~ 

V z ( ( Q ( x ,  z )  v Q(z ,  c)) * x = z)] 

4 

Let B = {b 1 , b 2, b3) ar.d let ';., = the model of  T wi'.r~ universe B c n  

which the relations Q(b I , b2), Q(b2,  b I ), Q(b l  , b 1 ), Q(b 2, b 2 ), 
Q(b 3 , b 3 ), and P(b 3 , b 3 ) are imposed. We claim ~ is algebraically closed. 
Indeed, suppose ~ = (C, ...) is an extension of ~ such that in ~ there is 
a solution to a system r3 of  equations of  the fon-a 

Q(~,/3) or P(a, [3) 

where the a, [3 are either variables x i or elements bj of  B. We have to 

show c5 has a solution in ~q. We can assume no variable x i occurs in both 

a relation of  the form P(a, [3) and in one of the form Q(a, [3). In fact, if 
we have P(x  i, [3) and Q(x i, [3') (the other possibilities are handled simi- 
larly), then by (2), xi = [3'; thus we can (by (1)) remove Q(xi ,  [3') from cI 

and eliminate x i from cS by replacing x i by [3' everywhere. If b 3 occurs 

in a relation of the form Q(xi ,  b 3) or Q(b3 ,  x i )  then by (2) x i = b 3. Thus 
we can assume that b 3 does not occur in any relation Q(~, [3) of  c5. Note 

also t t  at b 1 and b 2 do not  occur in any relation P(t~, [3) of  cS. (This fol- 

lows from (2) because Q ( b i ,  b 2)). Hence we get a solution to c5 in ~ by 

setting x i = b~ for any variable x i occurring in a relation of the form 

Q(x i, [3) or Q(a, x i) and by setting x i - b 3 for any x i occurring in a rela- 
tion of the form P(xi ,  [3) or P(a,  xi) .  

Now let 9~ be the substructure of  ~ with universe A = {b 1 , b a }. 
Th, n ~ is a model of  T (T is universal) and an argument similar to that 
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above shows that 9.I is algebraically closed in ~5. On the other hand, 9I is 

not  algebraically closed; in fact, there is a model  ~ = (D . . . .  > o f  T which 
is an extens ion o f  ~ and contains an e lement  c ~ D - / such that 
Cl) ~ P[c, bl] .  ThusP(x, bl) has a solut ion :n q) but  no.: in 9I. 
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