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Abstract This paper presents an adaptive path planner for unmanned aerial vehicles (UAVs) to

adapt a real-time path search procedure to variations and fluctuations of UAVs’ relevant perfor-

mances, with respect to sensory capability, maneuverability, and flight velocity limit. On the basis

of a novel adaptability-involved problem statement, bi-level programming (BLP) and variable plan-

ning step techniques are introduced to model the necessary path planning components and then an

adaptive path planner is developed for the purpose of adaptation and optimization. Additionally,

both probabilistic-risk-based obstacle avoidance and performance limits are described as path search

constraints to guarantee path safety and navigability. A discrete-search-based path planning solution,

embedded with four optimization strategies, is especially designed for the planner to efficiently gen-

erate optimal flight paths in complex operational spaces, within which different surface-to-air missiles

(SAMs) are deployed. Simulation results in challenging and stochastic scenarios firstly demonstrate

the effectiveness and efficiency of the proposed planner, and then verify its great adaptability and rel-

ative stability when planning optimal paths for a UAV with changing or fluctuating performances.
ª 2013 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA.

Open access under CC BY-NC-ND license.
1. Introduction

As a crucial subject of unmanned aircraft systems (UAS), path
planning for heterogeneous unmanned aerial vehicles (UAVs)
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has attracted substantial attention.1,2 Path planning methods
for UAVs are to generate safe reference trajectories that navi-
gate a UAV from its present location to a desired target in a

hostile environment.3 Motivated by the advent of new UAVs
which encompass a broad range of mission capabilities, such
as reconnaissance, strike, and signal collection,2 a satisfactory

path planning method should be practicable and tailored to
various UAVs when executed in environments with different
obstacle distributions. Therefore, a challenging idea for path
planning is how to adapt a method to not only various opera-

tional environments, but also UAVs that have different perfor-
mances with regard to kinematic properties, maneuverability,
and sensory capability. This study is driven by the above idea

and focuses on adaptive path planning for UAVs with variant
performances.
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1.1. Prior work

Pervious research on path planning has well addressed the
method’s adaptability to diverse environments distributed with
boundary obstacles (e.g., mountains and buildings) or radia-

tion threats (e.g., radars and missiles).3,4 For completely
known environments, methods are put forward to directly find
a globally optimal path, such as the Voronoi diagram meth-
ods,5,6 a directed graph based method,7 a probabilistic ap-

proach,8 and silhouettes.9 With the growing complexity of
flight tasks and operational spaces, threats are increasingly
hard to be fully characterized at the start of a mission. Many

methods are further developed to generate flight paths in real
time, as investigated below.

Rapidly-exploring random trees (RRTs) based algo-

rithms4,10,11 are to bias the exploration toward undetected
space by randomly sampling points, in which the differential
constraints (arising from non-holonomy and dynamics) are

considered. Mixed integer linear programming (MILP) with
alternative receding horizon control (RHC) provides a power-
ful optimization planning framework for hybrid dynamic mod-
els.12,13 Both probabilistic roadmaps (PRMs)14 and potential

field approaches15 using generalized sigmoid functions are fea-
sible with very modest computation. Besides, bouncing algo-
rithms16 are superefficient in path generation with limited

information obtaining and unrestricted maneuver, in addition
to the behavior coordination and virtual (BCV) goal based
algorithm17 and the feedback based compositional rule of

inference (FBCRI) algorithm18 in our previous work.
Besides the aforementioned methods that have been suc-

cessfully applied in the presence of multifarious obstacles,
other methods embedded with adaptation strategies have dealt

with the adaptability to UAVs’ different abilities, but only spe-
cific subsets of the abilities are considered. To adapt to perfor-
mance degradation caused by ice accumulation, an

evolutionary computation method is presented to flexibly plan
paths for UAVs.19 A simple on-line adaptive path planning
algorithm,20 combined with a nonlinear lateral guidance

control law, is designed to reconfigure the current flight path
in the event of aircraft performance reduction. Except for
the maneuver adaptation in the above methods, another

adaptive path planning algorithm for vertical take-off
and landing (VTOL) UAVs pays attention to the sensor mod-
ule adaptation.21 In a novel fuzzy virtual force (FVF) meth-
od,22 planning parameters are adaptively set by using fuzzy

logic reasoning theories and the Bayesian belief network.
Moreover, the adaptive immigrant scheme genetic algorithm23

and the max–min adaptive ant colony optimization (ACO) ap-

proach24 can adaptively improve planning effect and solving
efficiency.
1.2. Problem analysis and motivation

Most existing methods are capable of adapting to variant envi-
ronments, and several of them are flexible to the change of a

UAV’s single performance. Nevertheless, they neither explic-
itly exhibit nor completely take into account the adaptability
to multiple crucial properties. In fact, better adaptability
would conduce to more extensive applications and smaller

adjustments when certain of the UAV’s operational perfor-
mances fluctuate. For example, an autonomous rotary-wing
aircraft is able to stop and make quick turns on a spot. On
the contrary, an autonomous fixed-wing aircraft has to
maintain the minimal flight velocity and cannot turn at a

large angle instantaneously. If a flight path obtained from a
general planning method demands many agile or abrupt
maneuvers, it would be hard for the fixed-wing aircraft to fly

along, or even completely impossible to track. This may also
occur to the same type of UAVs with different maneuverabil-
ities and onboard detection sensors. Consequently, it is insuf-

ficient in practice for a planning method to only aim at an
invariable UAV model of steady maneuver and exploration
abilities.

The fixed planning step, which is commonly adopted to

equidistantly determine new waypoints,3,10,12 may restrict the
method’s applicability with regard to path safety and solving
efficiency. When a UAV is close enough to obstacles at a high

speed, a generated path may fail to steer clear of the threat re-
gion because of the UAV’s inability to decelerate in time. A
similar accident is also likely to happen if the UAV’s turning

ability is strictly limited. Besides, in real-time planning an im-
proper fixed step may result in frequent but unnecessary re-
planning implementation, which could increase the computa-

tional burden and reduce the generated path length and
smoothness.

Rather than a fixed step, variable planning step is intro-
duced to build paths or new reference waypoints only when

necessary.25 Typically, an anytime algorithm (AA) is embed-
ded in several existing path planning approaches, such as
RRTs,26 PRMs,27 and particle swarm optimization (PSO),28

to gradually improve the path quality as the execution time in-
creases. It can react to current environmental changes and out-
put paths at any time, which brings variable planning intervals

and adaptation to the surrounding obstacles and airborne
equipment. Likewise, an improved RRT method4 also adopts
the randomly variable planning step to increase path search

efficiency.
Accordingly, we extend the considerations of diverse

environments and a UAV’s single ability change to an inte-
grated demand on multiple performance changes or fluctua-

tions for better adaptability. Meanwhile, to overcome the
obstacles of the fixed step mode, a new idea of variable
planning step is adopted to adaptively update flight paths.

These two novel ideas are our improvements and advantages
over the existing path planning formulations in a sense that
they deal with the adaptability problem under uncertain

conditions.
This study focuses on the development of an adaptive path

planner that is able to quickly search optimal or near-optimal
flight paths for general UAVs with different performances,

including sensory capability, maneuverability, and flight veloc-
ity limit. With the introduction of the variable planning time
interval as a decision variable, a discrete solving algorithm

based on bi-level programming (BLP) is presented as an alter-
native to build a real-time adaptive path planner. The interac-
tive leader’s and follower’s objectives, defined as the angle of

deviation from a target and the distance to destination respec-
tively, are both minimized in response to the convergence guar-
antee and the optimization requirement. Through the trade-off

between the current flight state and the performance fluctua-
tions in the currently known threat environment, the planning
interval (flight time between any two waypoints) is indepen-
dently determined to adaptively make decisions about new
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control input, reference flight state (waypoint and flight direc-
tion), and trajectory segment.

2. Adaptive path planning problem

2.1. Problem statement

This section develops the adaptive path planning problem
statement for UAVs, which is formulated as a discrete-time

system and encompasses the adaptability property in the plan-
ning process. The subsequent analyses and model are one of
our technical contributions in this study.

Let sk 2 S be the UAV’s flight state at time tk, where S#Rns

is the state space with dimension ns. The UAV’s control input at
tk is indicated by uk which lies in the action spaceU with dimen-

sion nu, uk 2 U#Rnu : Moreover, the flight state indicates the
UAV’s situation and can be formulated as a tuple:

sk ¼ hwk; hk; mki ð1Þ

where wk denotes the UAV’s position at tk in the operational
space G ˝ Rx. hk is the UAV’s heading angle at tk and is de-

fined by the smallest absolute value rotating from north (posi-
tive y-axis) to the UAV’s flight direction. It is stipulated that hk
is positive by clockwise rotation, i.e., hk 2 (�p, p]. vk is the

UAV’s flight velocity at tk.
The adaptability is defined to adapt the planner to the var-

iation of a UAV’s performances with respect to sensory capa-

bility, turning ability, and maximal effective velocity. Let
ck 2 C ˝ Rnc and dk 2 C#Rnc indicate the capability input
and capability fluctuation of above three aspects at tk, respec-

tively, where ck is determined by a UAV’s design perfor-
mances, and dk is affected by flight tasks and surrounding
environments. In particular, both ck and dk are assumed to
be mutually independent from current flight state and previous

capability inputs. This paper takes the following two condi-
tions into consideration for ck and dk while calculating flight
paths in real time:

(1) Performances are invariable in one flight task (one plan-
ning process) but distinct in different flight tasks.

(2) Performances fluctuate in a single flight task.

Consequently, in specified flight tasks, the adaptive real-
time path planning for a given UAV model can be described

by the following state transition equation group of a dis-
crete-time system:

skþ1 ¼ fðsk; uk; ck; dkÞ
s0 ¼ sstart

sN ¼ starget

8><
>: ð2Þ

where N is the waypoint number, and sstart = Æws, hs, vsæ and

starget = Æwt, ht, vtæ indicate the initial and target flight states,
respectively. f: S · U · C2 fi S is the state transition function.
Under condition (1), the planner to be proposed generates

paths when ck changes in different tasks and keeps invariant
in each task, and dk = 0. Under condition (2), the planner gen-
erates paths when dk f 0 (dk is assumed to follow a random
distribution) and "k= 0, 1, . . ., N � 1, ck = ck + 1.

Besides, the adaptive real-time path planning should guar-
antee the flight path safety and meet the path optimization de-
mand. The constraints of obstacle avoidance and a UAV’s
performance must be modeled to search paths in safe opera-
tional spaces with available control inputs. To evaluate the
flight paths and optimize the length, computational cost, and

other crucial aspects, a BLP-based adaptive path planning idea
is analyzed in the next section.
2.2. Basic path planning idea using BLP

The original formulation for BLP was initially mentioned by
Bracken and McGill in 1973.29 Candler and Norton formally

put forward its definition in their research report in 1977,30

who considered a multi-level formulation in the context of
agricultural economics. From then on, hundreds of papers

have been devoted to this topic.31–35 Up to now, the BLP the-
ory has been widely used in multiple fields, like military, eco-
nomics, and operation research.36–38

In this paper, we introduce BLP into the UAV’s path

planning application for an adaptive path planner through
construction of a leader–follower decision and optimization
model. The adaptability description and the BLP-based

planner are the key novelty and another contribution of
the study.

The adaptive path generation idea using BLP is directly and

closely related to planning objectives, flight decisions regarding
flight state and control input (decision variables), and path
search constraints. Objectives at two levels are designed to
adapt to the flight path improvement by exhibiting a hierarchi-

cal characteristic and a principal–subordinate relationship,
which is also beneficial to the priority distinction between the
two levels’ functions. The leader’s objective intends to enhance

the convergence to the target and obtain a holistic feasible tra-
jectory. It has a higher priority than the follower that opti-
mizes the path in local and conversely influences the leader

through the combined decision variables. In addition, the flight
time decision in the follower realizes a variable step that can
enhance the adaptability. Different search constraints can be

easily formulized in the BLP model and guarantee the feasibil-
ity of the generated flight paths. Detailed construction of the
three components is exhibited as follows:

(1) Path planning objectives. They are defined to guarantee
both the planner’s feasibility and path optimization.
With the current state sk, a new path segment is uniquely

determined by f and the control input decision. We eval-
uate a new decision against the following two criteria: (i)
whether the flight direction at wk + 1 exactly points to

wt; and (ii) whether the distance between wk + 1 and wt

is the shortest. According to the two criteria, the objec-
tives of the leader and follower levels can be constructed
as follows (see Fig. 1):

(a) Leader’s objective: minimize the ANGLE between the
new flight direction hk + 1 and the line connecting the
new waypoint wk + 1 with the target wt. It is denoted

by gk + 1 and is defined positive if the rotation from
the line to the flight direction is clockwise.

(b) Follower’s objective: minimize the DISTANCE between

the new waypoint wk + 1 and the target wt. The DIS-

TANCE is denoted by Disk + 1.
(2) Decision variables. In order to achieve the two objec-

tives, control input is calculated to determine a new
satisfactory flight state, and then a path segment to



Fig. 1 Flight state transition based on the leader’s and follower’s

objectives.
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the new state. In this paper we consider the operational
space is two-dimensional so as to simplify the problem.
Next, we further define that uk is composed of yaw rate

and flight time: uk = [xk tk], so sk + 1 can be quickly
generated. In fact, the operational space G can easily
be extended to three-dimension if the UAV’s rolling
and pitching angles are introduced. In this case, x
and t are the decision variables of the BLP-based plan-
ner. Against the influences of ck and dk on a new flight
state decision, tk results in variable planning time inter-

vals that take into account the UAV’s performance
uncertainty and provide a flexible way for the decisions
of xk and tk in each step.

(3) Path search constraints. A feasible flight path must be
identified in the safe area of G. Let Tr denote the flight
path from ws to wt and Trk,k + 1 the path segment from
wk to wk + 1, and then Tr ¼

S
k¼0;1;...;N�1 Trk;kþ1. Let

Xfree ˝ G be the obstacle-free space, so the path search
constraint about flight path safety can be described as:
Tr ˝ Xfree. Besides, a new reference waypoint should

be determined under the UAV’s maneuverability and
sensor limits, so that the planner can achieve good per-
formances on path tracking and smoothing. The formu-

lations of Xfree(tk) (Xfree at wk), Tr, and the UAV’s
related performances are provided in Section 3. All
above conditions, denoted by Res(x, t), constitute

together the path search constraint on decision variables
in the BLP-based path planner.

To generate the control input uk and the new flight state

sk + 1, gk + 1 is firstly calculated to determine a feasible deci-
sion space for x. Then Disk + 1 is calculated with the given
decision space and constraints, as well as the changes and fluc-

tuations of ck and dk. In the end, the leader level measures all
the possible decisions and provides an optimal or near-optimal
solution to guide the UAV toward the target point. An adap-

tive decision is achieved in a sense that, by using BLP, the
changes of sensor and UAV’s performances are integrated in
the two levels’ objectives and constraints. A satisfactory solu-
tion, therefore, can always be obtained in a cooperative or

competitive manner.
Accordingly, the BLP-based adaptive path planning can be

formally described as:

min
x
jgkþ1j

min
t
jDiskþ1j

subject to Resðxk; tkÞ ð3Þ
where both the yaw rate xk 2 R and the flight time tk 2 R+ are

subject to Res(x, t) at wk, i.e., Res(xk, tk), which provides nec-
essary restrictions for path decisions of the two levels. The
above description is used and thoroughly implemented in the

subsequent section for adaptive path planner design.

3. BLP-based adaptive real-time path planner

3.1. Design of planner components

For the convenience of the adaptive path planner construction,

relevant component definitions and assumptions including
obstacles avoidance, sensory capability, maneuverability, flight
velocity and time, are given in the first instance. They are also

the important parts of the adaptability requirement and lay the
foundation for Res(x, t).

3.1.1. Obstacle description

Opposition obstacles such as radars or surface-to-air missiles
(SAMs) in G may identify or shoot down a UAV when it en-
ters the range of radiation or attack. Therefore, the obstacles

must be modeled to construct the obstacle avoidance con-
straints. The threat degree to a UAV depends on the positions
and strengths of the obstacles. We assume that the threat

sources are SAMs whose resultant risk distribution is deter-
ministically represented.

A deterministic risk model is considered based on probabi-

listic risk that has been adopted in many literatures and shown
great applicability in path planning applications.3,5,16–18,25 It
must be pointed out that the path planner to be proposed is
not restricted to the deterministic risk models. At the obstacle

description stage, our planner can be easily employed to
accommodate various stochastic events and polygonal types
of risks in different environments.

Probabilistic risk is defined to quantificationally measure
the threat degree of exposure to all the obstacles at position
w (w 2 G), and is denoted as P(w). Suppose M is the number

of SAM units in G with different hitting ranges (denoted as
R{s,m,l}), and O is the obstacle set. "Oi 2 O (i = 1, 2, . . .,
M), and its position is Li = [x y]T 2 G. Then, when a UAV
reaches w, P(w) can be calculated by the following hit proba-

bility formula5:

PðwÞ ¼ 1�
YM
i¼1

PiðwÞ ð4Þ

where Pi(w) is the probabilistic risk of exposure to Oi at w, and
is described in Appendix A.

In the real-time path planning process, the number of de-
tected obstacles at w does not exceed M because of the UAV’s
limited sensory ability. Let O(w) be the detected obstacle set

and M(w) the detected obstacle number, the UAV has to eval-
uate its real-time probabilistic risk at w (denoted as PR(w))
only according to O(w). In this case, PR(w) 6 P(w). PR(w)
can be calculated by:

PRðwÞ ¼ 1�
YMðwÞ
i¼1

PiðwÞ ð5Þ

In order to guarantee the UAV’s flight safety, the probabilistic
risk threshold (denoted as q) is defined to indicate the minimal

real-time probabilistic risk that the UAV can steer clear of the
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hitting ranges of the detected obstacles. When the UAV

reaches wk, the obstacle-free space is:

XfreeðtkÞ ¼ fwjPRðwÞ < qg ð6Þ

The safety condition in a real-time planning mode can be de-

scribed as:

8wk; k 2 ½0;N� : wk 2 XfreeðtkÞ ð7Þ

and

8Trk;kþ1; k 2 ½0;N� 1� : Trk;kþ1 #XfreeðtkÞ ð8Þ
3.1.2. UAV’s performances

Three related UAV’s performances are systematically de-

scribed to prepare for the path planner’s hard constraint com-
ponents in the path search process as follows.

3.1.2.1. Sensory capability. A UAV must detect the surround-

ing environment in real time during the flight toward a speci-
fied target. The UAV’s sensory capability for obstacle
detection directly affects the path planning result, and the suc-

cess probability of the flight mission as well.
Consequently, the UAV’s sensory capability should be

incorporated in the path planner with initially unknown obsta-

cles. We describe it by detection range, without regard to the
dynamic variation of the airborne radar cross-section caused
by the UAV’s changing altitude angle. The detection range

(denoted by Dw) indicates a constant and finite detectable area
where the UAV’s current position w is the center:

Dw ¼ fw0jjjw0 � wjj 6 Rd;w
0 2 Gg ð9Þ

where Rd (Rd > 0) is the circle radius (i.e., sensory radius).
Rd may change if either the environmental impact or the di-

verse detection equipment is taken into consideration. It is as-
sumed that Rd keeps constant in one flight mission and may

alter in another. As shown in Fig. 2, it is also assumed that
Rd is so large that the UAV can detect the obstacles before fly-
ing into their hitting ranges, i.e., " w 2 G and PR(w) < q, and
Rd satisfies:

Rd > jjw� Lijj ði ¼ 1; 2; . . . ;MÞ ð10Þ

The above assumptions are necessary and reasonable. As
shown in Fig. 2(a), the UAV enters the dangerous region (gray
filled region) due to the obstacle’s great strength and the

UAV’s limited detection range (dotted circles). Conversely,
the dangerous region can be successfully avoided, as shown
in Fig. 2(b).

3.1.2.2. Turning ability. A generated feasible path must be
trackable for a UAV within its maneuverability limit. Let xmax
Fig. 2 Distinct processes of detection and flight based
(xmax > 0) be the maximal change value of the heading angle
per unit time, and then the yaw rate x satisfies:

x 2 ½�xmax;xmax� ð11Þ

It is assumed that x > 0 if the heading angle changes clock-

wise, and x = 0 if it keeps unchanged. The turning ability
should be incorporated in the path planner considering the
path trackability. As shown in Fig. 3(a), three different flight

paths starting from the UAV’s current position w0 are gener-
ated and indicated by Tr0, i(i = 1, 2, 3). If the limit on x is ig-
nored, it is reasonable that Tr0, 2 or Tr0, 3 would be chosen as a

reference trajectory, given the shortest distance to the target
point or the proper flight direction at the point. However,
the UAV with limited maneuverability would fail to proceed

in practice, as shown in Fig. 3(b). The feasible maneuver range
(gray filled region, denoted as Ak) restricts the decision space,
so that only Tr0, 1 could be chosen.

Furthermore, the variation of xmax in diverse flights should

also be handled in the path planner to strengthen its adaptabil-
ity to maneuverability changes. For example, with possible
weather deterioration in a long-distance flight mission, the

turning ability may degrade due to unanticipated wind vectors
and ice accumulation on pitot tubes or aerofoil.2,19,41,42 The
requirement of setting up sensitive loads or security-critical

equipment would demand smooth trajectories all along.1,25

As a result, the hard constraints in regard to turning ability
and new reference waypoint decision-making can be described
as follows:

wkþ1 2 Aðwk;xmaxÞ ð12Þ

where A(wk, xmax) (abbreviated as Ak, see Fig. 3(b)) indicates
the UAV’s feasible maneuver range at wk. With Eq. (11), the
turning ability constraint can be further denoted as:

wkþ1 2 Ak ¼ wjw ¼ wk þ
2vk
jxj sin

jxtkj
2

� �
sin hk þ

jxtkj
2

� �
;

��

� 2vk
jxj sin

jxtkj
2

� �
cos hk þ

jxtkj
2

� ��T)
ð13Þ
3.1.2.3. Flight velocity and flight time. Let vmin and vmax denote
a UAV’s minimal and maximal flight velocities in the path

planning process, then:

8vk; k 2 ½0;N� : vmin 6 vk 6 vmax ð14Þ

Because in the real-time process the UAV (at wk) is unable to
identify obstacles outside the detection range, the waypoint

wk + 1 to be determined should stay within Dw to ensure the
safety of the planned path. According to Eq. (9), it is known
that the distance between wk and wk + 1 is shorter than Rd.
Let t be the flight time between wk and wk + 1, and then t is
on different sensory capabilities and hitting ranges.
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a decision variable for path optimization in the planner, which
satisfies:

t 2 ½0;Rd=v� ð15Þ

where v 2 [vmin, vmax], and v tends to take the maximal value in
the flight process.

Although it is feasible for the planner to limit the flight

velocity below vmax, the planner tends to make the UAV re-
main at the maximal velocity and subject to Eq. (13), so that
it can reach the target as soon as possible. On the basis of a

given velocity, the changed value of the heading angle after t
should be smaller than 2p to prevent the UAV from flying
back to the current waypoint. Then, the flight time from wk

to wk + 1 must satisfy the following constraint:

xt 2 ð�2p;2pÞ ð16Þ

Noting that if xmaxRd/v < 2p (caused by the relatively low
sensory and turning abilities), xt inevitably satisfies the con-
straint in Eq. (16), so the actual value range of xt is:

xt 2 ½�xmaxRd=v;xmaxRd=v� ð17Þ
3.2. Path planner structure

According to the design components based on obstacle avoid-
ance and relevant performance constraints, a BLP-based adap-
tive and real-time path planner is constructed, as illustrated in

Fig. 4.
Fig. 4 BLP-based adaptive
Both the UAV’s start and target states are imported at the
start of the flight mission. The BLP-based path search is the
key module of the planner that makes real-time decisions for

it. The operational space, including the UAV model, obstacles,
and its detection module, is integrated into the planner to form
a closed-loop runtime environment.

In the BLP-based real-time path search module, objectives

are used to calculate the new flight state sk + 1 and path seg-
ment Trk, k + 1 subject to the constraints of Res(xk, tk) at tk
and capability fluctuation dk. The objective function defini-

tions and operational principle have been demonstrated in Sec-
tion 2. Res(xk, tk) is composed of four types of restrictions,
with respect to obstacle avoidance, sensory capability, maneu-

verability, flight velocity and time, which have also been given
in Section 3.1. uk is the decision result in the kth planning step
and further determines how the UAV flies toward the target

from the current flight state.
In particular, ck is embedded in Res(xk, tk), where it is

invariable in the planning process for one flight mission. dk
is provided as a flight time function, and the uncertainty

caused by it is addressed by the two levels’ repetitive decision
scheme. When making a new decision, the leader level opti-
mizes the global convergence of the generated path, whereas

the follower level enhances the local trend of approaching
the target. The tradeoff decision between the two levels elimi-
nates the uncertainty in a sense that the influence of dk on one

state is dispersed into the whole planning procedure. Besides,
variable flight time (planning time interval) between two refer-
ence waypoints is conducive to the performance changes or
real-time path planner.



Fig. 5 BLP solution procedure for trajectory search.
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fluctuations, thanks to its adaptive value-taking as the fol-
lower’s decision item.

For each decision and segmented trajectory, the planner

estimates whether the new waypoint is close enough to the tar-
get point. If the UAV has not arrived at the target, a new iter-
ation would be required; otherwise, the planner accomplishes

its mission. A complete flight path is composed of necessary
reference waypoints and flight directions at variable time
intervals.

4. Path search solution

This section presents a highly effective discrete trajectory

search algorithm for the aforementioned BLP-based path
planner, in which several supplementary strategies are further
developed and embedded to reduce the flight path decision

space and then alleviate the computational burden.

4.1. Discrete search algorithm

The path planning problem has been analyzed and considered

as PSPACE in the presence of obstacles,9 where the computa-
tion of an exact solution is shown to be NP-hard.39 Addition-
ally, the BLP problems are intrinsically hard to solve, even the

‘‘simplest instance’’ of a linear BLP problem is strongly NP-
hard.40 In this case, most existing solution algorithms are not
applicable to the proposed planner. However, those observa-

tional characteristics of the path planning process can provide
valuable references for a novel solution algorithm of the
planner.

On one hand, the calculation at the planner’s each step is

based on both the state transition equation of a discrete-time
system and the two levels’ objectives and constraints. We can
further discretize the decision variables in their feasible sets

(flight state and control input sets), so that the nonlinear con-
tinuous decision problem can be transformed into a discrete
linear BLP-based decision problem.33 Although the later leads

to near-optimal solutions, it is relatively more tractable and
insensitive to conversion error and discrete precision. On the
other hand, the follower’s decision-making can be appropri-

ately simplified to reduce the inducible region. The goal of
the planner is to timely provide a satisfactory decision favor-
able to both global and local path improvement. The reduced
inducible region is still effective on the path optimization in

global, because a temporary local decision of the follower level
exerts little influence on the whole flight path with many flight
states and control signals. Besides the above major factors, the

implicit constraints on decision variables, derived from the
indirect relationship between the UAV’s diverse performances,
are also worthy of full consideration in the search procedure.

They induce further strategies to be presented in Section 4.2.
As a result, a near-optimal discrete trajectory search algo-

rithm for the planner, based on BLP optimal solution defini-

tion36,37 and flight process particularity, is summarized in
Fig. 5:

Step 1 Initialize the path planner: input the UAV’s start and

target flight states into the planner. Initialize k= 0
and update Xfree(tk) for the first time. Define IR as
the inducible region of BLP and initialize it to an

empty set. Based on Res(x, t), discretize the leader’s
and follower’s decision variables as strictly mono-
tonic increasing nonempty bounded sequences (xi)

and (tj), respectively.
Step 2 Give the problem’s allowable decision set: "xi, tj,

and (xi, tj) 2 Res(xk, tk), give the allowable decision
set X which includes all the possible solutions in the

problem’s decision space.
Step 3 Solve the follower’s feasible set: For each element in

(xi), ascendingly search all the elements in (tj) and

determine the follower’s feasible set X(xi) for each
xi.

Step 4 Construct the follower’s rational reaction set: For

each element in (xi), the follower’s rational reaction
set Rk(xi) comprises the follower’s feasible decisions
that also belong to arg min |gk + 1|. The decision

(xi, tj) is rendered rational if xi meets Res(xk, tk)
and tj 2 Rk(xi).

Step 5 Solve the follower’s optimal solution: Based on
Rk(xi) and the follower’s decision objective, the fol-

lower’s optimal solution is denoted by tmin =
min{tj: tj 2 Rk(xi), (xi, tj) 2 X}.

Step 6 Update the inducible region: With tmin, ascendingly

search (xi) again. For each element in (xi), calculate
the leader’s objective function and determine
whether (xi, tmin) satisfies Res(xk, tk). If (xi,

tmin) 2 Res(xk, tk), add it to IR and keep on
searching.

Step 7 Get the optimal decision: ascendingly search IR to

get the solution (control input) of the kth path
search step to minimize |gk + 1|. Then, construct a
new flight state sk + 1 and flight path Trk, k + 1.
Update the threat environment Xfree(tk) and

k = k+ 1.

4.2. Optimization strategies

In the BLP-based path search process, traversals of various
discrete sets are frequently performed. To reduce the search

space in discrete sets and speed up the solution, the following
optimization strategies are embedded.

(1) Division and accelerating strategy. When discretizing

the leader’s decision variable in Step 1, the discrete
sequences (xi) can be divided into two subsequences:
define N1=[�xmax,0], N2=[0,xmax], and then con-

straints in Eqs. (7) and (12) can be denoted by
x 2 N1[N2. Discretize N1 and N2 as two nonempty finite



Adaptive path planning for unmanned aerial vehicles based on bi-level programming and variable planning time interval 653
subsequences of (xi)1 (which is strictly monotone

increasing) and (xi)2 (which is strictly monotone
decreasing), respectively. Based on the above division,
the traversal of (xi) in Steps 3 and 4 can be divided into

two parts: the traversal of (xi)1 indicating a counter-
clockwise search process for a yaw rate within Ak from
x = 0; and the traversal of (xi)2 indicating a clockwise
search process for a yaw rate within Ak from x = 0.

Once a satisfactory decision of the leader level is
obtained in any traversal, the other will be immediately
abandoned.

(2) Dynamic termination strategy. The traversal of (xi)
can also be divided and performed like (1) in order
to efficiently construct the inducible region in Step 6.

The search in (xi)1 will be immediately terminated
on condition that: (i) if gk 6 0 and gnext 6 0 (as illus-
trated in Fig. 6(a)), where gnext is the ANGLE between
the target and any point wnext within Ak; or (ii) if

�p < gk < p and the length of IR is not zero, the
search will be terminated once the value of |gnext|
increases, i.e., |g0next(xi, tmin)|> |gnext(xi, tmin), as illus-

trated in Fig. 6(b). Similarly, the search in (xi)2 will
be terminated immediately on condition that: (i) if
gk P 0 and gnext P 0, as illustrated in Fig. 6(c); or

(ii) if �p < gk < p and the length of IR is not zero,
the search will be terminated once the
value of |gnext| (where t = tmin) increases, as seen in

Fig. 6(d).
(3) Interruption strategy. In Step 6, whether the elements in

(xi)1 and (xi)2 satisfy both Ak and obstacle avoidance
constraints should be determined by a new traversal of

(ti). According to the variation law of gk + 1 with t,
the search process in (ti) can be interrupted under some
special conditions of counterclockwise and clockwise

search state changes. Let 0, –p, and p denote
gk + 1 = 0, gk + 1 = �p, and gk + 1 = p, respectively.
Let � and + denote the gk + 1 value ranges of

�p < gk + 1 < 0 and 0 < gk + 1 < p, respectively. We
then give the potential interruption conditions:
Fig. 6 Termination con
(a) In a counterclockwise search, for each element in

(xi)1, the changing trend of gk + 1 can be classified
into four types with a strictly monotone increase
of t: (i) if �p < gk < 0, the change of gk + 1 is:

�fi �p fi +; (ii) if gk = 0, the change is: 0 fi
� fi �p fi +; (iii) if 0 < gk < p, the change
is:+ fi 0 fi �fi �p fi +; (iv) if gk = p, the
change is: �p fi �fi 0. Under the circum-

stances of (i), (ii), and (iii), the search should
be interrupted if gk + 1 = �p, because |gk + 1|
takes the maximum value in its feasible range;

When (iv) takes place, the search should be inter-
rupted if gk + 1 = 0, because |gk + 1| takes the
minimum value in its feasible range.

(b) Likewise, in a clockwise search, for each element
in (xi)2, the changing trend of gk + 1 can also be
classified into four types with a strictly monotone
increase of t: (i) if 0 < gk < p, the change of

gk + 1 is:+ fi p fi �; (ii) if gk = 0, the change
is: 0 fi + fi p fi �; (iii) if �p < gk < 0, the
change is: �fi 0 fi + fi p fi �; (iv) if gk = �p,
the change is: p fi + fi 0. Under the circum-
stances of (i), (ii), and (iii), the search should be
interrupted if gk + 1 = p, because |gk + 1| takes

the maximum value in its feasible range; When
(iv) takes place, the search should be interrupted
if gk + 1 = 0, because |gk + 1| drops to the mini-

mum from the maximum value in its feasible
range.

(c) Safety improvement strategy. It is worth noting
that the continuous variable discretization preci-

sion influences path safety. Low precision may
result in a problem that the probability risk is
smaller than q at a certain discrete point, but

larger than q at those sampling points, on the line
connecting two discrete points. That is to say,
there is no guarantee that the continuous path

does not intersect with the obstacles. Therefore,
we present a reduction coefficient (denoted as u,
ditions.
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0 < u 6 1) of the probabilistic risk threshold to

address this problem. In the solving process, q will
change into uq to improve the success probability
of obstacle avoidance.
Fig. 8 Generated flight path in a highly complex scenario

including a double bug trap.
5. Simulation results

In order to validate the feasibility and adaptability of the BLP-

based real-time path planner for UAVs, numerical simulations
are carried out in a great number of random scenarios and sev-
eral representative scenarios used in many motion planning lit-
eratures.3,16–18 Comparisons are also drawn between our

planner and other classical methods10,14,16,18 to highlight the
advantages of ours in optimization and adaptability. All simu-
lations are performed on a Microsoft visual studio platform

using a 3.4 GHz CPU.

5.1. Feasibility validation

Two representative scenarios including many different
SAMs16–18 (denoted as SA and SB) are adopted to evaluate
the effectiveness and efficiency of the proposed planner. The

values of start position, target position, initial flight velocity,
and initial heading angle are taken as ws=[20 20] km,
wt = [180 180] km, vs = 50 m/s, and hs = p/4 (pointing to
the target), respectively. Other parameters are given in Table 1.

The generated flight paths are shown in Fig. 7. We can see
that the proposed planner generates convergent and feasible
flight paths without many unnecessary twists and turns. In

SA and SB, the path lengths are 252.5 km and 321.5 km, and
the peak risks of exposure to all obstacles (max P(w)) are
0.0948 and 0.0919, respectively, which means the UAV is able

to be kept safe in the whole flight processes. Besides, the plan-
ner calculates control inputs and flight states only 17 and 25
times in the very large operational spaces of SA and SB. Even
in a highly complex scenario16 shown in Fig. 8, the planner can

escape from a double bug trap and generate an optimal flight
path.
. 7 Generated flight paths in representative scenarios.

Fig. 9 Real-time path planning process in SB.
e 1 Parameters of the proposed path planner.

meter xmax(rad/s) Rd(km) q u vmin(km/s) vmax(km/s)

e p/60 40 0.1 0.9 0.01 0.05

The planning process in SB with two big traps is shown in

Fig. 9. In Fig. 9(a), the UAV fails to detect the distant obsta-

cles in the fifth step, so the planned path is directed toward the
target without regard to unknown obstacles. In Fig. 9(b), more
obstacles are detected and the planned path keeps away from a

trap. After that, all the obstacles in the surrounding area are
detected, as shown in Fig. 9(c) and (d), and the subsequent
path steers clear of obstacles all along. The adaptive deci-

sion-making frequency guarantees both the safety and optimi-
zation of the path.

To further test our planner’s adaptability to diverse com-
plex threat environments, 100 scenarios are randomly gener-

ated. Each scenario incorporates eight SAMs deployed
within a very large operational space G= [0, 200] km · [0,
200] km. The center positions and hitting ranges of the SAMs

are subjected to a uniform distribution. For the sake of a con-
sistent evaluation standard, the corresponding parameters take



Fig. 10 Path planning results in 100 stochastic scenarios.

Fig. 11 Generated paths with different sensory capabilities.
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the same values as in the aforementioned simulations in
Section 5.1.
Table 2 Planning results with different values of Rd.

Rd (km) Path length (km) Peak risk Waypoi

30 251.5 0.0989 23

40 252.5 0.0948 17

50 247.8 0.0877 13

60 248.3 0.0847 12

70 252.5 0.0817 11

80 255.4 0.0839 9

90 252.4 0.0816 9

100 262.1 0.0736 8

200 263.7 0.0734 5
The statistical results in regard to path length, peak risk, to-
tal number of reference waypoints, and computational time of
making a decision (calculate a new control input and flight

state), are shown in Fig. 10. In all scenarios, our planner can
provide convergent and safe paths with short flight distances
and a small quantity of reference waypoints (the average

length and waypoint number are 244.9 km and 16, respec-
tively). Considering the variable flight time between any two
waypoints (belong to [13, 320] s), the maximal and average

computational time to make a decision are only 9.59 ms and
4.25 ms among scenarios, which completely meet the real-time
planning requirement (the ranges of the maximal and average
computational time are [1.14, 9.59] ms and [0.34, 4.25] ms,

respectively).

5.2. Adaptability to performance variations

The challenging scenario SA, with a large dangerous region
and two independent obstacles between the start position
and the target, is suitable to test the adaptability when the

UAV’s related performance constraints change or fluctuate.

5.2.1. Different sensory capabilities

With the UAV’s increasing sensory capability, the obtained

information in a certain location also increases. In particular,
if G ˝ Dw, the real-time path planning problem will be trans-
lated into a static one due to the completely known threat envi-

ronments. When Rd changes from 30 km to 200 km, the
generated flight paths are illustrated in Fig. 11. All paths are
safe and smooth whether Rd is strictly limited or not (when

Rd = 200 km, G ˝ Dw).
Quantitative results are given in Table 2. The total number

of reference waypoints decreases significantly because a larger
Rd leads to fewer planning executions. Similarly, with more

obtained information, the path safety is obviously improved
through more rational obstacle avoidance and a little longer
flight distance. Besides, the relatively stable and short compu-

tational time to make a decision decreases the overall compu-
tational burden.

5.2.2. Different turning abilities

When xmax changes from p/30 to p/1080 rad/s, the feasible
maneuver range Ak and the corresponding planning results
are illustrated in Figs. 12 and 13, respectively. The gray filled

regions indicate Ak with representative values when the UAV
is at wk. Despite the sharp distinction, the impact of different
turning abilities on the generated flight paths is insignificant.
nt number Maximal time (ms) Average time (ms)

7.07 2.27

7.11 2.59

7.04 2.73

8.29 4.23

5.82 3.87

6.02 3.79

7.12 4.49

6.51 3.92

4.19 3.30



Fig. 12 Feasible maneuver ranges with different turning abilities

(gray filled region).

Fig. 13 Generated paths with different turning capabilities.

Fig. 14 Generated paths with different velocity constraints.
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Quantitative results are given in Table 3. All the evaluation
items remain stable as the turning ability decreases to a great

degree. Their standard deviations are 12.1 km, 0.0031,
Table 3 Planning results with different values of xmax.

xmax (rad/s) Path length (km) Peak risk Wayp

p/30 254.1 0.0964 17

p/60 252.5 0.0948 17

p/120 250.6 0.0925 18

p/240 251.5 0.0934 17

p/480 254.1 0.0933 16

p/720 258.4 0.0938 16

p/1000 254.0 0.0937 16

p/1080 264.7 0.0938 16
10.8 ms (maximal time), and 3.41 ms (average time), respec-
tively, which means that the planner can adapt all the real-time
decisions to the UAV’s maneuverability variations and timely

provide optimal flight paths without remarkable differences.

5.2.3. Different velocity constraints

When vmax changes from 10 m/s to 600 m/s, the generated

flight paths are illustrated in Fig. 14. If the velocity is limited
within a small range (v = 10 m/s), the UAV is more agile with
the same maneuverability and sensory capability, so that the

decision space is larger and the planned path may include
many minor zigzags, as shown in Fig. 14(a). Except for that,
the planned paths are all smooth, as shown in Fig. 14(b)–(d).

Quantitative results are given in Table 4. When
vmax < 50 m/s, the flight distances are a little longer, but the
paths are safer due to a larger decision space of the planner.
The planner adapts the flight velocity to the velocity con-

straints and timely plans flight paths with stable quality and
average computational time.

5.2.4. Performance fluctuation

Considering the influence of the random disturbances on Rd,
xmax, and vmax at the kth stage of a planning process, dk is
superimposed on the corresponding properties to test the plan-

ner’s adaptability. For each component of dk, the path plan-
ning is independently carried out 100 times. Typical flight
oint number Maximal time (ms) Average time (ms)

3.15 1.21

7.11 2.59

11.48 3.94

9.41 4.16

13.29 3.91

10.95 4.10

16.85 5.35

9.32 4.71



Fig. 15 Generated paths with performances fluctuation.

Table 4 Planning results with different values of vmax.

vmax (m/s) Path length (km) Peak risk Waypoint number Maximal time (ms) Average time (ms)

10 267.9 0.0817 19 2.45 1.26

20 255.3 0.0898 17 4.04 1.59

50 252.5 0.0948 17 7.11 2.59

100 250.6 0.0925 18 10.85 3.67

200 251.0 0.0933 16 7.67 3.49

340 253.9 0.0943 15 10.93 2.77

400 254.5 0.0941 15 11.50 2.88

500 251.4 0.0941 16 7.60 2.41

600 252.6 0.0936 16 8.27 1.74
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paths with the introduction of dk are exhibited in Fig. 15(a)–
(c), where the performance fluctuation ranges of Rd, xmax,

and vmax are [40,100] km, [p/1200, p/30] rad/s and [50, 100]
m/s, respectively. The path synthetically affected by all the
three fluctuations is exhibited in Fig. 15(d), where the grayed

regions denote the real-time detected areas. We can see that
satisfactory paths are all successfully generated, whether the
three violent disturbances impact the planner independently

or jointly.
Furthermore, the means and standard deviations of the 100

results, with regard to path length, peak risk, total number of
reference waypoints, and computational time to make a deci-

sion, are shown in Table 5. Based on the small values of the
standard deviations, we know that the planner can be
Table 5 Planning results with dk.

Fluctuation item Path length (km) Peak risk W

Rd fluctuation 253.5/4.1 0.0842/0.0069 1

xmax fluctuation 252.7/3.80 0.0927/0.0007 1

vmax fluctuation 249.9/13.2 0.0928/0.0029 1

Integrated fluctuation 256.8/14.9 0.0875/0.0018 1

Note: �/� corresponds to means/standard deviations.
adaptively adjusted to the disturbances and fluctuations that
exist in Rd, xmax, and vmax, and then provide optimal flight
paths with a stable operational performance.

5.3. Comparison analysis

We compare the simulation results obtained from our planner

with those from two classical methods of a RRT-based algo-
rithm4,10 and a Dijkstra-based PRM algorithm,14 and two no-
vel methods of a bouncing based A2d algorithm16 and a

(compositional rule of inference (CRI)) based algorithm.18

Quantificational results of the five key measurements in typical
scenarios are listed in Table 6, and the generated paths are

shown in Fig. 7 and Fig. 16. All the parameters take the same
values as in the simulations in Section 5.1, and Rd = 40 km. In
particular, considering the stochastic ideas of RRT and PRM,
their results are the average values of 1000 implements.

It is manifest that the path obtained from our planner is
shorter and smoother than those from others, and our planner
generates only 25 and 17 references waypoints, making the

planning results more applicable for realistic flight tasks. De-
spite the computational time is longer than RRT, A2d, and
CRI (whereas much shorter than PRM), the BLP can still

timely provide decisions whenever needed. Moreover, the peak
risks of the paths from CRI exceed q a little due to ignorance
of the hard constraint of safety, whereas our planner can fully
describe it through the BLP constraints and provide a lower

threat degree (0.0919 and 0.0948) in the whole flight. Although
the path quality obtained from PRM is superior in length (SA)
and peak risk (SB), the enormously long computational time

(caused by its two-phase planning idea) makes the method
practically infeasible in real-time missions.

Additional comparisons are drawn in the representative

scenario SA to verify better adaptability of our planner than
the other four methods, as shown in Fig. 17. If some of the
UAV’s performances change to their critical values, such as

Rd < 40 km, xmax < p/300 rad/s, and v > 150 m/s, the BLP-
based planner is always capable of generating feasible or
aypoint number Maximal time (ms) Average time (ms)

2/1 8.53/1.30 4.11/0.62

7/1 8.44/1.99 2.75/0.41

7/1 7.55/0.66 2.94/0.25

1/1 11.99/3.15 5.10/0.86



Table 6 Planning results from five different methods.

Scenario Method Path length (km) Peak risk Waypoint number Maximal time (ms) Total time (ms)

SA BLP 321.5 0.0919 25 11.55 133.54

RRT 540.8 0.0992 135 9.80 264.99

PRM 265.5 0.0926 36 575.44 10004.40

A2d 2312.1 0.0964 1974 3.31 102.46

CRI 328.0 0.1016 329 0.27 22.96

SB BLP 252.5 0.0948 17 14.58 85.42

RRT 355.9 0.0989 89 14.34 220.67

PRM 302.7 0.0631 40 76.73 1634.67

A2d 258.3 0.0984 249 1.08 39.46

CRI 257.0 0.0982 258 0.26 21.64

Fig. 16 Generated paths from four methods in SB.

Fig. 17 Generated paths from four different methods.
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near-optimal paths, as shown in Fig. 11 and Figs. 13–15. How-
ever, the unpractical paths from RRT and CRI traverse dan-

gerous regions because of the UAV’s high speed and poor
detection, which means failure to arrive at the target, as shown
in Fig. 17(a) and (d). The A2d algorithm has great effects with

limited sensors, but under the integrated preference constraints
of Rd, xmax, and v, it can only generate a path containing a seg-
ment of dangerous trajectory TrA,B (the peak risk is 0.1079), as
shown in Fig. 17(c). When the value of Rd is especially small

(Rd = 20 km/s), PRM has to frequently re-plan new paths
(six times and 5.90 s in Fig. 17(b)) to avoid newly detected
obstacles, which drastically increases the time burden and fur-

ther limit the method’s real-time implementation when the
flight velocity v is very high (v > 300 m/s). In conclusion, the
BLP-based planner shows better adaptability in most evalua-

tions of the real-time path planning when the performances
change or fluctuate.

Except the path optimization and adaptability advantages
of the planner, there are two deficiencies in real-time applica-

tions. On one hand, the computational complexity is higher
than those based on sampling or bouncing algorithms, so the
computational time to get a reference waypoint and control in-

put is relatively long. Even so, the extremely low ratios of com-
putational time to planning intervals (available flight time
between two waypoints) can guarantee real-time flights in

practice. On the other hand, the convergence or completion
of the BLP model is hard to be theoretically guaranteed due
to the intrinsically NP-hard property and the possible sensory

capability degradation. One feasible improvement is introduc-
ing the technique of model predictive control (MPC)12 into the
BLP-based path search process. As a result, it is able to predict
future behaviors of the UAV and help to generate a holistic

trajectory to the goal in each planning step.

6. Conclusions and future work

This paper puts forward an initial thought in regard to a BLP-
based planner for UAVs’ adaptive real-time path planning. We
anticipate in-depth research on it in the future. The main con-

tributions of the study are listed below:

(1) Adaptability description of path planning. Considering

the changes or fluctuations of a UAV’s performances in
different flight missions or at different stages of amission,
the adaptability plays a crucial part in real-time path plan-

ning. We introduce its description in the proposed plan-
ner to meet more planning requirements in practice.
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(2) BLP-based real-time path planner. A novel path plan-

ning idea based on BLP is adopted in the adaptive plan-
ner to generate reference waypoints and control inputs
at variable planning time intervals. It can address the

performance variations and adaptively plan smooth
flight paths only when necessary.

(3) Discrete flight path search algorithm for the BLP-based
planner. The characteristics of BLP and path planning

procedure are both considered in the planner’s imple-
mentation process, so as to construct a feasible and effi-
cient discrete search algorithm for the adaptive planner.

Some directions are possible for further works. An immedi-
ate work will be dedicated to the motion planning problem in

three-dimensional operational space by introducing MPC and
new variables, such as flight height, pitch angle, and rolling an-
gle. Another valuable research is to address more uncertainties
caused by airborne equipment or external disturbances, and

adaptively plan optimal flight paths in dynamic and uncertain
environments (DUEs).
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Fig. A1 Probability risk (hit probability) distributions.
Appendix A. Obstacle model

The probability risk based obstacle model is defined to de-
scribe a SAM threat distribution (hit probability distribu-
tion).5 The risk of exposure to the ith SAM at w is
calculated based on the following formula:

PiðwÞ ¼ ½1� Stepðdi;Rfs;m;lg; k1Þ� � Stepðdi; 0:1

� Rfs;m;lg; k2Þ � Step arcsin
h

di
; c; k3

� �
ðA1Þ

where the function Step(a, a0, k) is defined by:

Stepða; a0; kÞ ¼
1

2
1þ a� a0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ ða� a0Þ2
q

0
B@

1
CA ðA2Þ

and, i is the SAM index, di = iw � Lii the ground distance be-
tween w and the ith SAM, ki (i = 1,2,3) the softness parame-
ters of the function Step(a, a0, k), h the flight altitude of the

UAV, c the lowest coverage angle of the airborne radar (as-
sumed to be 0.17 rad), and R{s,m,l} the hitting range. The prob-
ability risk distribution of a single SAM taking the R{s,m,l}

values of short (7 km), medium (25 km), and long (65 km) are
illustrated in Fig. A1.
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