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In this paper, by developing an approximation approach which is originally due
to Tuleca in 1986, we prove the existence of equilibria for generalized games in
which constraint mappings (correspondences) are lower (resp., upper) semicontinu-
ous instead of having lower (resp., upper) open sections or open graphs in infinite
dimensional topological spaces. Then, existence theorems of solutions for quasi-
variational inequalities and non-compact generalized quasi-variational inequalities
are also established. Finally, existence theorems of constrained games with non-
compact strategy sets are derived. Our results unify and generalize many well
known results given in the existing literature. In particular, we answer the question
raised by Yannelis and Prabhakar in 1983 in the affirmative under more weaker
conditions. © 1997 Academic Press

1. INTRODUCTION

In the last three decades, the classical Arrow—Debreu existence theorem
of Walrasian equilibria [2] has been generalized in many directions. In the
finite dimensional spaces, Gale and Mas-Colell [20] proved the existence
of a competitive equilibrium without the assumptions of total or transitive
preference mappings (correspondences). Shafer and Sonnenschein [36]
gave results in the same direction and they proved the Arrow—Debreu
Lemma for abstract economies for the case where preference correspon-
dences may not be total or transitive. For infinite dimensional strategy
spaces and finite or infinite many agents, the existence results of equilibria
of generalized games were given by Aubin [3], Aubin and Ekeland [4],
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Bewley [7], Border [8], Flam [17], Florenzano [18], Aliprantis and Brown
[1], Yannelis and Prabhakar [47], Khan and Vohra [24], Toussaint [43],
Tulcea [44, 45], Khan and Papageorgiou [25], Yannelis [46], Kim and
Richter [27], Kim et al. [28], Tarafdar and Mehta [40], Chang [9], Tian [41],
Ding and Tan [13], Ding et al. [14], and others. Most existence theorems
mentioned above, however, are obtained by assuming that the constraint
and preference correspondences have open graphs or have open lower
(resp., upper) open sections. Besides this, strategy sets in most of those
models are assumed to be compact in topological vector spaces. These are
restricted assumptions since it is well known that if a correspondence has
an open graph, then it has open upper and lower sections and thus the
correspondences with open lower sections are lower semicontinuous. How-
ever, a continuous correspondence does not hold open lower (or upper)
section properties in general; and we also know that in the infinite settings,
the set of feasible allocations generally is not compact in any topology of
the commodity spaces. The motivations for economists continually to be
interested in setting forth conditions for the existence of equilibria come
from the importance of generalized games (also called abstract economies)
in the study of markets and other general games and from the restrictions
of the existence theorems.

In this paper, by developing an approximate method which was first used
by Tulcea [44, 45] and Chang [9], we give existence theorems of equilibria
for generalized games in which constraint correspondences are lower
(resp., upper) semicontinuous instead of having lower (resp., upper) open
sections or open graphs in infinite dimensional locally convex topological
vector spaces. Also, in our framework, strategy spaces may be infinitely
dimensional and non-compact, the number of agents may be uncountable
infinite, and preference correspondences may be nontotal-nontransitive
and may not have open lower (resp., upper) section properties. Thus, our
results unify and generalize many of the existence theorems, on equilibria
of generalized games by relaxing the compactness of strategy spaces and
continuity of constraint and preference mappings (correspondences). In
particular, we answer the question raised by Yannelis and Prabhakar [47,
p. 243] in the affirmative. As a consequence of equilibria of generalized
games, the Fan and Glicksberg fixed point theorem is derived. Then, by
existence theorems of generalized games with lower (resp., upper) semi-
continuous constraint correspondence, existence theorems of solutions for
non-compact quasi-variational inequalities and non-compact generalized
guasi-variational inequalities are also given in locally convex topological
vector space. Finally, with applications of quasi-variational inequalities,
existence theorems of non-compact constrained games are established.
Our results unify and generalize corresponding results due to Aubin [3],



EQUILIBRIA AND VARIATIONAL INEQUALITIES 637

Aubin and Ekeland [4], Chang [9], Borglin and Keiding [6], Ding and Tan
[13], Shafer and Sonnenschein [36], Toussaint [43], Tulcea [44, 45],
Yannelis [46], Yannelis and Prabhakar [47], Shih and Tan [38], and others.

This paper is organized as follows. Notations and definitions are given in
Section 1. In Section 2, one maximal element theorem is proved and the
approximation theorem for upper semicontinuous correspondences of
Tulcea [45, p. 288] is recalled. They are the auxiliary results which will be
needed in Section 3. The main results of this paper are given in Section 3.
That is, we describe briefly an approximation approach to prove the
existence of equilibria for generalized games in which constraint mappings
(correspondences) are lower (resp., upper) semicontinuous instead of hav-
ing lower (resp., upper) open sections or open graphs in infinite dimen-
sional topological spaces. Also, in our framework, strategy spaces may be
infinite dimensional and non-compact, the number of agents may be
uncountable infinite, and preference correspondences may be nontotal-
nontransitive. With applications of existence theorems of generalized
games in Section 4, non-compact quasi-variational inequalities and non-
compact generalized quasi-variational inequalities are established in Sec-
tion 5. Finally, one existence theorem of non-compact constrained games
is proved by employing quasi-variational inequalities established in Sec-
tion 4.

Now we introduce some notations and definitions. Let 4 be a non-empty
subset of a vector space D. We shall denote by co A the convex hull of A.
If S is a subset of a topological space X, the closure and interior of S in X
are denoted by cl .S and by int .S, respectively. A subset S of X is said to
be compactly open in X if the set § N X is open in C for each non-empty
subset C of X. Let X be a non-empty set. We denote by 2% the family of
all subsets of X. Suppose X and Y are two non-empty sets and F: X — 27
is a set-valued mapping. Then the graph of F, denoted by Graph F, is the
set {(x,y) eX XY:y e F(x)}. Let X and Y be two topological spaces
and F: X — 2Y a set-valued mapping. Then we have

(1) F is said to have an open graph if the Graph F of F is open in
X XY,

(2) the mapping F: X — 2" is defined by F(x) :={y € Y:(x,y) €
cl v, yGraph(F)} for each x € X;

(3) F is said to be lower (resp., upper) semicontinuous if for each
closed (resp., open) subset C of Y, the set {x € X: F(x) c C} is closed
(resp., open) in X;

(4) F is said to have the compactly open lower (resp., upper) sections
property if the set F~1(y) = {x € X : y € F(x)} is open in each non-empty
compact subset C of X for each y €Y (resp., F(x) is open in each
non-empty compact subset C of Y for each x € X);
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(5) F is said to be compact if for each x € X, there exists a neighbor-
hood V, at x such that the set F(V,) == U, F(2) is relative compact in
Y; and '

(6) a subset X of a topological vector space E is said to have the
property (K) if for every compact B of X, the convex hull of B is relative
compact in E.

Let X and Y be two sets and P: X — 2V a set-valued mapping. We also
recall that a point x € X is said to be a maximal element of P if
P(x) = .

Let X be a topological space and Y a non-empty subset of a vector
space E. Suppose 6: X — E is a (single-valued) mapping and ¢: X — 27
is a set-valued mapping. Then we have

(1) ¢ is said to be of class L, . if for every x € X, co ¢(x) C Y,
0(x) & co p(x) and the set ¢ H(y) ={x € X:y € ¢(x)} is compactly
open in X for each y €Y

(2) a mapping ¢,: X — 27 is said to be an L, .-majorant of ¢ at
x € X if there exists an open neighborhood N, of x in X such that (a) for
each z € N,, ¢(z) C ¢, (z) and 6(z) & co ¢,(2); (b) for each z € X,
co ¢,(z) C Y;and (c) for each y € Y, ¢_*(y) is compactly open in X; and

(3) ¢ is said to be L, ~-majorized if for each x € X with ¢(x) # &,
there exists an L, .—majorant of ¢ at x in X.

In this paper, we shall only deal with either the case (I) X = Y and is a
non-empty convex subset of a topological vector space and 6 := I, the
identity mapping on X or the case (I X =11, , X; and 0 = 7;: X — X
is the projection of X onto X; and X, := Y is a non-empty convex subset
of a topological vector space. In both cases (I) and (11), we shall write L
in place of L, .

Let X and Y be topological spaces. We also recall that a mapping
T: X - 2" is said to be

(1) quasi-regular if (i) it has open lower sections; (ii) 7'(x) is non-empty
and convex for each x € X, and (iii) T(x) = clT(x) for each x € X; and

(2) regular if it is quasi-regular and has an open graph.

Let I be a finite or infinite set of players (resp., agents). A generalized
game (resp., an abstract economy) is a family T' = (X}; 4;, B;; P);; of
quadruples (X;; 4,, B;; P;) where for each i € I, X; is a topological space,
A, B: X =1I,_,X; - 2% are constraint mappings, and P: X — 2% isa
preference mapping. An equilibrium point for I' is a point x* € X such
that for each i € I, we have
x¥ = m,(x*) € By(x*) and A (x*) N P(x*) =T,

L
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where 7;; X — X; is the ith projection. We recall that a qualitative game
is a family T' = (X;; P,), . ; of ordered pairs (X;, P,), where for each i € I,
X, is a topological space and P: X =1I._,X;, — 2% is an irreflexive
preference mapping (i.e., x; & P(x) for all x € X). A point x* € X is said
to be an equilibrium point of the qualitative game T" if P(x*) = J for all
el

Throughout this paper, all topological vector spaces are assumed to be
Hausdorff.

2. MAXIMAL ELEMENT THEOREMS

By the same argument used in the proof of Lemma 1 of Ding et al. [14,
p. 510] (see also Lemma 2 of Ding and Tan [13] or Proposition 1 of Tulcea
[44, p. 3]), we can have the following result and thus its proof is omitted
here to save space.

LEMMA 2.1. Let X be a regular topological space and Y a non-empty
subset of a vector space E. Let 0: X — E be a single-valued mapping and
P: X — 2" L, o-majorized. If every open subset of X containing the subset
{x € X: P(x) # O} is paracompact, then there exists a mapping ¢. X — 2V
which is of class L,  such that P(x) C ¢(x) for each x € X.

By Lemma 2.1, we have the following theorem concerning the existence
of a maximal element in topological vector spaces.

THEOREM 2.2. Let X be a non-empty paracompact convex subset of a
topological vector space and P: X — 2% L -majorized (i.e., L 1., c-majorized).
Suppose that there exist a non-empty compact convex subset X, of X and a
non-empty compact subset K of X such that for each y € X \ K, there is an
x € co( X, U {y}) such that x € co P(y). Then there exists an X € K such
that P(X) = <.

Proof. Suppose that for each x € X, P(x) # &. Then P: X - 2% isa
mapping such that P(x) # J for each x € X. By Lemma 2.1, there exists
a mapping ¢: X — 2% which is of class L such that P(x) C ¢(x) for all
x € X. Moreover, for each y € X\ K, there is x € co(X, U {y}) such that
x € co P(y), but then x € co ¢(y). By Theorem 3" of Ding and Tan [12],
there exists X € X such that X € co ¢(x), which contradicts our assump-
tion that ¢ is of class L. Thus there must exist some X € X such that
P(X) = . By our hypotheses, ¥ must be in K and thus we complete the
proof. 1

Remark 2.3. Theorem 2.2 indeed generalizes Theorem 2.1 of Toussaint
[43, p. 101], Theorem 1 of Yannelis [46], and Corollary 1 of Borglin and
Keiding [6, p. 314] in several aspects.
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Let X be a non-empty set, Y a non-empty subset of the topological
vector space E and F: X — 2Y. A family (fj)jE, of correspondences
between X and Y, indexed by a non-empty filtering set J (we denote by
< the order relation in J) is said to be an upper approximating family for
F if

(A) F(x) cf(x)forall x € X and all j €J;

(A,;) for each j €J, there is j* € J such that for each & > j* and
h e, f,(x) c f(x) for each x € X; and

(A, for each x € X and V' € B, where B is the fundamental
system of zero of topological vector space E, there is j, , €J such that
L) cFx)+Vifhelandj, , <h.

From (A)—-(A,;,), it is easy to deduce that:

(A;) foreach xe X and k € J
F(x) € Nje fi(x) = Niejresfi(x) ©F(x) € F(x).

We now state the following Lemma 2.4 which is Theorem 3 of Tulcea [45,
p. 280].

LEMMA 2.4. Let X be a paracompact space and Y a non-empty convex
subset of locally convex topological vector space E such that Y has the property
(K). Suppose F: X — 2¥ is such that

(1) F is compact and upper semi-continuous, and

(2) F(x) is non-empty compact and convex for each x € X.
Then there is a family ( fj)]-E ; of correspondences between X and Y, indexed
by a directed set J, such that

(@) for everyj € J_, the correspondence f; is regular;

(b) (f);e; and (f));c; are upper approximating families for F;

(c) for every j € J the correspondence f; is continuous if Y is compact.

3. EQUILIBRIA

In this section, in order to employ the approximation method to study
existence of equilibrium points for generalized games in which constraint
mappings are upper semicontinuous, we shall first need the following
result which is Lemma 5.3 of Tan and Yuan [39]:
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LEMMA 3.1. Let X be a topological space, Y a non-empty subset of a
topological vector space E, B a base for the zero neighborhoods in E, and
B: X - 2", For each V € B, let B,,: X — 2Y be defined by

B,(x) =(B(x)+V)NnY

for each x € X. Suppose X € X and y € Y are such that y € N, . gBAX).
Then we have y € B(X).

As an application of Theorem 2.2, we first have the following existence
theorem of equilibria for a one-person game.

THEOREM 3.2. Let X be a non-empty paracompact convex subset of a
topological vector space. Suppose A, B, P: X — 2% are three mappings such
that

(1) A N Pis of class L -majorized,;

(2) co A(x) € B(x) for each x € X and the set A~*(y) is compactly
open in X for each y € X

(3) there exist a non-empty compact convex subset X, of X and a

non-empty compact subset K of X such that for each y € X \ K, we have
co(X, U {yD) N co(P(y) N A(y)) + .

Then exists an x € K such that x € B(x) and A(x) N P(x) = &.

Proof. Let F:={x € X:x € B(x)}. Then F is closed in X. Define
V. X - 2% by

A(x) N P(x), if xeF,
Y(x) = .
A(x), if x & F.

If x¢& F, then X\ F is an open neighborhood of x such that for each
z € X\ F we have z & B(z). Now define ®: X — 2% by ®(z) = A(2)
for each z € X and N, .= X\ F. It is clear that N, is an open neighbor-
hood of x in X. Moreover it is easy to see that ®, is an L -majorant of ¥
at x. Now if xe F and ¥(x) =A(x) N P(x) # J, as ANP is L.
majorized, there exist an open neighborhood N, of x in X and a mapping
@ X - 2% such that ¥(z) = A(z) N P(z) c ®(2), z & co ®(z) for
each z € N, and the set co ®_*(y) is also compactly open in X for each
y € X. Define the mapping ®.: X — 2% by

A(z) N D.(2), ifzeF,

®2) =1 400, if 2 ¢ F.
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Note that (4 N PX(z) € ®,(z) and A(z) c A(z) for each z € N,. It fol-
lows that ¥(z) € ®.(z). Furthermore, it is clear that z ¢ co ®.(z) for all
z€ X and the set (@) (y):=[® (y) U(X\F)INAy) is com-
pactly open in X for any y € X. Thus ®, is an L -majorant of ¥ at point
x and V¥ is of L.-majorized. By condition (ii), it follows that for each
y € X\ K, there exists x € co(X, U {y}) such that x € co(P(y) N A(y))
c co P(y). By Theorem 2.2, there exists an x € K such that ¥(x) = .
Since A(x) # & for all x € X, we must have x € B(x) and thus ¥(x) =
AxX)NPx)=T. 1

As another application of Theorem 2.2, we have the following existence
of equilibria for a qualitative game in topological vector spaces.

THEOREM 3.3. Let T = (X,, P);c; be a qualitative game such that
X =11, ., X, is paracompact. Suppose the following conditions are satisfied
foreachi € I

(@) X, is a non-empty convex subset of a topological vector space;
(b) P: X — 2% is L -majorized,
() U;jedxeX:P(x)+ T} = U, /inty{x € X: P(x) # T}

(d) there exist a non-empty compact convex subset X, of X and a
non-empty compact subset K of X such that for each y € X \ K, there is an
x € co(X, U {y}) with x;, € co P(y) foralli € I.

Then T has an equilibrium point in K.

Proof. For each x € X, let I(x) == {i € I: P(x) # }. Define a map-
ping P: X - 2% by

niel(x)COPi’(x)' if I(x) # I,
P(x) = :
g, if I(x) =9,
where P/(x) =11,,; ;o ,;X; ® P(x) for each x € X. Then it is clear that

for each x € X, we have I(x) = & if and only if P(x) # . We shall show
that P is L.-majorized. Let x € X be such that P(x) # <. Then there
exists an i € I such that x € int,{z € X : P(z) # &}. By (b), there exists
an open neighborhood N(x) of x in X and an L.-majorant ¢, of P, at x
such that (i) for each z € N(x), P(z) C ¥(z) and z; & co y;(2); (ii) for
each z € X, co 4(z) c X;; and (iii) for each y € X,, ¢; *(y) is compactly
open in X. By (c), without loss of generality, we may assume that
N(x) cinty{z € X: P(z) # J}, so that P(z) + & for all z € N(x). Now
define ¥;: X — 2% by ¥(z2):=1I,,, ;. ,X; ® co §s(z) for each z € X.
We claim that ; is an L-majorant of P at x. Indeed, for each z € N(x),
by (), P(z) = N ey, P/ (2) cP(z) cV¥(z) and z & co V(z) and for
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each z € X,coV(z) C1I,,, ;< ,;X; ® co ¢j(z) € X. Since for each y € X,

(co ) (), if y; € X; forall j # 1,

V) = - 2
, if y; & X, forsome j # i

and (co )~ !(y,) is compactly open in X by Lemma 5.1 of Yannelis and
Prabhakar [47], thus W, (y) is compactly open in X. Therefore, ¥, is an
L -majorant of P at x. This shows that P is L-majorized. By condition
(d), for each y € X\ K, there exists x € co(X, U {y}) with x; € co P(y)
for all i € I so that x € co P(y) by the definitions of P and P;. Hence all
hypotheses of Theorem 3.2 are satisfied. By Theorem 3.2, there exists an
X € K such that P(x) = <. This implies I(¥) = & and hence P(X) = J
for all i € I. Thus we complete the proof. |

Now we use the following approximation technique to study existence of
equilibria for generalized games. The idea is as follows: for a given
generalized game I' = (X;; A;, B;; P)); . ;, we first construct an associated
approximate generalized game I'), = (X;;(A4,),,(B));;(P}),),, for each
non-empty open neighborhood 1V of zero in locally convex topological
vector space. Then for the approximate generalized game I', =
(X;;(A4,);,(B,);;(Py)); < 1, there exists an associated qualitative game
T, = (X;;(Q,)); <, which exhibits the same equilibrium points as the
approximate generalized game T'), = (X;;(A4,),,(B});;(P}),); <, Finally
the existence of equilibria for I" follows by Lemma 3.1.

THEOREM 3.4. Let G = (X;; A;, B;; P);c; be a generalized game such
that X =11, ., X, is paracompact. Suppose the following conditions are

iel“ri

satisfied for each i € I

(@) X, is a non-empty convex subset of a locally convex Hausdorff
topological vector space E;;

(b) A;: X - 2% is lower semicontinuous and for each x € X, A(x) is
non-empty and co A.(x) € B(x);

(¢) A; N P, is L -majorized,

1

(d) the set E' = {x € X : (A4, N P)(x) # O} is open in X; and

(e) there exist a non-empty compact convex subset X, of X and a
non-empty compact subset K of X such that for each y € X \ K there is an
x € co(X, U {y}) such that x; € co(A,(y) N P(y)) foralli € I.

Then G has an equilibrium point in K, i.e., there exists a pointX = (X;);. ; € K
such that for each i € I,

£ €B(f) and  A(F) NP(F) =D
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Proof. Let V=11, ,V;, where V; is any open convex neighborhood of
zero in E; for each i € I. Fix any i € I, we define 4, B,: X — 2% by
Ay(x) = (co A(x) + V)N X, and By(x) = (B(x) + V) N X, for each
x € X. By (a), co A4, is also lower semicontinuous by Proposition 2.6 of [33,
p. 366]. By Lemma 4.1 of Chang [9, p. 244] (see also Tulcea [44, p. 7]) the
mapping A, has an open graph in X X X. We set F) = {xeX:x

& BV(x)} Then Fy, is open in X. Define a mapping Oy, X - 2% by
(A4; N P)(x), it x & Fy,,

Qv () =1\ 4,00, if x € F, .

We shall prove that the qualitative game T = (X;, 0, ), satisfies all
conditions of Theorem 3.4. First we note that for each i € I, the set

(xex:0,(x) 2} =F, u{x e X\F, :A,(x) N P(x) + D}
=F, U((X\Fy)NE)=F, UE

is open in X by (c). Let x € X be such that O, (x) # J. We consider the
following two cases:

Case 1. If x€F,, let ¥,:=A4, and N, = F,,. Then N, is an open
neighborhood of x |n X such that Q) QV(z) c \If(z) and by (b), z; &
co ¥ (z2) for each ze N (i) coP(2) cX for each z € X by (b); and
(i) w7 *(y) = 4;*(y) is open in X for all y € X; since 4, has an open

graph. Therefore, \If is an L-majorant of Q, at x.

Case 2. If x & F),, note that Q,(x) = (4, N P)x) = J, A, NP, is
L -majorized, and there exist an open neighborhood N, of x in X and a
mapping ¢.: X — 2% such that (i) (4, N P,)X(z) € ¢(z) and z, & co ¢ (z)
for each z € N; (ii) co ¢ (z) C X, for each z € X; and (iii) ¢_(y) is
compactly open in X for each y € X,. Define ¥, X — 2% by

Ay (z) N ¢ (2), if z& Fy,

I =
(2 =04, (), if z € F.

Note that as (A4, N P,)X(z) € ¢,(z) and A,(z) c A, (z) for each z € N,, we
have 0, (z) € V,(z) and co V,(z) C X;. It is easy to see that z, & co V,(z)
for all z € X. Moreover, for any y € X, the set

Vol (y) ={ze Xy eV (2)}
z€X\F, :yeV(z2)luf{zeF, ye¥(z)}

= {
={zeX\F, :yed, (z)n¢(2)jU{zeF, yed, (2)}
[(
= [

X\F,) NAZN(y) 0o (p)| U [Fy, 0451 (y)]
¢ (y) UF,| N4z (y)
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is compactly open in X. Thus ¥, is an L.-majorant of Q) at point x.
Therefore Q) is an L- majorlzed mapping. By our assumptlon for each
y € X\ K, there is an x € co( X, U {yD) with x; € co(A4,(y) N P(y)) for
all i €I Note that if y & F),, then x; € co(A {(y) N P(y)) ccoQy,(y)
andif y € F),, then x; € co(4, (y) N P(y)) c co(A4,(x)) = co O, (y). Thus
for each i €1, x, € co Oy (y). Moreover the set {x eX: QV(x) + ) =
Fy, U {x eX\FV (A, N P)x) + O} = Fy, U E', which is open in X by
condition (c). Therefore all hypotheses of Theorem 3.3 are satisfied. By
Theorem 3.3, there exists a point x;, = (x;,);c ; € K such that Q) (x;) =
& forall i 1. For each i €1, as A ;(x) is non-empty, it follows that Xy
€ B,(x,) and A,(x;) N P(x,) =

Now for each i1, let B be the collection of all open convex
neighborhoods of zero in E, and B=1II,_,B. For any V€ B, let
V= 1'[1E /V;, where I, € B, for each j € I. By the argument above, there
exists x,, € K such that xV € By (X)) and A,(X),) N P(X,) = & for all
i €1, where By (x) = (B; (x) + V) N X, for each x € X. It follows that
the set Q,, = {x eK:x; e BV(x) and A {(x) N P(x) = I} is a non-empty
and closed subset of K by the condition (d)

In order to finish the proof, it suffices to prove that the family {Q,}, < g
has the finite intersect property. Let {17,,...,V,} be any finite subset of B.
Foreachi=1,...,n,letV, =1I,_,V;;, where V;; € B, for each j € I and
let V= HIE,(O Vip)- Then QVa& @ Clearly Qy < N{_10y, and we
have that N 7. .0, # @ Therefore the family {Q,, : V € B} has ‘the finite
intersect property. Note that K is compact, and it follows that N, . gO)
# (J. Taking any ¥ € N, gQy, We have X, € B, (X) for each V; € B,
and A4,(x) N P(%) = & for each i € I. By Lemma 3.1, it follows that 55[
€ B{(X) for each i € I and thus the proof is completed. |

COROLLARY 3.5. Let G == (X;; A;, B;; P); < ; be a generalized game such
that X = 11,_ X, is paracompact. Suppose the following conditions are
satisfied for each i € I

(@) X, is a non-empty convex subset of a locally convex Hausdorff
topological vector space E;;

(b) A,(x) is non-empty and co A(x) C B(x) for each x € X

(¢) A, has an open graph in X X X; (resp., is lower semicontinuous)
and P; is lower semicontinuous (resp., has an open graph in X X X,);

(d) A; N P, is L -majorized,

(e) there exist a non-empty compact convex subset X, of X and a

non-empty compact subset K of X such that for each y € X \ K there is an
x € co( X, U {y}) such that x; € co(A,(y) N P(y)) foralli € I.

Then G has an equilibrium point in K, i.e., there exists X € X such that for
eachi €1,

X, €B(X¥) and A(X) NP(X) =0
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Proof. For each i €1, as A, has an open graph in X X X, (resp., is
lower semicontinuous) and P; is lower semicontinuous (resp., has an open
graph in X X X)), it follows that the mapping A4, N P: X — 2% is lower
semicontinuous by Lemma 4.2 of [46, p. 103]. Thus the set E' = {x €
X:A(x) N P(x)# &} is open in X. Therefore the conclusion follows
from Theorem 3.4. |

Remark 3.6. In this section, we have proved existence theorems of
equilibria for generalized games with non-compact and infinite dimen-
sional strategy spaces, an infinite number of agents, and nontotal-
nontransitive constraint and preference mappings which may not have
open graphs or open lower (resp., upper) sections. Since it is well known
that if a mapping has an open graph, it then has open upper and lower
sections (e.g., see Bergstrom et al. [5, p. 266]), and thus mappings with
open lower sections are lower semicontinuous. However, a continuous
mapping may not hold open lower (or upper) section properties in general
(e.g., see Yannelis and Prabhakar [47, p. 237]). We also know that in the
infinite settings, the set of feasible allocations generally is not compact in
any topology of the commodity spaces. Thus our results generalize many
results in the literature by relaxing the compactness of strategy spaces and
the openness of graphs or lower (resp., upper) sections of constraint
mappings. For example, Theorem 3.4 (and hence also Corollary 3.5)
generalizes Corollary 3 of Borglin and Keiding [6, p. 315], Theorem 4.1 of
Chang [9, p. 247], Theorem of Shafer and Sonnenschein [36, p. 374], and
Theorem 5 of Tulcea [44, p. 10]. Also Corollary 3.5 (and hence Theo-
rem 3.4) improves Theorem 6.1 of Yannelis and Prabhakar [47] in the
following ways: (i) the index I need not be countable; (ii) the set X, need
not be metrizable for each i € I; and (iii) A; N P, need not be L-majorized
for each i € I.

Remark 3.7. Professors Yannelis and Prabhaker in [47, p. 243]) asked:
If there is an equilibrium point for the generalized game T = (X;; A;; P,
when X, is a non-empty compact and convex subset of locally convex
topological vector space and both A; and P, have open lower sections, can the
set of agents I be assumed to be any ( finite or infinite) set? By Remark 3.6, it
follows that our Theorem 3.4 (thus Corollary 3.5) not only shows that
Theorem 6.1 of Yannelis and Prabhakar above can be extended to non-
metrizable subsets and the non-compact case without introducing an
additional assumption, it shows that the question raised by Yannelis and
Prabhakar can be answered in the affirmative; but in fact, some of the
assumptions of their question above can be further weakened.

In what follows, as applications of Lemma 2.4 and Theorem 3.4, we will
prove existence theorems of the generalized game G = (X;; 4;, B;; P), <,
in which the constraint mapping is upper semicontinuous.
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THEOREM 3.8. Let G = (X, A, B;, P.); . ; be an abstract economy such
that X = 11,_ X, is paracompact. Suppose the following conditions are
satisfied for each i € I.

(@) X, is a non-empty convex subset of locally convex topological vector

space E; and X, has the property (K);

(b) A,, B;: X - 2% are such that B; is compact and upper semicontin-
uous with non-empty compact and convex Ualues and A,(x) € B(x) for each
xeX;

(©) P: X — 2% is lower semicontinuous and L -majorized,
(d) the set E' == {x € X : (A, N P)(x) + &} is open in X

(e) there exist a non-empty compact convex subset X, of X and a
non-empty compact subset K of X such that for each y € X \ K there is an
x € co( X, U {y}) such that x; € co(A,(y) N P(y)) foralli € I.

Then_there exists X € K such that for each i € I, A(X) N P(X) = J and
%; € B(X).

Proof. By Lemma 2.4 for the upper semicontinuous mapping, for every
i € 1, there exists a family (B;;);  , indeed by a filtering set J, consisting of
regular mappings between X and X; such that both (B;)), ., and (B,])]
are upper approximating families for B,

Now the game G, = (X;;(B,));, (_,j),,P)lE, satisfies all hypotheses of
Theorem 3.4 for each je. Hence G has an equilibrium x7 € K for
each j € J such that B;,(x}) N P(x}) = &, and m,(x}) € B, (x*) Let U
be an ultrafilter on J WhICh is fmer than the filter sectlons of J. Since
(xf);c; €K, let X =lim; ,x;. Then for each i € I, w,(%) = lim, ,(x}),.
Note that A, {(x) € B(x) € B;j(x) each x € X, it follows that A, (x*) m
P(x}) =0 forall i € I. By condition (d), we have that 4,(x) N P(x)
for every i € 1. Since x} is an equilibrium point of G, and B;; is regular, it
follows that for each x € X, cl B;j(x) = B;(x). Thus (x}); € cl(B;;(x}))
=B, (x*) As B has a closed graph (x, (x) ) S GraphB for every i € I.
But we know for each x € X, N;c,B;(x) € B;(x). Therefore we have
A(x) N P(x) = and 7(%) € B(x) for each i €l and the proof is
completed. 1

Let A, = B; for each i €1 in Theorem 3.8. We have the following
existence result which also generalizes Theorem 5 of Tulcea [45, p. 288].

THEOREM 3.9. Let G = (X, A;, P));; be an abstract economy such that

X =11, ., X, is paracompact. Suppose the following conditions are satisfied

foreachi €I

(@) X, is a non-empty convex subset of locally convex topological vector

space E; and X, has the property (K);
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(b) A;: X - 2% is compact and upper semicontinuous with non-empty
compact and convex values for each x € X;

(©) P: X — 2% is lower semicontinuous and L -majorized,

(d) the set E' = {x € X : (A4, N P)(x) + O} is open in X;

(e) there exist a non-empty compact convex subset X, of X and a
non-empty compact subset K of X such that for each'y € X \ K, there is an
x € co(X, U {y})) such that x; € co(A,(y) N P(y)) foralli € I.

Then there exists X € K such that for each i € I, A(x) N P(x) = Jand
¥, € A(%) = A,(X).

The following example shows that the conclusion of Theorem 3.9 does
not hold if we withdraw its condition (d).

ExampLE A. Let I = {1} and X = [0, 1]. We define 4, P: X — 2% by

[1/2,1], if x € [0,1/2),
A(x) = {[0,1], if x=1/2,
[0,1/2], if x €(1/2,1],
and
d, if x =0,
P(x):{[o,x), if x €(0,1].

Then it is clear that A is upper semicontinuous with non-empty closed
convex values and the fixed point set of A is a singleton {1/2}. The
mapping P has convex values with open lower sections since for each
y €[0,1], P"*(y) = (y,1]is open in X. Therefore A, P, and X satisfy
all conditions except that the set “E = {x € [0,1]: A(x) N P(x) = &} =
[1/2,1] is closed” instead of being open in [0,1]. However, we have
A(1/2) N P(1/2) = &, i.e., the generalized game G = ([0, 1], 4, P) has no
equilibrium point as 4(1/2) N P(1/2) = .

If X, is compact and closed convex in Theorem 3.9, we then have

CoROLLARY 3.10. Let G = (X;, A;, P.);.,; be an abstract economy and
X =11, . ; X;. Suppose the following conditions are satisfied for each i € I

(@) X; is a non-empty closed compact convex subset of locally convex
topological vector space E;

(b) A;: X - 2% is upper semicontinuous with non-empty compact and
convex values for each x € X;

(©) P: X — 2% is lower semicontinuous and L -majorized,
(d) the set E' = {x € X: (A, N P)(x) # O} is open in X.

Then there exists an X € K such that for each i € I, A(x) N P(x) = Jand
X, € A(x) = A,(%).
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We also note that Corollary 3.10 generalizes Theorem 5 of Tulcea [45,
p. 284] and Theorem of Shafer and Sonnenschein [36, p. 374] in several
aspects. Indeed, as applications of Corollary 3.10, we have the following
well-known Fan and Glicksberg fixed point theorem for upper semicontin-
uous correspondence in locally convex topological vector space.

THEOREM 3.11. Let X be a convex compact subset of locally convex
topological vector space and A: X — 2% be upper semicontinuous with
non-empty closed and convex values for each x € X. Then A has a fixed point.

Proof. Let I:={1} and P(x) = & for each x € X in Corollary 3.10.
Then the conclusion follows. |

4. NON-COMPACT QUASI-VARIATIONAL INEQUALITIES

In this section, as applications of equilibria of generalized games, we will
study an existence theorem of non-compact quasi-variational inequalities
for lower semicontinuous mappings in locally convex topological vector
space. We first have the following:

THEOREM 4.1. Let X; be a non-empty convex subset of locally convex
topological vector space E; and X = 11, _ ; X, be also paracompact. Suppose
that the following conditions are satisfied for each i € I:

() A;: X - 2% is a lower semicontinuous correspondence with a
closed graph and non-empty convex values;

(D) ¢ X X X, > R U {—o, +} is an extended value function such
that the mapping x — (x, y;) is lower semicontinuous in each non-empty

compact subset C of X for each fixed y, € X;;
(i) x; & co{y; € X, : ¢(x,y,) > 0}) for each x € X;

(iv) the set {x € X :sup, ¢ 4 ¥(x,y;) > O} is open in X for each fixed
v; € X;; and
(V) there exist a non-empty compact and convex subset X, of X and a
non-empty compact subset K of X such that for each y € X \ K, there exists
x=(x);c; €co(X, Uly) with x; € co{A,(y) N {z; € X;: ¢(y, z,) >

o).
Then there exists x* € K such that for each i € I,
xfeA,(x*) and sup  Pi(x*,y;) <0.
yi€A(x*)

Proof. For each i € I, define a mapping P.: X — 2% by P(x) = {y, €
X;:(x,y;) > 0} for each x € X. Then we want to show that the ' =
(X;; A;; P), ., satisfies all hypotheses of Theorem 3.4.
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First we note that the condition (ii) implies that for each i € I, P, has
compactly open lower sections in X which, in turn implies that P; is
L -majorized by (iii). The condition (iv) implies that for each i € I, the set
{xeX:A4,(x)nP(x) # <} is open in X. Thus all hypotheses of Theo-
rem 3.4 are satisfied. By Theorem 3.4, there exists x* € K such that for
each iel, A(x*)NP(x*) =T and xF € 4,(x*). As{xeX:A4,(x)N
P(x) # O ={x € X1 a(x) =sup, c 4(,,¥i(x,y) > 0}, this implies that
for each i € I, we have xj' € 4,(x*) and sup,, ¢ 4 (.~ ¥,(x*,y,) < 0. There-
fore the proof is completed. |

Let 7:=1{1,2} and X, := X, = X in Theorem 4.1. We have the follow-
ing existence result of non-compact quasi-variational inequalities.

COROLLARY 4.2. Let X be a non-empty convex subset of a locally convex
topological vector space. Suppose X X X is paracompact such that:

(i) A: X > 2% is lower semicontinuous with a closed graph and non-
empty convex values;

(i) ¢: XXX > RU{—0w, +0} is a mapping such that the function
x = ¢(x, y) is lower semicontinuous in each non-empty compact subset C of
X for each fixedy € X,

(iii) x & co({y € X : (x, y) > O}) for each x € X;

(iv) the set {x € X : supyeA(x)df(x, y) > 0} is open in X; and

(V) there exist a non-empty convex and compact subset X, of X and a
non-empty compact subset K of X such that for each y € X \ K, there exists
x € co( X, U {y}) with x € co{A(y) N{z € X : ¢(y, z) > O}}.

Then there exists x* € K such that x* € A(x*) and sup, 4P (x*,y) < 0.

5. GENERALIZED NON-COMPACT QUASI-VARIATIONAL
INEQUALITIES

In this section, as applications of Theorem 4.1, we will investigate the
existence of solutions for the following generalized variational inequality
problems () and (= *) under various conditions.

Let X be a non-empty convex subset of locally convex Hausdorff
topological vector E, where E* denotes the dual space of E. Suppose
F: X—>2XT: X-2E and f: X X X > R U {—, +} are three given
mappings. We want to prove the existence of a solution ¥ € X for the
following generalized quasi-variational inequalities (in short, GQVI1):

X € F(X),

supuET(f)<u,5c‘—y> +f(X,y) <0 forany y € F(X) (*)
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and

X € F(X),
inf,creu, X —y) +f(X,y) <0 forany y € F(X).

Or more generally, to find ¥ € X and & € E* such that

X € F(X) and uaeT(x)

(U, x —y) +f(x,y) <0 forany y € F(X).

(#*)

Now we need to recall some notions and definitions (e.g., see Zhou and
Chen [50).

Let X be a convex subset of topological vector space. A function
P(x, ) X XX - R U {—0o, +} is said to be

(1) diagonal quasi-convex (resp., quasi-concave) in y, in short DQCX
(respectively, DQCV) in y, if for each 4 € F(X) and y € co(A), then
Y(y,y) < max, ., ¥(y, x) (respectively, y(y,y) = inf, . ,¥(y, x)) where
F(X) denotes the family of all non-empty finite subsets of X;

(2) vy-diagonal quasi-convex (resp., y-diagonal quasi-concave) in y, in
short y-DQCX (res., y-DQCV) in y, if for any 4 € F(X) and each
y € co(A), y < max,. 4 y(y,x) (resp., y > inf,_ , ¥(y, x));

(3) vy-diagonal convex (resp., y-diagonal concave) in y, in short y-DCX
(resp., y-DCV) in y, if for each A € F(X) and each y € co(A) with
y=X" Ay, (A, >0, and X/, A, = 1), we have y < X" A ¢(y, y,) (re-
spectively, y > X7 A ¢ (y, y));

(4) diagonal convex (resp., diagonal concave) in y, in short DCX
(resp., DCV) in y, if for each 4 € F(X) and each y € co(A4) with
y=XLiAy; (A 20, and 7L, A = 1), we have ¢(y, y) < ZiLA4(y, y,)
(resp., ¢(y, y) = EiL, Ap(y, y))).

Let X and Y be two non-empty convex subsets of E. We also recall that
an extended value function ¢: X XY - R U {—o, +«} is said to be
quasi-convex (resp., quasi-concave) in y if for each fixed x € X, for any
AeF(Y) and y € co(A4), ¢(x,y) <max,. ,4(x,z) (resp., ¢(x,y) >
inf, . 4 ¥(x, 2)).

In general, we know that the sum of two quasi-convex functions does not
remain quasi-convex, and the same holds for the DQCX property. How-
ever, it is easy to see that the following simple facts are true.

(1) if ¢(x, y)is DCX (resp., y-DCX, DCV, y-DCV) in y, then ¢(x, y)
is DQCX (respectively, »-DQCX, DQCV, y-DCV) in y;
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(2) if y(x,y), 1 <i < n,is aset of functionals, in which each of them
is y-DCX (resp., DCX, y-DCV, DCV) in y, then u¢(x,y) =
T a,(x0)¢(x, y) is still y-DCX (resp., DCX, y-DCV, DCV) in y, where
a; X - Rwith a,(x) > 0and X" ,a,(x) = 1 for each x € X; and

(3) the function ¥(x,y): X X X - R U {—oo, +} is 0-DQCV in y
if and only if x & co{y € X : ¢(x, y) > 0}) for each x € X.

Now it is time for us to give existence of solutions for the problem () in
which T: X — 2£" is a monotone mapping.

THEOREM 5.1.  Let X be a non-empty convex subset of a locally convex
Hausdorff topological vector space E. Suppose that:

(i) X X X is paracompact,

(i) F: X — 2% is lower semicontinuous with a closed graph and non-
empty convex values;

(i) T: X — 25" is a monotone mapping with non-empty values such
that for each one-dimensional flat L C E*, T, ~ x is lower semicontinuous
from the topology of E into the weak*-topology o (E*, E) of E*;

(iv) f: XXX > R U {w, +} is a mapping such that the function
x = f(x, y) is lower semicontinuous in each non-empty compact subset C of
X for each fixed y € X, and for each fixed x € X, y — f(x, y) concave and
f(x,x) =0 for each x € X;

(y) the set {x € X:supyEF(X)[SupueT(y)<u, x—yy+f(x,y)]1>0} is
open in X,

(vi) there exist a non-empty convex compact subset X, of X and a
non-empty compact subset K of X such that for each x € X \ K, there exists
y € co(X, U {x}) such thaty € co(F(x) N {z € X :sup, c r,{u, x —2) +
fx,z) > 0D,

Then there exists x € X such thatx € F(X) and

sup, crp)[u, ¥ —y) + f(F, 3] <0 forall y € F(X).

Proof. Define a function ¢: X X X - R U {—, + o} by

P(x,y) = sup Cu,x—y)+f(x,y)
usT(y)

for each (x, y) € X X X. Then we have that x — (x, y) is lower semicon-
tinuous in each non-empty compact subset C of X foreach y € X. As T
is monotone, by condition (iv) it is clear that the mapping y — (x, y) is
0-DCV for each fixed x € X by Proposition 3.2 of Zhou and Chen [50].
The conditions (ii), (v), and (vi) imply that  satisfies all hypotheses of
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Corollary 4.2. By Corollary 4.2, there exists ¥ € K such that X € F(X)
and sup, c 7w, ¥ —y) + f(¥,y)] < 0 for all y € F(X). For each one-
dimensional flat L c E*, T'|; ~ x is lower semicontinuous from the relative
topology of X into the weak*-topology o(E*, E) of E*. By the same
argument of Step 2 of Theorem 1 of Shih and Tan [38, pp. 337-338], we
can prove that sup, c r[{u, ¥ —y) + f(x, y)] < 0 for all y € F(X). Thus
the proof is completed. |

We shall now observe that in Theorem 5.1, the interaction between the
correspondences T and F (namely, the condition (v)) can be achieved by
imposing additional continuity conditions on 7" and F.

THEOREM 5.2. Let E be a locally convex topological vector space and X
be a bounded and non-empty convex subset in space E such that X X X is
paracompact. If F: X — 2% is lower semicontinuous with a closed graph and
non-empty convex values and T: X — 25" is a monotone mapping such that
for each x € X, T(x) is a non-empty subset of E*, then T is also lower
semicontinuous from the relative topology of X to the strong topology of E*.
Suppose that the following conditions are satisfied.:

() f: XXX —> RU oo, +00} is a function such that (x,y) — f(x,y)
is lower semicontinuous and for each fixedx € X, y — f(x, y) is concave and
f(x,x) =0 for each x € X; and

(ii) there exist a non-empty convex compact subset X, of X and a
non-empty compact subset K of X such that for each x € X \ K, there exists
y € co(X, U {x}) such thaty € co(F(x) A {z € X :sup,cr u, x —z) +
f(x,z) > 0}).

Then there exists x € X such thatx € F(X) and

SUP, e repy[u, £ —y) + f(X,y)] <0 forall y € F(%).
Proof. By Theorem 5.1, it suffices to prove that the set

3 = {xEX: sup  sup [(u,x—y>+f(x,y)]>0}

yEF(x) uET(y)

is open in X. Note that X is a bounded subset of locally convex space E,
and we equip E* with the strong topology. Define a mapping #,: X X
X X E* - R U {—%», +%} by ;(x, y,u) = {u,x —y) for each (x, y,u) €
X X X X E*. Then 4, is continuous. Since T: X — 2%” is lower semicon-
tinuous with non-empty values from the relative topology of X to the
strong topology of E*, by Theorem 2 of Aubin [3, p. 69], it follows that the
mapping ¢,: X X X - R U {—w, +o} defined by ,(x, y) =
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Sup, < r({u, x —y) is lower semicontinuous for each (x,y) € X X X.
Thus the mapping (x, y) = sup, c 7, {u, x —y) + f(x, y) is lower semi-
continuous by (i). As F: X — 2% is lower semicontinuous with non-empty
values for each x € X, by Theorem 2 of Aubin [3, p. 69] again, the
mapping x = SUP, ¢ y(,)SUP, c 7t X =y + f(x, y)] is also lower semi-
continuous from X to R U {—o, +}, so that the set ¥ ={x e
X 18UP, ¢ p(1ySUP, e r(x[{®, ¥ —y) + f(x, y)] > 0} is open in X. Therefore
F, T, and f satisfy all hypotheses of Theorem 5.1 and the conclusion
follows from Theorem 5.1. 1

Theorem 5.2 generalizes Theorem 2 of Shih and Tan [38] to a non-
compact case. Theorems 5.1 and 5.2 also generalize the corresponding
result of Joly and Moscos (see Theorem 15.2.2 of Aubin [3]) in several
aspects.

Now we will consider the existence of solution for the problems () and
(=) when T: X - 2E" is not a monotone mapping. We first have the
following:

THEOREM 5.3.  Let X be a non-empty convex subset of a locally convex
Hausdorff topological vector space E. Suppose that the following conditions
are satisfied.:

(i) X X X is paracompact,

(i) F: X - 2% is lower semicontinuous with a closed graph and non-
empty convex values;

(i) T: X > 25" is a mapping with non-empty and convex values and
such that for each fivedy € X, x = inf, . (u, x —y) is lower semicontin-
uous;

(iv) f: X XX - R U {—w, +0} is a function such that x — f(x,y) is
lower semicontinuous in each non-empty compact subset C of X for each fixed
y € X and for each fixed x € X, y — f(x, y) is 0-diagonal concave;

(V) the set {x € X:sup,c plinf, cr(u, x —y) + flx, )1 > 0} is
open in X;

(vi) there exist a non-empty convex compact subset X, of X and a
non-empty compact subset K of X such that for each x € X \ K, there exists
y € co(X, U {x}) such that y € co(F(x) N{z € X : infuer(x)w, x—z)y+
fx,z) > 0D,

Then there exists x € F(X) such that
SUpyeF(;’c‘)infueT(;?)Ru!55\_)’> +f(£’}’)] <0.

If in addition, for each fixed x € X, y — f(x,y) is concave and T(x) is
non-empty convex compact for each x € X, then there exists i € T(X) such
that sup, ¢ pol<il, X —y) + f(X, )] < 0.
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Proof. Define a functional ¢: X X X - R U {—o0, +00} by

g(x,y) = inf [Cu,x —y) + f(x, )],
ueT(x)

for each (x, y) € X X X. Then we have

(1) for each fixed y € X, x — (x, y) is lower semicontinuous in
each non-empty compact subset of C of X and x & co({y € X : (x,y) >
0}) for each x € X by (iv);

(2) the set {x € X :sup, c (., ¥(x,y) > 0} is open in X;
(3) there exist a non-empty convex and compact subset X, of X and

a non-empty compact subset K of X such that for each x € X\ K, there
exists y € co(X, U {x}) with y € co{F(x) N {z € X : (x, z) > O}}).

Therefore F and i satisfy all conditions of Corollary 4.2. By Corollary
4.2, there exists an ¥ € K such that ¥ € F(¥) and (%, y) < 0 for all
y € F(X).

If in addition, for each fixed x € X, y — f(x, y) is concave, define the
function f;: F(X) X T(X) - R U {—o, +o} by

filx,y) =L{x, X —y) + f(X,y)

for each (x, y) € F(X) X T(X). Then for each fixed y € X, x = f,(x, y) is
lower semicontinuous and for each fixed x € X, y — f,(x, y) is concave;
and T(x) is non-empty convex compact for each x € X. By the Kneser
minimax theorem [31], it follows that

inf  sup [Cu, X —y) +f(F,y)]

ueT® yeF(®)

= sup inf [u,X-y)+f(%y)] <0,
yeF(F) UE (%)

so that there exists it € T(X) such that sup,, ¢ x5 [<@, ¥ —y) + f(¥, )] < 0.
|

If X is a bounded subset of locally convex topological vector space E and
T: X XX — R is upper semicontinuous with non-empty compact and
convex values from the topology of X into the strong topology of E*, and
we define a function g: X X X - R U {—o, +o} by g(x,y) =
inf, 7 {u, x —y) foreach (x, y) € X X X, then the mapping x — g(x, y)
is lower semicontinuous for each fixed y € X by Lemma 2 of Kim and
Tan [29]. Thus, Theorem 5.3 above includes Theorem 3 of Shih and Tan
[38] as a special case. Moreover, we have the following:
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COROLLARY 5.4. Let X be a bounded non-empty convex subset of a
locally convex Hausdorff topological vector space E. Suppose the following
conditions are satisfied:

() X X X is paracompact,

(i) F: X — 2% is lower semicontinuous with a closed graph and non-
empty convex values;,

(i) T: X — 25" is an upper semicontinuous mapping with non-empty
convex (strong) compact values;

(iv) f: X XX > R U {—w, +0} is a function such that x — f(x,y) is
lower semicontinuous for each fixedy € X and for eachx € X,y — f(x, y) is
0-diagonal concave;

(V) the set {x € X: SupyeF(x)[im‘uE Tm(u, x—yy+f(x,y)]>0 is
open in X,

(vi) there exist a non-empty convex compact subset X, of X and a
non-empty compact subset K of X such that for each x € X \ K, there exists
y € co(X, U {x}) such that y € co(F(x) N {z € X :inf, o ;K u,x —z) +
f(x, z) > 0}.

Then there exists X € X such that X € F(X) and
sup, < F(})infuer(f)[<”’ X—y)+f(X, Y)] <0.
If in addition, for each fixed x € X, y = f(x,y) is concave, then there
exists I € T(X) such that sup, ¢ p2[<@, X —y) + f(, Y] < 0.
Proof. Define a mapping ¢: X X X » R U {—o, +x} by

Y(x,y) = inf [Cu,x—y)+f(x, )],
ueT(x)

for each (x, y) € X X X. As X is bounded, Lemma 2 of Kim and Tan [29]
implies that x — inf, . (u, x —y) is lower semicontinuous for each
fixed y € X. Therefore ¢ and F satisfy all hypotheses of Theorem 5.3. By
Theorem 5.3, Corollary 5.4 follows and we complete the proof. |

If we impose continuity conditions to the correspondence F, we do have
the following existence of solutions.

THEOREM 5.5.  Let X be a non-empty convex bounded subset of a locally
convex Hausdorff topological vector space E. Suppose that the following
conditions are satisfied:

(i) X X X is paracompact,

(i) F: X — 2% is a continuous mapping with non-empty compact and
convex values;
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Gii) T: X — 25" is upper semicontinuous with non-empty convex
(strong) compact values;

(iv) f: XXX > RU{—w, +0} is a mapping such that (x,y) —
f(x,y) is lower semicontinuous and for each fixed x € X, y — f(x,y) is
0-diagonal concave;

(V) there exist a non-empty convex compact subset X, of X and a
non-empty compact subset K of X such that for each x € X \ K, there exists
y € co(X, U {x}) such thaty € co(F(x) N{y € X :inf, o ;K u,x —y) +
fCx,y) > 0}

Then there exists x € X such thatx € F(X) and

SUpyeF(f)[infueT()?)<u’55_)’> +f(551)’)] <0

If in addition, for each fixed x € X, y — f(x,y) is concave, then there
exists i € T(X) such that supyeF(f)KiZ, x—y)y+f(x yl<o.

Proof. Since X is a bounded subset of locally convex space E, we equip
E* with the strong topology, we define a function ,: X X X X E* —
R U {—o0, +0} by ,(x,y,u) = u,x —y) for each (x,y,u) € X X X X
E*. Then ¢, is continuous. As T: X — 2% is upper semicontinuous with
one-empty (strong) compact and convex values, from Theorem 1 of Aubin
[3, p. 67] it follows that the mapping #,: X X X = R U {—o0, 4+ o} defined
by ¢,(x, y) = inf, c r,{u, x —y) for each (x,y) € X X X is also lower
semicontinuous. Therefore the mapping (x,y) = inf, 7w, x —y) +
f(x, y) is lower semicontinuous by condition (iv). Note that F: X — 2% is
lower semicontinuous with non-empty values and it follows that the
mapping x — SUp, ¢ p(,inf, c 7w, x = y) + f(x, y)] is lower semicon-
tinuous from X to R U {—, 4+ o} by Theorem 2 of Aubin [3, p. 69]. Thus
the set 3 = {x € X :sUp, ¢ p(,INf, c ro[<u, x —y) + f(x, y)] > 0} is open
in X. Therefore F, T, and f satisfy all hypotheses of Corollary 5.4. By
Corollary 5.4, the conclusion of Theorem 5.5 follows and we complete the
proof. 1

Remark 5.6. In Theorems 5.1, 5.2, 5.3, and 5.5, we assume that the
mapping 7: X — 2£" satisfies various kinds of continuity. In fact, under
other appropriate conditions, the existence of solutions for problems ()
and (= =) still hold without the continuous hypotheses. In this way, some
results have been established by Ricceri [35], Cubiotti [10], and the
references therein.
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6. APPLICATION TO CONSTRAINED GAMES

Before we conclude this paper, as an application of Corollary 4.2, we
derive one existence theorem of equilibria for constrained games. For the
convenience of our study, we first recall some notations and definitions.

Let I be the set of agents which is any (countable or uncountable) set.
Each agent (resp., player) has a choice (resp., strategy) set X,. Denote by
X_; and X the products II, . ; ; ., X; and II;_, X;, respectively. A map-
ping (or say, feasible) B;: X_;, — 2% and a loss function U;: X = II,_  X;
— R U {—o, +c0} are given. We denote by B the product mapping of
I;cB; and by x and x_; an element of X and an element of X _,),
respectively.

A constrained game (e.g., see Aubin [3, p. 282) T = (X;; B;; U), ., is
defined as a family of triples (X;; B;; U,), < ;- An equilibrium point for T is
x* € X such that

x* € B(x*) = I, B,(x%)) and U(x*) < U(x%;, x;)
forall x, e B(x*)and i €I

We note that if B,(x_;) == X, for all i € I, then the constrained game
reduces to the usually conventional game T' = (X;; U.), ., and the equilib-
rium is also called a Nash equilibrium.

In what follows, let ¢(x,y) =X, ,[U(x) — U(x_;,y)] and B:=

I, ., B;. Then we have the following existence result.

jel

THEOREM 6.1.  Let I' = (X; B;; U),; < ; be a constrained game and X, be
a non-empty convex subset of a locally convex topological vector space.
Suppose X X X is paracompact and the following conditions are satisfied:

(i) B: X =11,_,X, — 2% is lower semicontinuous with a closed graph

and non-empty convex values;

(i) 1 X XX - R U {—o0, +0} is a mapping such that x — y(x, y)
is lower semicontinuous in each non-empty compact subset C of X for each
fixedy € X;

(iii) x & co{y € X: (x, y) > O}) for each x € X;

(iv) the set {x € X : supyEB(x)g[;(x, y) > 0} is open in X;

(V) there exist a non-empty convex and compact subset X, of X and a
non-empty compact subset K of X such that for each y € X \ K, there exists
x € co(X, U {y}) with x € co{B(y) N {z € X : 4(y, z) > O}).

Then there exists x* € K such that for each i € I,

xfeB(x*) and U(x*) < sup U(x*,, x;).

x;€B(x*)
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Proof. By hypotheses (i)—(v), it follows that (X; B; ) satisfies all
conditions of Corollary 4.2. By Corollary 4.2, there exists x* € K such that
x* € B(x*) and sup, ¢ p ¥ (x*, y) <0. Now let y = (x}, y,). We have
that [U(x*) — U(x*,,y)] < 0 for all y, € B,(x*,) and i € I. Hence x* is
an equilibrium point of the constrained game I' = (X;; B;; U)),;, and the
proof is completed. |

Theorem 6.1 generalizes the corresponding results of Aubin [3, pp. 282-
283] and Aubin and Ekeland [4, pp. 350-351] in the following ways: (i) I is
any (countable or uncountable) set instead of a finite set; (ii) the feasible
correspondence B; is lower semicontinuous instead of continuous; and (iii)
the strategy set X; need not compact.

Remark 6.2. Finally, we point out that quasi-variational inequalities
and generalized quasi-variational inequality theory have numerous applica-
tions in nonlinear problems, games theory, and economics theory; more
details can be found in Aubin [3], Aubin and Ekeland [4], Border [8], Yuan
[49], and the references therein.
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