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Abstract

We study the semi-classical trace formula at a critical energy level for a Schrödinger operator
on Rn. We assume here that the potential has a totally degenerate critical point associated to a local
maximum. The main result, which establishes the contribution of the associated equilibrium in the
trace formula, is valid for all time in a compact subset of R and includes the singularity in t = 0.
For these new contributions the asymptotic expansion involves the logarithm of the parameter h.
Depending on an explicit arithmetic condition on the dimension and the order of the critical point,
this logarithmic contribution can appear in the leading term.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let us consider Ph a self-adjoint h-pseudodifferential operator, or more generally
h-admissible (see [16]), acting on a dense subset of L2(Rn). A classical and accessible
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problem is to study the asymptotic behavior, as h tends to 0, of the spectral distributions:

γ (E,h,ϕ) =
∑

|λj (h)−E|�ε

ϕ

(
λj (h) − E

h

)
, (1)

where the λj (h) are the eigenvalues of Ph, E is an energy level of the principal symbol
of Ph and ϕ a function. Here we suppose that the spectrum is discrete in [E − ε,E + ε],
a sufficient condition for this is given below. If p0 is the principal symbol of Ph we recall
that an energy E is regular when ∇p0(x, ξ) �= 0 on the energy surface:

ΣE = {
(x, ξ) ∈ T ∗Rn: p0(x, ξ) = E

}
, (2)

and critical when it is not regular. A classical result is the existence of a link between the
asymptotics of (1), as h tends to 0, and the closed trajectories of the Hamiltonian flow of p0
on the energy surface ΣE , i.e.,

lim
h→0

γ (E,h,ϕ) �
{
(t, x, ξ) ∈ R × ΣE : Φt(x, ξ) = (x, ξ)

}
,

where Φt = exp(tHp0) and Hp0 = ∂ξp0.∂x − ∂xp0.∂ξ . This duality between spectrum and
periodic orbits exists in a lot of various settings such as in the Selberg trace formula or for
the trace of the wave operator on compact manifolds [10]. In the semi-classical regime this
correspondence was initially pointed out in the physic literature: Gutzwiller [12], Balian
and Bloch [1]. For a rigorous mathematical approach, and when E is a regular energy, a
non-exhaustive list of references is Brummelhuis and Uribe [3], Paul and Uribe [14], and
more recently Combescure et al. [8], Petkov and Popov [15].

Equilibriums are suspected to give special contributions in both sides of the trace for-
mula. When E is no more a regular value, the asymptotic behavior of Eq. (1) depends on
the nature of the singularities of p on ΣE which is too complicated to be treated in general
position. The case of a nondegenerate critical energy for p0, that is such that the critical-set
C(p0) = {(x, ξ) ∈ T ∗Rn: dp0(x, ξ) = 0} is a compact C∞ manifold with a Hessian d2p0
transversely nondegenerate along this manifold, has been investigated first by Brummel-
huis et al. in [2]. They treated this question for quite general operators but for some “small
times,” i.e., it was assumed that 0 was the only period of the linearized flow in supp(ϕ̂).
Later, Khuat-Duy in [13] has obtained the contributions of the nonzero periods of the lin-
earized flow for supp(ϕ̂) compact, but for Schrödinger operators with symbol ξ2 + V (x)

and a potential V with nondegenerate critical points. Our contribution to this subject was
to generalize his result for some more general operators, always with ϕ̂ of compact support
and under some geometrical assumptions on the flow (see [4]). In [7] we have studied the
case of a Schrödinger operator near a degenerate minimum of the potential and the objec-
tive of the present work is to investigate the situation near a degenerate maximum which
leads to a totally different asymptotic problem.

After a reformulation, via the theory of Fourier integral operators of [11], the spectral
distribution of Eq. (1) can be expressed in terms of oscillatory integrals whose phases are
related to the classical flow of p0. Moreover, the asymptotic behavior as h tends to 0 of
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these oscillatory integrals is related to closed orbits of this flow. When (x0, ξ0) is a critical
point of p0, and hence an equilibrium of the flow, it is well known that the relation

Ft = Ker
(
dx,ξΦt (x0, ξ0) − Id

) �= {0}, (3)

leads to the study of degenerate oscillatory integrals. In the present work we consider the
case of a Schrödinger operator:

Ph = −h2Δ + V (x), (4)

but a generalization to an h-admissible operator (in the sense of [16]) of principal symbol
ξ2 + V (x) is outlined in the last section. In particular, we will consider the case of a
potential V with a single and degenerate critical point x0 attached to a local maximum.
A typical example is the top of a polynomial double well. An immediate consequence is
that the symbol admits a unique critical point (x0,0) on the energy surface {ξ2 + V (x) =
V (x0)} and that the linearized flow at this point is given by the flow of the free Laplacian.
A fortiori, Eq. (3) is automatically satisfied with

Ft = {
(δu, δv) ∈ Tx0,ξ0T

∗Rn: δv = 0
} � Rn, t �= 0,

F0 = Tx0,ξ0

(
T ∗Rn

) � R2n.

In particular, the stationary phase method cannot be applied at all in a microlocal neigh-
borhood of t = 0.

The core of the proof lies in establishing suitable local normal forms for the local phase
functions of a Fourier integral operator approximating the propagator in the semi-classical
regime and in a generalization of the stationary phase formula for these normal forms. This
generalization, based on an analytic representation of the associated class of oscillatory
integrals, is more complicated than in the case of a local minimum but however allows to
compute, explicitly, the leading term of the related local trace formula.

2. Hypotheses and main result

Let p(x, ξ) = ξ2 +V (x) where the potential V is smooth on Rn and real-valued. To this
symbol is attached the h-differential operator Ph = −h2Δ + V (x) and by a classical result
Ph is essentially autoadjoint, for h small enough, if V is bounded from below. Moreover,
if E is an energy level of p satisfying:

(H1). There exists ε0 > 0 such that p−1([E − ε0,E + ε0]) is compact,

then, by [16, Theorem 3.13] the spectrum σ(Ph) ∩ [E − ε,E + ε] is discrete and consists
in a sequence λ1(h) � λ2(h) � · · · � λj (h) of eigenvalues of finite multiplicities, if ε and
h are small enough. For example, (H1) is certainly satisfied if V goes to infinity at infinity.
More generally, this is true when E < lim inf∞ V .
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We want to study the asymptotic behavior of the spectral distribution:

γ (Ec, h,ϕ) =
∑

λj (h)∈[Ec−ε,Ec+ε]
ϕ

(
λj (h) − Ec

h

)
. (5)

We use the subscript Ec to recall that this energy level is critical. To avoid any problem of
convergence we impose the condition:

(H2). We have ϕ̂ ∈ C∞
0 (R) with a sufficiently small support near the origin.

Remark 1. This extra condition on the size of the support is simply here to avoid contribu-
tions of nontrivial closed orbits and can be easily relaxed. But, if the support of ϕ̂ is large,
the form of the asymptotic expansion changes. An explicit characterization of supp(ϕ̂) is
given in Lemma 8.

To simplify notations we write z = (x, ξ) for any point of the phase space and let be
ΣEc = p−1({Ec}). In the next condition degenerate means that the second derivative at the
critical point x0 is zero. We impose now the type of singularity of the potential:

(H3). On ΣEc the symbol p has a unique critical point z0 = (x0,0). This critical point is
degenerate and associated to a local maximum of the potential V of the form:

V (x) = Ec + V2k(x) +O
(‖x − x0‖2k+1), (6)

where V2k is homogeneous of degree 2k w.r.t. (x − x0). Also, k � 2 and V2k is definite
negative.

Remark 2. Since all previous derivatives are 0 in x0, the function V2k does not depend
on the choice of local coordinates near x0. Contrary to the case exposed in [7], z0 is not
isolated on ΣEc and the connected component of z0 in the energy surface can contain
nontrivial closed trajectories. A generalization to more general maximums, e.g., to a sum
of such homogeneous terms with different degrees, is possible but to simplify we only
consider (H3).

In this work, we are particulary interested in the contribution of the fixed point z0. To
understand the new phenomenon it suffices to study the localized problem:

γz0(Ec, h,ϕ) = 1

2π
Tr

∫
R

ei
tEc
h ϕ̂(t)ψw(x,hDx) exp

(
− it

h
Ph

)
Θ(Ph)dt. (7)

Here Θ is a function of localization near the critical energy surface ΣEc , ψ ∈ C∞
0 (T ∗Rn)

is micro-locally supported near z0 and ψw(x,hDx) stands for the associated operator
obtained by h-Weyl quantization. Rigorous justifications are given in Section 3 for the
introduction of Θ(Ph) and in Section 4 for ψw(x,hDx). In [7] it was proven:
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Theorem 3. Under (H1), if x0 is a local minimum of the potential, homogeneous as in (H3),
then for all ϕ with ϕ̂ ∈ C∞

0 (R) we have

γz0(Ec, h,ϕ) ∼ h−n+ n
2 + n

2k

∑
j,l∈N2

h
j
2 + l

2k Λj,l(ϕ),

where the Λj,l are some computable distributions. The leading coefficient is

Λ0,0(ϕ) = S(Sn−1)

(2π)n

∫
Sn−1

∣∣V2k(η)
∣∣− n

2k dη

∫
R+×R+

ϕ
(
u2 + v2k

)
un−1vn−1 dudv, (8)

where S(Sn−1) is the surface of the unit sphere of Rn.

These spectral estimates, near a local maximum of the potential, are related to a local
problem. Precisely, the asymptotic behavior of

1

(2πh)n

∫
T ∗Rn

ϕ

(
ξ2 + V2k(x)

h

)
dx dξ, h → 0+, (9)

computes the coefficient Λ0,0 and the degree w.r.t. h. This result can be interpreted as
a scaling w.r.t. h of the trace of ϕ(−Δ + V2k), cf. the first term of the trace formula.
A fortiori, at the critical energy level and for a local minimum, to replace V by V2k is
enough to compute the leading term of the expansion. In the present contribution, such an
interpretation cannot hold since the trace of ϕ(−Δ + V2k) generally does not exists if V2k

is negative definite.
The main result of the present work is:

Theorem 4. Under hypotheses (H1) to (H3) we have

γz0(Ec, h,ϕ) ∼ h−n+ n
2 + n

2k

∑
m=0,1

∑
j,l∈N2

h
j
2 + l

2k log(h)mΛj,l,m(ϕ),

where Λj,l,m ∈ S ′(R) and sing supp(Λj,l,m) ⊂ {0}.
As concerns the leading term of the expansion, when n(k+1)

2k
/∈ N, the first nonzero coef-

ficient of this local trace formula is given by

h−n+ n
2 + n

2k 〈Tn,k, ϕ〉S(Sn−1)

(2π)n

∫
Sn−1

∣∣V2k(η)
∣∣− n

2k dη. (10)



300 B. Camus / J. Differential Equations 226 (2006) 295–322
The distributions Tn,k are given by

〈Tn,k, ϕ〉 =
∫
R

(
C+

n,k|t |
n k+1

2k
−1

+ + C−
n,k|t |

n k+1
2k

−1
−

)
ϕ(t) dt, if n is odd, (11)

〈Tn,k, ϕ〉 = C−
n,k

∫
R

|t |n
k+1
2k

−1
− ϕ(t) dt, if n is even. (12)

But if n(k+1)
2k

∈ N and n is odd then the top-order term is

Cn,k log(h)h−n+ n
2 + n

2k
S(Sn−1)

(2π)n

∫
Sn−1

∣∣V2k(η)
∣∣− n

2k dη

∫
R

|t |n k+1
2k

−1ϕ(t) dt. (13)

Finally, if n(k+1)
2k

∈ N and n is even, C+
n,k = C−

n,k and we have

C±
n,kh

−n+ n
2 + n

2k
1

(2π)n

∫
Sn−1

∣∣V2k(η)
∣∣− n

2k dη

∫
R

|t |n k+1
2k

−1ϕ(t) dt. (14)

In all expressions above Cn,k , C±
n,k are nonzero universal constants depending only on n

and k.

For an explicit formulation of the numbers C±
n,k , see Section 6. The arithmetical con-

dition on k and n might be surprising at the first look. But this condition becomes clear
when the oscillatory integrals of our spectral problem are analytically reformulated in Sec-
tion 6. Viewing the top-order coefficient of the trace as a tempered distribution acting on
the Schwartz function ϕ, i.e.,

γz0(Ec, ϕ,h) ∼ f (h)〈γ,ϕ〉, h → 0+,

in any cases we obtain that sing supp(γ ) = {0}. Finally, for n = 1 the contributions in
Eqs. (10), (13) are bigger than the standard Weyl estimates:

γ (E,ϕ,h) ∼ h1−n(2π)−nϕ̂(0)LVol(ΣE),

where E is a regular energy. Applying the results of [2, Sections 5 and 6], the local
Weyl law is modified for n = 1 and the counting function of eigenvalues in some interval
[Ec − ah,Ec + bh], a, b > 0, changes according to Theorem 4. A geometrical interpreta-
tion is that n = 1 is the only case where the Liouville measure LVol has a non-integrable
singularity on ΣEc located in z0.

3. Oscillatory representation of the spectral functions

The construction below is more or less classical and will be sketchy. For a more detailed
exposition the reader can consult [2,4] or [13].
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Let be ϕ ∈ S(R) with ϕ̂ ∈ C∞
0 (R), we recall that

γ (Ec, h,ϕ) =
∑

λj (h)∈Iε

ϕ

(
λj (h) − Ec

h

)
,

where Iε = [Ec − ε,Ec + ε], with 0 < ε < ε0, and p−1(Iε0) compact in T ∗Rn. We localize
near the critical energy level Ec by inserting a cut-off function Θ ∈ C∞

0 (]Ec − ε,Ec + ε[),
such that Θ = 1 in a neighborhood of Ec and 0 � Θ � 1 on R. The corresponding decom-
position is

γ (Ec, h,ϕ) = γ1(Ec, h,ϕ) + γ2(Ec, h,ϕ),

with

γ1(Ec, h,ϕ) =
∑

λj (h)∈Iε

(1 − Θ)
(
λj (h)

)
ϕ

(
λj (h) − Ec

h

)
, (15)

γ2(Ec, h,ϕ) =
∑

λj (h)∈Iε

Θ
(
λj (h)

)
ϕ

(
λj (h) − Ec

h

)
. (16)

Since ϕ ∈ S(R) a classical estimate, see, e.g., [5, Lemma 1], is

γ1(Ec, h,ϕ) = O
(
h∞)

, as h → 0. (17)

By inversion of the Fourier transform we have

Θ(Ph)ϕ

(
Ph − Ec

h

)
= 1

2π

∫
R

ei
tEc
h ϕ̂(t) exp

(
− it

h
Ph

)
Θ(Ph)dt.

The trace of the left-hand side is precisely γ2(Ec, h,ϕ) and Eq. (17) gives

γ (Ec, h,ϕ) = 1

2π
Tr

∫
R

ei
tEc
h ϕ̂(t) exp

(
− it

h
Ph

)
Θ(Ph)dt +O

(
h∞)

. (18)

If Uh(t) = exp(− it
h
Ph) is the evolution operator, we can approximate Uh(t)Θ(Ph) by a

Fourier integral-operator depending on a parameter h. Let Λ be the Lagrangian manifold
associated to the flow of p:

Λ = {
(t, τ, x, ξ, y, η) ∈ T ∗R × T ∗Rn × T ∗Rn: τ = p(x, ξ), (x, ξ) = Φt(y, η)

}
.

We recall that I (X,Λ) is the class of oscillatory integrals based on X and whose La-
grangian manifold is Λ. The next result is a semi-classical version of a well-known more
general result:
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Theorem 5. The operator Uh(t)Θ(Ph) is an h-FIO associated to Λ. For each N ∈ N there
exists U

(N)
Θ,h(t) with integral kernel in I (R2n+1,Λ) and R

(N)
h (t) bounded, with a L2-norm

uniformly bounded for 0 < h � 1 and t in a compact subset of R, such that

Uh(t)Θ(Ph) = U
(N)
Θ,h(t) + hNR

(N)
h (t).

For a proof we refer, e.g., to Duistermaat [9]. Next, the remainder associated to R
(N)
h (t)

is controlled by the classical trick:

Corollary 6. Let Θ1 ∈ C∞
0 (R), with Θ1 = 1 on supp(Θ) and supp(Θ1) ⊂ Iε , then ∀N ∈ N

Tr

(
Θ(Ph)ϕ

(
Ph − Ec

h

))
= 1

2π
Tr

∫
R

ϕ̂(t)e
i
h
tEcU

(N)
Θ,h(t)Θ1(Ph) dt +O

(
hN−n

)
.

The proof is easy by cyclicity of the trace (see [5] or [16]).
For the particular case of a Schrödinger operator the BKW ansatz shows that the integral

kernel of U
(N)
Θ,h(t) can be recursively constructed as

K
(N)
h (t, x, y) = 1

(2πh)n

∫
Rn

b
(N)
h (t, x, y, ξ)e

i
h
(S(t,x,ξ)−〈y,ξ〉) dξ,

b
(N)
h = b0 + hb1 + · · · + hNbN,

where S satisfies the Hamilton–Jacobi equation:

{
∂tS(t, x, ξ) + p(x, ∂xS(t, x, ξ)) = 0,

S(0, x, ξ) = 〈x, ξ 〉.
In particular, we obtain that

{(
t, ∂tS(t, x, η), x, ∂xS(t, x, η), ∂ηS(t, x, η),−η

)} ⊂ Λflow,

and that the function S is a generating function of the flow, i.e.,

Φt

(
∂ηS(t, x, η), η

) = (
x, ∂xS(t, x, η)

)
. (19)

Inserting this approximation in Eq. (18) we find that, modulo an error O(hN−n), the trace
γ (Ec, h,ϕ) can be written for all N ∈ N as

γ (Ec, h,ϕ) =
∑
j<N

hj

(2πh)n

∫
R×T ∗Rn

e
i
h
(S(t,x,ξ)−〈x,ξ〉+tEc)aj (t, x, ξ)ϕ̂(t) dt dx dξ, (20)

where aj (t, x, η) = bj (t, x, x, η) is the evaluation of bj on the diagonal {x = y}.
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Remark 7. By [16, Theorem 3.11 and Remark 3.14], Θ(Ph) is h-admissible with a sym-
bol supported in p−1(Iε). This allows to consider only oscillatory-integrals with compact
support.

4. Classical dynamics near the equilibrium

The critical points of the phase function of Eq. (20) are given by⎧⎨
⎩

Ec = −∂tS(t, x, ξ),

x = ∂ξS(t, x, ξ),

ξ = ∂xS(t, x, ξ),

⇔
{

p(x, ξ) = Ec,

Φt (x, ξ) = (x, ξ),

where the right-hand side defines a closed trajectory of the flow inside ΣEc . Since we
are mainly interested in the contribution of the critical point, we choose a function ψ ∈
C∞

0 (T ∗Rn), with ψ = 1 near z0, hence

γ2(Ec, h,ϕ) = 1

2π
Tr

∫
R

ei
tEc
h ϕ̂(t)ψw(x,hDx) exp

(
− i

h
tPh

)
Θ(Ph)dt

+ 1

2π
Tr

∫
R

ei
tEc
h ϕ̂(t)

(
1 − ψw(x,hDx)

)
exp

(
− i

h
tPh

)
Θ(Ph)dt.

Under the additional hypothesis of having a clean flow, the asymptotic expansion of the
second term is given by the semi-classical trace formula on a regular level. We also observe
that the contribution of the first term, which is precisely the distribution γz0(Ec, h,ϕ) of
Theorem 4, is local. Hence this allows to introduce local coordinates near z0. As pointed
out in Remark 2, {z0} is not a connected component of ΣEc and elements{

(T , z): T �= 0, z ∈ ΣEc ∩ supp(ψ), ΦT (z) = z
}

could contribute in the asymptotic expansion of γz0(Ec, h,ϕ). In fact, the next lemma will
solve this problem:

Lemma 8. There exists a T > 0, depending only on V , such that Φt(z) �= z for all
z ∈ ΣEc \ {z0} and all t ∈ ]−T ,0[ ∪ ]0, T [.

Proof. If Hp is our Hamiltonian vector field and z = (x, ξ) we have

∥∥Hp(z1) − Hp(z2)
∥∥2 = 4‖ξ1 − ξ2‖2 + ∥∥∇xV (x1) − ∇xV (x2)

∥∥2
.

Since our potential is smooth, when z1 and z2 are in the energy surface ΣEc , which is
compact by assumption, there exists M > 0 such that∥∥Hp(z1) − Hp(z2)

∥∥ � M‖z1 − z2‖.
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The main result of [17] shows that any periodic trajectory inside ΣEc has a period p such
that p � 2π

M
. �

This result allows to distinguish out the contribution of elements {t, z0} in the local
object γz0(Ec, ϕ,h). Precisely, if we choose ϕ̂ ∈ C∞

0 (]−p,p[), where p is chosen as in
Lemma 8 and depends only on V , any periodic orbit of ΣEc has a period greater than p

and a fortiori does not contribute. Now, we restrict our attention to the singular contribution
generated by the critical point. Since z0 is an equilibrium of the flow we obtain that

dx,ξΦt (z0) = exp(tH−Δ), ∀t.

The computation of this linear operator is easy and gives:

dx,ξΦt (z0)(u, v) = (u + 2tv, v), ∀(u, v) ∈ Tz0T
∗Rn.

From classical mechanics we know that the singularities, in the sense of the Morse theory,
of the function S(t, x, ξ) − 〈x, ξ 〉 are supported in the set

Ft = Ker
(
dx,ξΦt (z0) − Id

)
,

see, e.g., [4, Lemma 9]. As mentioned in the introduction we obtain

F0 = Tz0

(
T ∗Rn

) � R2n,

Ft = {
(u, v) ∈ Tz0(T

∗Rn): v = 0
} � Rn, t �= 0.

To simplify notations, and until further notice, all derivatives will be taken with respect to
the initial conditions (x, ξ). The next nonzero terms of the Taylor expansion of the flow
are computed via the technical result:

Lemma 9. Let be z0 an equilibrium of the C∞ vector field X and Φt the flow of X. Then
for all m ∈ N∗, there exists a polynomial map Pm, vector-valued and of degree at most m,
such that

dmΦt(z0)
(
zm

) = dΦt(z0)

t∫
0

dΦ−s(z0)Pm

(
dΦs(z0)(z), . . . , d

m−1Φs(z0)
(
zm−1))ds.

For a proof we refer to [4] or [5]. Here we shall use that our vector field is

Hp = 2ξ
∂

∂x
− ∂xV (x)

∂

∂ξ
.

We identify the linearized flow in z0 with a matrix multiplication operator:

dΦt(z0) =
(

1 2t

0 1

)
.
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Clearly, with the hypothesis (H3) we obtain the polynomials:

Pj = 0, ∀j ∈ {2, . . . ,2k − 2},

P2k−1(Y1, . . . , Y2k−2) =
(

0
d2k−1∇xV (x0)(Y

2k−1
1 )

)
�= 0,

where the notation Y l
1 stands for (Y1, . . . , Y1): l-times. Inserting the definition of dΦs(z0)

and integration from 0 to t yields

d2k−1Φt(z0)
(
(x, ξ)2k−1) =

(
1 2t

0 1

) t∫
0

(
2sd2k−1∇xV (x0)((x + 2sξ)2k−1)

−d2k−1∇xV (x0)((x + 2sξ)2k−1)

)
ds.

Terms of higher degree can be obtained similarly by successive integrations. Finally, if we
assume that z0 = 0, since there is no intermediate terms between terms of degree 1 and
2k − 1, the jet of order 2k − 1 of the flow is

Φt(z) = dΦt(0)(z) + 1

(2k − 1)!d
2k−1Φt(0)

(
z2k−1) +O

(‖z‖2k
)
, (21)

and can be computed explicitly with a given V2k .

5. Normal forms of the phase function

Since the contribution we study is local, cf. the introduction of ψ in Eq. (7), we work
with some local coordinates (x, ξ) near the critical point z0. Via these coordinates we
identify locally T ∗Rn ∩ V (z0) with an open of R2n. With z = (x, ξ) ∈ R2n, we define

Ψ (t, z) = Ψ (t, x, ξ) = S(t, x, ξ) − 〈x, ξ 〉 + tEc. (22)

We start by a more precise description of our phase function.

Lemma 10. Near z0, here supposed to be 0 to simplify, we have

Ψ (t, x, ξ) = −t‖ξ‖2 + S2k(t, x, ξ) + R2k+1(t, x, ξ), (23)

where S2k is homogeneous of degree 2k w.r.t. (x, ξ) and is uniquely determined by V2k .
Moreover, R2k+1(t, x, ξ) = O(‖(x, ξ)‖2k+1), uniformly for t in a compact subset of R.

Proof. With the particular structure of the flow in z0, cf. Eq. (21), we search our local
generating function as

S(t, x, ξ) = −tEc + S2(t, x, ξ) + S2k(t, x, ξ) +O
(∥∥(x, ξ)

∥∥2k+1)
,
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where the Sj are time-dependent and homogeneous of degree j w.r.t. (x, ξ). Starting from
the implicit relation Φt(∂ξS(t, x, ξ), ξ) = (x, ∂xS(t, x, ξ)) and with Eq. (21), we obtain
that

S2(t, x, ξ) = 〈x, ξ 〉 − t‖ξ‖2.

Now we compute the term S2k . To do so, we retain only terms homogeneous of degree
2k − 1 and we get

dΦt(0)
(
(∂ξ S,0)

) + 1

(2k − 1)!d
2k−1Φt(0)

(
(∂ξS2, ξ)2k−1) = (0, ∂xS2k).

If J is the matrix of the usual simplectic form σ on R2n, we have

J∇S2k(t, x, ξ) = 1

(2k − 1)!d
2k−1Φt(0)

(
(x − 2tξ, ξ)2k−1).

By homogeneity and with Eq. (21) we obtain

S2k(t, x, ξ) = 1

(2k)!σ
(
(x, ξ), d2k−1Φt(0)

(
(x − 2tξ, ξ)2k−1)).

This gives the result since d2k−1Φt(0) is well determined by V2k . �
Fortunately, we will not have to compute the remainder explicitly because of some

homogeneous considerations. To prepare the construction of our normal forms, we study
carefully S2k .

Corollary 11. The function S2k satisfies:

S2k(t, x, ξ) = −tV2k(x) + t2〈ξ,∇xV2k(x)
〉 + n∑

j,l=1

ξj ξlgj,l(t, x, ξ), (24)

where the functions gj,l are smooth and vanish in x = 0.

Proof. If f is homogeneous of degree 2k > 2 w.r.t. (x, ξ) we can write

f (t, x, ξ) = f1(t, x) + 〈
ξ, f2(t, x)

〉 + n∑
j,l=1

ξj ξlf
(j l)

3 (t, x).

It remains to compute the function f1 and the vector field f2. We have

S2k(t, x, ξ) = 1

(2k)!σ
(
(x, ξ), dΦt (0)

) t∫ (
2sd2k−1∇xV (0)((x + 2(s − t)ξ)2k−1)

−d2k−1∇xV (0)((x + 2(s − t)ξ)2k−1)

)
ds.
0
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Clearly, the term of degree homogeneous of degree 2k w.r.t. x is given by

− 1

(2k)!
t∫

0

〈
x, d2k−1∇xV (0)

(
x2k−1)〉ds = − t

2k

〈
x,∇xV2k(x)

〉 = −tV2k(x),

where the last result holds by homogeneity. As concerns the linear term w.r.t. ξ , by combi-
natoric and linear operations, this one can be written:

t2

(2k)!
(
(2k − 1)

〈
x, d2k−1∇xV (0)

((
x2k−2, ξ

))〉 + 〈
ξ, d2k−1∇xV (0)

(
x2k−1)〉)

= t2

2k

(
(2k − 1)

〈∇xV2k(x), ξ
〉 + 〈

ξ,∇xV2k(x)
〉) = t2〈ξ,∇xV2k(x)

〉
.

This completes the proof. �
These two terms can be also derived by a heuristic method. Starting from the Hamilton–

Jacobi equation we obtain S(0, x, ξ) = 〈x, ξ 〉, ∂tS(0, x, ξ) = −p(x, ξ) and also

∂2
t,t S(t, x, ξ) = −〈

∂ξp
(
x, ∂xS(t, x, ξ)

)
, ∂2

t,xS(t, x, ξ)
〉
.

But, for our flow, in t = 0 we have simply

∂2
t,t S(0, x, ξ) = 2

〈
ξ, ∂xV (x)

〉
.

Hence the Taylor expansion in t = 0 provides a good result with few calculations. Unfortu-
nately, this approach gives no information about the degree, w.r.t. (x, ξ), of the remainders
O(td) for each d � 3.

We have enough material to build the normal form of our phase function. In the fol-
lowing, the notation f � g means that f and g are conjugated by a local diffeomorphism,
apart perhaps on a set of zero measure.

Lemma 12. In a neighborhood of z = z0, there exists local coordinates χ such that

Ψ (t, z) � −χ0
(
χ2

1 − χ2k
2

)
. (25)

Proof. We can here assume that z0 is the origin. We proceed in two steps. First we want
to eliminate terms of high degree. Starting form Eq. (24) we define

E(t, x, ξ) =
∑
j,l

ξj ξlgj,l(t, x, ξ).

Since S(t, x, ξ)−〈x, ξ 〉 = O(t), we have Ψ (t, z) = O(t). Hence, all terms of the expansion
are O(t) and this allows to write E = tẼ. Similarly, we write R2k+1 = tR̃2k+1 in Eq. (23).
To obtain a blow-up of the singularity, we use polar coordinates x = rθ , ξ = qη, θ, η ∈
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Sn−1(R), q, r ∈ R+. This induces naturally a Jacobian rn−1qn−1. By construction, there
exists a function F vanishing in (q, r) = (0,0) such that

Ẽ(t, rθ, qη) = q2F(t, r, θ, q, η). (26)

With Lemma 10 and Corollary 11, near z0 the phase Ψ (t, z) can be written:

−t
(
q2 + r2kV2k(θ) − tqr2k−1〈η,∇V2k(θ)

〉 + q2F(t, r, θ, q, η) + R̃2k+1(t, rθ, qη)
)
.

Thanks to the Taylor formula, the remainder R̃2k+1 can be written as

R̃2k+1(t, rθ, qη) = q2R1(t, r, θ, q, η) + r2kR2(t, r, θ, q, η),

where R1 vanishes in r = 0 and R2 vanishes in q = 0. We obtain

Ψ (t, z) � −t
(
q2α1(t, r, θ, q, η) − r2kα2(t, r, θ, q, η)

) + t2qr2k−1〈η,∇V2k(θ)
〉
,

where we have defined:

α1(t, r, θ, q, η) = (1 + R1 + F)(t, r, θ, q, η),

α2(t, r, θ, q, η) = ∣∣V2k(θ)
∣∣ + R2(t, r, θ, q, η).

Since |V2k(θ)| > 0 on Sn−1, we can eliminate α1 and α2 by a local change of coordinates:

(
qα

1
2
1 , rα

1
2k

2

)
→ (Q,R), (27)

near (q, r) = (0,0). This is acceptable since the corresponding Jacobian is

∣∣J (Q,R)
∣∣(0,0) = ∣∣V2k(θ)

∣∣ 1
2k �= 0. (28)

In these local coordinates, and still using (r, q) instead of (R,Q), we obtain

Ψ (t, z) � −t
(
q2 − r2k

) + t2qr2k−1ε(t, r, θ, q, η),

where

ε(t, r, θ, q, η) = 〈
η,∇V2k(θ)

〉(
α

− 1
2

1 α
1−2k

2k

2

)
(t, r, θ, q, η).

In a second time, we eliminate the nonlinear term in t . To do so, we write

−t
(
q2 − tqr2k−1ε

) = −t

(
q − t

r2k−1ε

)2

+ 1
t3r4k−2ε2.
2 4
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Now, we can factor out the last term if we use

α3(t, r, θ, q, η) =
(

1 − t2

4
r4k−2ε2(t, r, θ, q, η)

)
.

Then the change of variables r → α
− 1

2k

3 r gives

Ψ (t, z) � −t

((
q − t

2
r2k−1ε̃(t, r, θ, q, η)

)2

− r2k

)
,

where

ε̃(t, r, θ, q, η) = α
1−2k

2k

3 ε
(
t, α

− 1
2k

3 r, t, θ, q, η
)
.

Finally, if we define:

(χ0, χ2, χ3, . . . , χ2n)(t, r, θ, q, η) = (t, r, θ, η), (29)

χ1(t, r, θ, q, η) = q − t

2
r2k−1ε̃(t, r, θ, q, η), (30)

the phase is −χ0(χ
2
1 − χ2k

2 ) which is the desired result. �
If we use these local coordinates we obtain a simpler problem:∫

e− i
h
χ0(χ

2
1 −χ2k

2 )A(χ0, χ1, χ2) dχ0 dχ1 dχ2, (31)

where the amplitude A is obtained via pullback and integration, i.e.,

A(χ0, χ1, χ2) =
∫

χ∗(a|Jχ |)dχ4 . . . dχ2n. (32)

Now, we make several comments on this construction:

Remark 13. Near (x0, ξ0) we have the relations χ2 = 0 ⇔ x = x0 and χ1(t,0, θ, q, η) =
0 ⇔ ξ = 0. Also, because of the introduction of the polar coordinates, our amplitude satis-
fies:

A(χ0, χ1, χ2) = O
(
χn−1

l

)
, l = 1,2.

Finally, each diffeomorphism used has Jacobian 1 in z0 excepted the correction w.r.t. α2,
cf. Eq. (28), which induces by pullback of the measure rn−1 dr a multiplication by

∣∣V2k(θ)
∣∣− n

2k . (33)
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These facts will be useful, in the next section, to express the main coefficient w.r.t. h of
γz0(Ec, ϕ,h) independently of the coordinates χ .

6. Proof of the main result

Let be 2k the even integer attached to our potential. We state two technical results which
allow to compute the asymptotic expansion of our oscillatory integrals. The first one proves
the existence of a total asymptotic expansion for the family of oscillatory integrals attached
to our normal forms. The second result, which is the hardest part of this work, computes
the main coefficients of this expansion w.r.t. h in the trace formula.

Lemma 14. For a ∈ C∞
0 (R × [0,∞]2), the oscillatory integrals

J (λ) =
∫

R×R+×R+

e−iλχ0(χ
2
1 −χ2k

2 )A(χ0, χ1, χ2) dχ0 dχ1 dχ2, (34)

admit, as λ → ∞, the asymptotic expansion

J (λ) ∼
∞∑

j=0

λ− l+1
2k Cj (A) +

∞∑
j=0

λ−j+1log(λ)Dj (A), (35)

where Cj and Dj are universal (computable) distributions.

Remark 15. The result stated obviously also holds for integration on R×R2 if we split up
the domain of integration and use the symmetry w.r.t. χ1 and χ2 of the phase. Also, note
that terms with a logarithm of the parameter only occur when (j/2k) ∈ N∗.

To compute the leading term of the trace formula we need a particular and explicit result
which explains the effect of the dimension n in our spectral problem. For A ∈ C∞

0 (R×R2+)

we define:

I (λ) =
∫

R×R+×R+

e−iλt (r2−q2k)A(t, r, q)rn−1qn−1 dt dr dq. (36)

We note t± = max(±t,0) and Â the partial Fourier transform of A w.r.t. t .

Lemma 16. If n(k + 1)/2k is not an integer then, as λ → ∞, we have

I (λ) = C0(A)λ−n k+1
2k +O

(
log(λ)λ− n(k+1)+1

2k

)
. (37)

The distributional coefficients are given by:
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C0(A) = C−
n,k

∫
R

t
n k+1

2k
−1

− Â(t,0,0) dt, if n is even,

C0(A) =
∫
R

(
C−

n,kt
n k+1

2k
−1

− + C+
n,kt

n k+1
2k

−1
+

)
Â(t,0,0) dt, if n is odd.

But if n(k + 1)/2k ∈ N∗ and n is odd, then

I (λ) = −C0(A)λ−n k+1
2k log(λ) +O

(
λ− n(k+1)+1

2k

)
, (38)

with

C0(A) = Cn,k

∫
R

|t |n k+1
2k

−1Â(t,0,0) dt.

Finally, if n(k + 1)/2k ∈ N∗ and n is even the asymptotic is given by Eq. (37) with

C0(A) =
∫
R

(
C̃−

n,kt
n k+1

2k
−1

− + C̃+
n,kt

n k+1
2k

−1
+

)
Â(t,0,0) dt.

Remark 17. We will not detail all the coefficients of the asymptotic expansion because
these are given by lengthy formulae and it is, a priori, not possible to express invariantly
their contributions to the trace formula. Anyhow, these can be explicitly computed with
the procedure below. Also if n(k+1)+1

2k
/∈ N the remainder of Eq. (37) can be optimized to

O(λ− n(k+1)+1
2k ).

Before entering in the proof we would like to ad a comment suggested by an interesting
remark of D. Barlet. The Berstein–Sato polynomial of our phase χ0(χ

2
1 − χ2k

2 ) can be
explicitly computed as

B(z) = (z + 1)3
2k−2∏

l=0, l �=k+1

(
z + l + k − 1

2k

)
. (39)

In particular, we could expect to obtain terms log(λ)2 in the expansion since 1/B has
a triple pole in z = 1. But we will see that if the amplitude is smooth there is no such
contribution.

Proof of Lemma 14. To attain our objective we can restrict the proof of the lemma to
an amplitude A(t, r, q) = a(t)B(r, q). This is justified by a standard density argument in
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C∞
0 and the fact that the coefficients obtained below are linear continuous functionals.

By integration w.r.t. t we obtain

J (λ) =
∫

R
2+

â
(
λ
(
r2 − q2k

))
B(r, q) dr dq.

This shows that the asymptotic is supported in the set r = qk since â decreases faster
than any polynomial at infinities. Although the new problem looks simple it is still too
complicated to obtain an explicit solution. First we split our integral as

J (λ) = J+(λ) + J−(λ), (40)

with

J+(λ) =
∫

0�qk�r<∞
â
(
λ
(
r2 − q2k

))
B(r, q) dr dq,

J−(λ) =
∫

0�r�qk<∞
â
(
λ
(
r2 − q2k

))
B(r, q) dr dq.

Now we define the Melin transforms of â:

M+(z) =
∞∫

0

tz−1â(t) dt, (41)

M−(z) =
∞∫

0

tz−1â(−t) dt. (42)

By Melin inversion formula we obtain that

J+(λ) = 1

2iπ

∫
c+iR

M+(z)

∫
0�qk�r<∞

(
λ
(
r2 − q2k

))−z
B(r, q) dr dq dz. (43)

Here 0 < c < (2k)−1 so that the Melin inversion makes sense. In order to desingularize the
remaining part of the phase we introduce the new coordinates r = sqk , s > 0 and q > 0.
We accordingly obtain that

J+(λ) = 1

2iπ

∫
M+(z)λ−z

∞∫ ∞∫ (
s2 − 1

)−z
q−2kzB

(
sqk, q

)
dsqk dq dz (44)
c+iR s=1 q=0
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and

J−(λ) = 1

2iπ

∫
c+iR

M−(z)λ−z

1∫
s=0

∞∫
q=0

∣∣s2 − 1
∣∣−z

q−2kzB
(
sqk, q

)
dsqk dq dz. (45)

To control the remainders, and also to justify the changes of path below, we recall the
following classical result:

Lemma 18. If a ∈ S(R) then we have

∀c > 0, M±(c + iy) ∈ S(Ry), (46)

a fortiori M±(c + iy) ∈ L1(R, dy).

Our integrals can be expanded via Cauchy’s residue method by pushing of the com-
plex path of integration to the right. The associated distributional factors are analytic
(cf. Lemma 19 below) and if we choose d > c conveniently we obtain

J+(λ) =
∑

c<zi<d

Res(zi) + R(d,λ),

where the remainder satisfies:

∣∣R(d,λ)
∣∣ � C(B)λ−d

∥∥M+(d + iy)
∥∥

L1(R,dy)
= O

(
λ−d

)
. (47)

Here, for each d the constant C(B) involves the L1-norm of a finite number of derivatives
of B . This will indeed lead to an asymptotic expansion.

The resulting asymptotics are related to poles of meromorphic distributions z �→
M±(z)λ−z(s2 − 1)−z(q2k)−z and it remains now to extend analytically these distributions.

Lemma 19. The family of distributions on C∞
0 (R2+) : z → |s2 −1|−zq−2kz, initially defined

in the domain �(z) < 1/2k, is meromorphic on C with poles located at the rational points:

zj,k = j

2k
, j ∈ N∗. (48)

These poles are of order 2 if zj,k ∈ N∗ and of order 1, otherwise.

Proof. We first observe that for s � 0 we can write

∣∣s2 − 1
∣∣−z = (s + 1)−z|s − 1|−z.

Since we will integrate on s � 0 the first term defines clearly an entire distribution. Now
we remark that for s � 1
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∂2k+1

∂s∂q2k
(s − 1)1−z

(
q2k

)1−z = b0(z)(s − 1)−z
(
q2k

)−z
,

b0(z) = (1 − z)

2k∏
j=1

(j − 2kz).

Hence for �(z) > 0 we can write:

∞∫
s=1

∞∫
q=0

(
s2 − 1

)−z
q−2kzf (s, q) ds dq

= −1

b0(z)

∞∫
s=1

∞∫
q=0

(s − 1)1−zq2k(1−z) ∂2k+1

∂s∂q2k
(1 + s)−zf (s, q) ds dq. (49)

Now, the r.h.s. is meromorphic in �(z) < 1 + 1/2k and we can iterate to get the analytic
continuation in �(z) < l + 1/2k, l ∈ N arbitrary. The poles, and their order, can be read off
the rational functions of z:

Rl (z) =
l−1∏
m=0

1

b0(z − m)
. (50)

Finally, a similar construction holds if we integrate w.r.t. s ∈ [0,1]. �
With the residue method and classical estimates for the remainder (cf. Lemma 18) the

last lemma proves the existence of a total asymptotic expansion for the integrals J (λ). This
ends the proof of Lemma 14. �
Proof of Lemma 16. With some slight modifications, we can apply the results above to
our initial problem. Taking Remark 13 into account, we have to compute asymptotics of
oscillatory integrals with amplitudes:

B(r, q) = b(r, q)rn−1qn−1. (51)

By substitution, we have to study the poles of

g+(z) = M+(z)

∞∫
s=1

∞∫
q=0

(
s2 − 1

)−z
q−2kzb

(
sqk, q

)
sn−1qn(k+1)−1 ds dq, (52)

g−(z) = M−(z)

1∫ ∞∫ ∣∣s2 − 1
∣∣−z

q−2kzb
(
sqk, q

)
sn−1qn(k+1)−1 ds dq. (53)
s=0 q=0
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Here b(sqk, q) is in general no more of compact support but all expressions and manip-
ulations will be legal because terms depending on z will decrease faster and faster when
we will shift the path of integrations. To avoid unnecessary calculations and discussions
below, we remark that we can commute the polynomial weights w.r.t. q via the relations:

∂2k+1

∂s∂q2k
(s − 1)1−zq2k(1−z)qn(k+1)−1 = b(z)(s − 1)−zq−2kzqn(k+1)−1,

b(z) = (z − 1)

2k∏
j=1

(
j − 2kz + n(k + 1) − 1

)
.

More generally, with the differential operator:

D = ∂2k+1

∂s∂q2k
,

after l-iterations one obtains

Dl(s − 1)l−zq2k(l−z)qn(k+1)−1 = Bl (z)(s − 1)−zq−2kzqn(k+1)−1,

Bl (z) =
l−1∏
i=0

b(z − i), l ∈ N∗.

A priori, this shows that there is poles of order 2 at positive integers and simple poles at
rational points:

zp,j,n,k = p + j + n(k + 1) − 1

2k
/∈ N, p ∈ N, j ∈ [1, . . . ,2k]. (54)

For example, the analytic extension in the half-plane �(z) < l, l ∈ N∗, of the complex
function appearing in the first integral is explicitly given by

(−1)l

Bl (z)
M+(z)λ−z

∞∫
s=1

∞∫
q=0

q2k(l−z)+n(k+1)−1Dl(1 + s)−zb
(
sqk, q

)
sn−1 ds dq. (55)

A similar relation for the term involving M−(z) is

D|1 − s|1−zqn(k+1)−1−2k(1−z) = −b(z)|1 − s|−zqn(k+1)−1−2kz.

This change of sign, due to the modulus, will be important below because of some sym-
metries. After l-iterations we have

1

Bl (z)
M−(z)λ−z

1∫
s=0

∞∫
q=0

q2k(l−z)+n(k+1)−1Dl(1 + s)−zb
(
sqk, q

)
sn−1 ds dq. (56)



316 B. Camus / J. Differential Equations 226 (2006) 295–322
Remark 20. The smallest double root of b, and a fortiori of each Bl , is greater than zmin =
n(k+1)

2k
. In fact we will see below that there is no poles, and a fortiori no contributions,

before this value. This insures that all integrals involved in the asymptotic expansion are
absolutely convergent.

A carefully examination of the integral w.r.t q shows that all coefficients are zero until
we reach the pole:

zmin = n
k + 1

2k
= n

2
+ n

2k
. (57)

This is justified by the fact that if α > 0, β ∈ N∗ and α + 1 > β we obtain

∞∫
0

∂β
x

(
xαf (x)

)
dx = [

∂β−1
x

(
xαf (x)

)]∞
x=0 = 0, ∀f ∈ C∞

0 (R).

Since poles located at integers are of order 2 the attached residuum are computed via the
elementary formula:

lim
z→p

∂

∂z

(
(z − p)2g±(z)λ−z

)
, p ∈ N, (58)

where g± are defined by Eqs. (52), (53). For h holomorphic and λ > 0 we have

∂

∂z

(
h(z)λ−z

) = ∂h

∂z
(z)λ−z − log(λ)λ−zh(z), (59)

and we can apply this to h(z) = (z − p)2g±(z) near z = p. Hence, a generic double pole
located at z = p leads to a contribution:

cp log(λ)λ−pM+(z)

∞∫
s=1

∞∫
q=0

qn(k+1)−1Dp(s + 1)−pb
(
sqk, q

)
sn−1 ds dq. (60)

Since M+(p) is well defined and

cp = (−1)p lim
z→p

(z − p)2

Bp(z)
∈ Q, (61)

our coefficients can be explicitly determined by the computation of the integrals. Also,
cf. Remark 20, the cp are zero until p � zmin. By integrations by parts and up to a factorial
number, the inner integral of Eq. (60) is
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−
∞∫

s=1

∂p

∂sp
(s + 1)−psn−1

(
∂2kp−1

∂q2kp−1
b
(
sqk, q

)
qn(k+1)−1

)∣∣∣∣
q=0

ds

=
(

∂p−1

∂sp−1
(s + 1)−psn−1

(
∂2kp−1

∂q2kp−1
b
(
sqk, q

)
qn(k+1)−1

)∣∣∣∣
q=0

)∣∣∣∣
s=1

.

But for all g smooth bounded, with bounded derivatives, and p large enough:

∞∫
0

∂p

∂sp

(
(1 + s)−psn−1g(s)

)
ds = 0. (62)

In particular, this is the case for all our coefficients since we have

p � n

2
+ n(k + 1)

2k
> n.

This trick shows that coefficients obtained by integration w.r.t. s on [0,1] and [1,∞] can
be identified up to a sign and we can save some computations.

Computation of the leading term

Contrary to the case of nondegenerate critical points, the evaluation of the leading term
is somehow technical and some computations will be left to the reader. According to the
analysis above, we distinguish out the case where the first nonzero residue is attached to a
simple or a double pole.

Case of zmin simple pole

Taking Remark 20 into account the first coefficient is given by

lim
z→zmin

(−1)lλ−z (z − zmin)

Bl(z)
M+(z)

×
∞∫

s=1

∞∫
q=0

(s − 1)l−zq2k(l−z)+n(k+1)−1Dl(s + 1)−zb
(
sqk, q

)
sn−1 ds dq,

with l ∈ N∗ such that l > zmin (any such l is acceptable). With this choice we can take the
limit under the integral to obtain:

cl,k,nλ
−n k+1

2k

∞∫
s=1

∞∫
q=0

(s − 1)l−n k+1
2k q2kl−1Dl(s + 1)−n k+1

2k b
(
sqk, q

)
sn−1 ds dq, (63)

cl,k,n = (−1)lM+
(

n
k + 1

)
lim

z→z

(z − zmin)
. (64)
2k min Bl (z)
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By integrations by parts, the integral w.r.t. q of Eq. (63) is given by

∞∫
0

q2kl−1 ∂2kl

∂q2kl
b
(
sqk, q

)
dq = (2kl − 1)!b(0,0).

Hence we obtain the asymptotic relation for the positive part of our integral:

I+(λ) = c1b(0,0)λ−n k+1
2k

∞∫
1

(s − 1)l−n k+1
2k

∂l

∂sl

(
(1 + s)−n k+1

2k sn−1)ds + R1(λ),

c1 = (2kl − 1)! cl,k,n.

As concerns the convergence of the integral w.r.t. s, by construction the singularity in s = 1
is controlled. For the behavior at infinity we remark that the degree w.r.t. s is

l − n
k + 1

2k
− n

k + 1

2k
+ n − 1 − l = −n

k + 1

k
+ n − 1 < −1, (65)

so that the integral is absolutely convergent. To compute explicitly the values of our
integrals we can choose l = n since n − zmin > 0. First, by induction on n and for
n
2 < �(α) < n + 1 we obtain that

E(n,α) =
∞∫

s=1

(s − 1)n−α ∂n

∂sn

(
(1 + s)−αsn−1)ds = 0, if n is even.

Next, for n odd, and always with n
2 < �(α) < n + 1, we have

E(n,α) =
n−1

2∏
j=1

(−2j − 1)2
n+1

2 −2α �(n + 1 − α)�(−n + 2α)

�
( 1−n

2 + α
) .

Hence for α = n(k + 1)/2k and n odd, we obtain

∞∫
1

(s − 1)n−n k+1
2k

∂n

∂sn

(
(1 + s)−n k+1

2k sn−1)ds = cn,k

�
(
1 + nk−1

2k

)
�

(
n
k

)
�

(
k+n
2k

) , (66)

cn,k =
n−1

2∏
j=1

(−2j − 1)2
n+1

2 −n k+1
k . (67)
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For any integer l > n(k + 1)/2k, similar computations show that

I−(λ) = c2b(0,0)λ−n k+1
2k

1∫
0

|s − 1|l−n k+1
2k

∂l

∂sl

(
(1 + s)−n k+1

2k sn−1)ds + R2(λ),

c2 = (2kl − 1)! cpM−
(

n(k + 1)

2k

)
.

Once more the choice of l = n is admissible and we define:

an,k =
1∫

0

|s − 1|n−n k+1
2k

∂n

∂sn

(
(1 + s)−n k+1

2k sn−1)ds,

since these integrals seem to have no formulation by mean of elementary functions, unless
by mean of hypergeometric functions. These numbers an,k are finite and nonzero in general
position.

From the analysis of the poles above we know that the remainders R1 and R2 are of

order O(λ− n(k+1)+1
2k ) if the next pole is not an integer, respectively O(log(λ)λ− n(k+1)+1

2k )

if this is an integer (cf. Remark 17). By summation we obtain the leading term of the
asymptotic expansion with a precise remainder.

Case of zmin pole of order 2

Starting from Eq. (59) we see that the associated coefficients are given by

− log(λ)λ−zmin
(
(z − zmin)

2g±(z)M±(z)
)∣∣

z=zmin
. (68)

But a great part of this limit was precisely computed above. Since zmin is by assumption
an integer we will obtain some particular values. By induction on p > 1, and assuming
recursively that n < 2p, we have

∞∫
1

∂
p
s

(
(s + 1)−psn−1)ds = − 1

2p

p−1∏
j=0

(n − 2j). (69)

If n is odd this coefficient is not zero and we get the result. But if n is even we obtain
that the associated contribution vanishes and there is no logarithm in the leading term. To
obtain the top order coefficient we must compute the coefficient obtained by derivation of
our meromorphic distributions.

Starting from Eqs. (55), (56), by Leibnitz rule, we have 3 possibilities: derivation of
the rational function, of the Melin transform or of the analytic integrals in (q, s). Since
the integral w.r.t. s vanishes in z = zmin, the 2 first terms do not contribute. Similarly, the
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derivative of q−2kz can be discarded. Hence, the only contribution comes from derivation
of the distribution w.r.t. s and we have to use the modified constants:

ã+
p,k = −

∞∫
1

log
(
s2 − 1

)
∂

p
s

(
(s + 1)−psn−1)ds, (70)

ã−
p,k = −

1∫
0

log
(
s2 + 1

)
∂

p
s

(
(s + 1)−psn−1)ds, (71)

respectively for I+(λ) and I−(λ). By similar considerations as above, these integrals are
absolutely convergent for any p � zmin.

The other coefficients

To obtain a complete overview of the asymptotic expansion we show also how to
compute the coefficients attached to logarithmic distributions. For p ∈ N∗, p � zmin, by
Leibnitz rule, these derivatives are equal to

∂zM±(p) lim
z→p

(z − p)2g±(z) + M±(p) lim
z→p

(
∂z(z − p)2g±(z)

)
.

Hence the asymptotic expansion also involves the distributions:

∞∫
0

log(t)tp−1â(±t) dt, p ∈ N∗,

and, by derivation of the meromorphic distributions, terms:

∞∫
s=1

∞∫
q=0

log(q)qαDp(1 + s)−pb
(
sqk, q

)
sn−1 ds dq,

∞∫
s=1

∞∫
q=0

log
(
s2 − 1

)
qαDp(1 + s)−pb

(
sqk, q

)
sn−1 ds dq,

where the parameter α runs in the sequence of positive rational numbers l/2k. There is
also similar terms with integration w.r.t. s ∈ [0,1]. Note that the singular support w.r.t. t

is located in t = 0 for all coefficients. Also, from the analysis above, we know that the
logarithmic coefficients only occur when p = l(k + 1)/2k are integers.

Invariant formulation of the main coefficients

To complete the proof it remains to express our coefficients in terms of ϕ and V , the
natural data of the problem. We apply Lemma 14 to our amplitude:

A(χ0, χ1, χ2) = χn−1χn−1Ã(χ0, χ1, χ2),
1 2
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to prove the existence of the total asymptotic expansion. As concerns the leading term,
in any of the cases at hand we have to evaluate Ã(χ0,0,0). By standard manipulations,
already used in [5,6], we can inverse our diffeomorphism via an oscillatory representation
of the delta-Dirac distribution by mean of a Schwartz kernel:

K(δ{χ1,χ2}) = 1

(2π)2

∫
R2

e−iχ1z1e−iχ2z2 dz1 dz2.

There is no technical problem here since the amplitude is compactly supported. After inte-
gration w.r.t. dθ , we accordingly obtain that

Ã(t,0,0) = a(t, z0)S
(
Sn−1) ∫

Sn−1

∣∣V2k(η)
∣∣− n

2k dη. (72)

We recall that these integrals over the spheres are simply given by the Jacobian of our coor-
dinates on the blow-up of the critical point (cf. Remark 13). The principal symbol of Θ(Ph)

is Θ(p) with Θ(p(z0)) = 1. Hence, at the critical point, the term homogeneous of degree
0 w.r.t. h of the amplitude of our FIO is given by a(t, z0) = ϕ̂(t) (cf. Section 3). Substitut-
ing Eq. (72) in all integral formulas for the leading terms of the asymptotic expansion the
Fourier inversion formula yields:

M+
(
â(t, z0)

)(
n
k + 1

2k

)
=

∞∫
0

ϕ(t)tn
k+1
2k

−1 dt,

M−
(
â(t, z0)

)(
n
k + 1

2k

)
=

∞∫
0

ϕ(−t)tn
k+1
2k

−1 dt.

Setting λ = h−1, so that log(h) = − log(λ), dividing by (2πh)n we obtain, via Lemma 16,
the results stated in Theorem 4. �
Extension

We show here shortly how to extend the result of Theorem 4 to the case of an h-
admissible operator Ph of symbol ph ∼ ∑

hjpj whose principal symbol is p0 = ξ2 +V (x)

with a nonvanishing subprincipal symbol p1. In this case the Fourier integral operator ap-
proximating the propagator has the amplitude:

ã(t, z) = a(t, z) exp

(
i

t∫
p1

(
Φs(z)

)
ds

)
,

0
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see Duistermaat [9] concerning the solution of the first transport equation. Since z0 is an
equilibrium we have simply p1(Φs(z0)) = p1(z0) and hence

ã(t, z0) = ϕ̂(t)eitp1(z0). (73)

If the subprincipal symbol vanishes at the critical point, which is the case in a lot of practi-
cal situations, the top order coefficient of the trace formula remains the same. Finally, when
p1(z0) �= 0 by Fourier inversion formula we replace ϕ(t) by ϕ(t + p1(z0)) in all integral
formulae of Theorem 4.
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