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Abstract

We present an approach based on integer programming formulations of the graph coloring problem. Our goal is to develop models
that remove some symmetrical solutions obtained by color permutations. We study the problem from a polyhedral point of view
and determine some families of facets of the 0/1-polytope associated with one of these integer programming formulations. The
theoretical results described here are used to design an efficient Cutting Plane algorithm.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The graph coloring problem (GCP) is perhaps one of the most well-known problems in graph theory. This problem
arises in many applications such as scheduling, timetabling, electronic bandwidth allocation and sequencing. Despite
this practical importance, there are relatively few methods available for solving the problem exactly [2,8,9,13,14].

Given a graph G = (V, E) with n vertices and m edges, a coloring of G is an assignment of colors to each vertex such
that the endpoints of any edge have different colors. A (k)-coloring of G is a coloring that uses k colors. The chromatic
number of G is the smallest number of colors needed to color G and is denoted by y(G). The coloring problem is to
determine y(G) and to find a coloring of G that uses y(G) colors.

The coloring problem is known to be NP-hard for arbitrary graphs [7], while it is polynomially solvable for special
classes of graphs, for instance perfect graphs. Even though there is little hope of finding a polynomial time algorithm for
arbitrary graphs, this observation does not necessarily mean that it is impossible to devise algorithms that are reasonably
fast and that can be used successfully in practice.

Like many optimization problems on graphs, the graph coloring problem can be formulated as a linear integer
programming problem. In formulating discrete optimization problems, it is not only important to have a correct math-
ematical model, but also to have a well-structured model that can be solved effectively. Very often, there exists a
natural symmetry inherent to the problem itself that, if propagated to the model, can hopelessly mire a cutting plane
algorithm.

Since colors in GCP are indistinguishable, many symmetrical colorings typically exist for the same given number
of colors. If feasible solutions of an integer programming GCP formulation also suffer from that symmetry drawback,
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a cutting plane algorithm tends to behave poorly. The main reason for that is the fact that many iterations in the cutting
procedure have the same optimal value. Bearing this in mind, we propose an approach based on integer programming
formulations that reduces the number of symmetric feasible solutions in order to mitigate the effects of symmetry and
to have a more tractable computational model.

Cutting plane algorithms are an important tool to deal with linear integer programming problems [15]. The main idea
is to consider the linear relaxation and try to strengthen it by adding violated strong valid inequalities. The algorithm
can use general cuts that do not take advantages of the structure, or specially developed ones that exploit the properties
of the problem. In this paper we present a cutting plane algorithm for GCP. We strengthen the polyhedra associated
with the proposed integer programming models with strong valid inequalities which we prove are facet-defining in
many instances. The algorithm is tested on random graphs and on a set of test problems studied in the literature. Initial
results were presented in [10].

The remainder of the paper is organized as follows. In Section 2, we present three models. Some families of facets
for one of them are described in Section 3. Section 4 shows implementation details of our cutting plane algorithm.
Experiments with different cuts combinations are reported in Section 5, as well as a comparison between the proposed
models. In Section 6, we report our computational experience with the cutting plane algorithm on DIMACS benchmark
(http://mat.gsia.cmu.edu/COLORO02) and finally the conclusions.

We expect the reader to be familiar with the polyhedral theory. See [11] for the background material needed.

We close this section by introducing all the notation and definitions used throughout the paper.

Let G = (V, E) be agraph and V' C V. G[V'] = (V’, E’) is the induced subgraph of G by V' with E’ = {{u, v} :
{u,v} € Eandu,v € V'}. V' C Visacliquein Gif Yu,v € V', {u,v} € E. V' C V is a stable set or independent
setin G if Yu, v € V/, {u, v} ¢ E. A clique (stable set) K in G is maximal if there is no clique (stable set) K’ # K in
G with K C K'. The stability number of G, «(G), is the maximum size of an independent set in G. A clique partition
of the graph G is a partition (K7y, ..., Ki) of Vsuch that K; is a clique in G fori =1, ..., k. A sequence vy, ..., U
of pairwise distinct vertices is a path in G if {vy, v2}, ..., {vk—1, vk} € E. A path is a cycle if in addition {vy, vt} € E.
A hole is a chordless cycle. The neighborhood of v is N(v) ={u : u € V and {u, v} € E}. A graph G is bipartite if
1(G)<2.

2. Integer programming formulations

The problem of finding a minimum coloring in a graph can be formulated in many ways. In order to present integer
programming formulations, we use x;; to denote binary variables, withi € V and 1< j <n, where x;; = 1 if color j is
assigned to vertex i and x;; = 0 otherwise. We also define n binary variables w; for j =1, ..., n, that indicate whether
color j is used in some node, i.e., w; = 1 if x;; = 1 for some vertex i.

The following is a classical integer programming formulation:

n
min E w]
j=1

n
Zx,'j:l VieV, (D
j=1

Xij+xg<w; V{i,k} € E, 1<j<n, (2)
xj€{0, 1} VieV, 1<j<n w; €{0,1} 1<j<n.

Constraints (1) assert that each vertex must receive exactly one color, and constraints (2) guarantee that every pair of
adjacent vertices will not be assigned the same color and that w; = 1 when some vertex has color j.

In [3], we present some facet-defining inequalities for the polytope associated with this formulation, %% . However,
this is a symmetric formulation because all color permutations yield feasible solutions with the same objective function
value, thus it is very difficult to use in practice and it is able to solve fairly small instances. The drawback arises from the
indistinguishability of the variables. To avoid the symmetry of the classical model, next we propose three new models
that eliminate equivalent solutions with different criteria.
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2.1. Color order model

Given a (k)-coloring, any choice of k colors from {1, ..., n} gives a feasible solution of %% and they are all
equivalent solutions. In order to eliminate some of these solutions we impose that color j can be assigned to a vertex
provided color j — 1 has already been assigned. In this way, all symmetrical (k)-coloring using colors with label greater
than k are not considered. To characterize these feasible solutions, it is enough to add the following sets of constraints:

w;< Y xij VI<j<n, 3)
ieV
wizwiyr YI<j<n — 1. 4)

Let 2 = conv(¥E2 N {(x, w) : (x, w) satisfies (3) and (4)}).
The reduction of feasible solutions from .47 is very significant.

2.2. Independent set order model 1

Given a (k)-coloring, in ¥ there are still equivalent solutions arising from permutations of the first k colors. To
eliminate some of these solutions, the next model is more restricted than the first one and imposes that the number of
vertices colored by j must be greater or equal than the number of vertices colored by j + 1. In order to consider only
these solutions, we add to % Z the following inequalities:

wi< ) xi; VISj<n, 5)
ieV

n n

D= ) xe VISj<n—L. (©)

i=1 i=l

Let €21 = conv(¥ €2 N {(x, w) : (x, w) satisfies (5) and (6)}).
The polytope €21 is included in ¥2. Given a coloring, the larger the amount of independent sets with different
cardinal, the greater the elimination of symmetrical solutions.

2.3. Independent set order model 2

Given a partitioning into independent sets, permutations of colors between independent sets with same cardinal give
symmetrical solutions for the above model.

In order to eliminate these solutions the following model considers a unique assignment of colors for each partitioning
into independent sets. We sort the associated independent sets by the minimum label of the vertices belonging to each
set and we only consider the coloring that assigns color j to the jth independent set. All other permutations that define
the same coloring do not lead to a feasible solution.

The constraints to eliminate equivalent colorings from %% are

xij=0 Vjzi+1, 7)

i—1
X< Y xkior Vie VA1 V2<j<i— 1. ®)
k=j—1

Let 22 = conv(SE2 N {(x, w) : (x, w) satisfies (7) and (8)}).

This model eliminates completely the symmetry that arises from color indistinguishability.

The three models eliminate symmetrical solutions with different criteria. It should be natural to prefer the model
with the smallest number of equivalent solutions. However, it is necessary to take into account other factors, such as
number of variables, number of constraints, performance of LP solver on the associated LP-relaxation, etc.

To compare and evaluate the models, in Section 5 we experiment with a cutting plane algorithm and we analyze the
lower bound quality and the CPU time to achieve it.



162 1. Méndez-Diaz, P. Zabala / Discrete Applied Mathematics 156 (2008) 159—179
3. The coloring polytope

The aim of this section is to analyze polyhedral properties of the formulations introduced above.

From a polyhedral point of view, 21 presents difficulties to be characterized since it depends on some properties of
the graph. For example, if any optimal coloring of G assigns the same color to two vertices at most, all feasible solutions
of €21 satisty Z?:lxiZ =2 — wy—1. Otherwise, if there is at least one (y(G))-coloring such that Z?:lxil >3, then
this equation is not satisfied by all feasible solutions.

%22 is even more difficult to be characterized. For example, let G = (V, E) be a graph with |V | = 7. Consider
v,V ,u,w € V such that K = V\{v, v} is a clique, N(v) = {u} and N (v") = {w}. If the graph is labeled such that
v] = v, v7 =V, v4 = u and vg = w, the dimension of ¥22 is 25 and it has 42 facet-defining inequalities. However, if
v] = v, v = V', v3 = u and v7 = w, the dimension is 22 and there are 243 facet-defining inequalities.

Since €21 and €22 are both included in €2, a polyhedral study of ¥Z also provides valid inequalities for them.
The study of 2 provides useful information since we observed that in many instances, some of the facet-defining
inequalities of €2 are also facet-defining of ¥21 and ¢ 22.

3.1. Basic properties

We assume w.l.0.g. that G has neither universal vertices nor isolated vertices. It implies that 2< y(G) < |V/|.
First, we want to find a minimal equation system for ¥Z and to determine its dimension.

Proposition 1. The dimension of €2 is n*> — y(G) — 1 and a minimal equation system is defined by

n
Y xij=1 VieVv,
j=1

wi=1 1<j<(6),
n

inn = Wy.

i=1

Proof. We must show that (a) every feasible solution satisfies these constraints, (b) they are mutually independent, and
(c) there are n — y(G) affinely independent feasible solutions. Condition (a) arises from the definition of the model,
and it is not difficult to verify (b), since they act over disjoint sets of variables. To see (c), consider the colorings given
in the following table, where each row corresponds to a coloring and each column to colors. W.l.o.g we suppose that
v,—1 and v, are not adjacent.

e Set 0: Any (n)-coloring. We denote v; the vertex colored by 7, fori =1, ..., n.

e Fori=1,...,.n—2.Seti:For j=1,...,n—1andi # j, from the above coloring, we define (n)-colorings by
switching colors j, n and i. We assign color j to v, color i to v; and color n to v;.
In this way, we construct (n — 1)(n — 2) colorings.

e Setn —1:For j=1,...,n— 1, we consider the (n)-coloring that assigns color j to vy, color n to v; and color i to
v; fori # j,i # n. There are n — 1 colorings.

e Set n: We consider the (n — 1)-coloring that assigns color i to v; fori =1,...,n — 2, and colorn — 1 to v,_1 and
vy. From this (n — 1)-coloring, define the (n — 1)-coloring by switching color i and color n — 1. If we apply this
procedure forall i =1, ..., n — 2, we construct n — 2 colorings.

color 1 color 2 color 3 . color i e colorn — 1 color n

Set 0 V1 v v3 - V; o Vn—1 Up

Set 1 Uy V1 v3 o v; . Vn_1 vy

Uy 1%) V1 e Vi e Upn—1 V3
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color 1 color 2 color 3 . color i .. colorn — 1 color n
Uy v V3 . vy .. Un—1 v;
Uy 1%) U3 . V; e V1 Up—1
Uy 1%) U3 . V; . Up—1 V1
Set 2 v Up v3 ... v; ... Un_1 V]
V1 Uy 1%) . V; e Up—1 U3
U1 Uy U3 . %) . Up—1 Vi
V1 Up V3 e v; . v Up—1
V1 Up V3 . v; . Up—1 v
Set i v; %) V3 - Un o Un—1 V]
V1 Vi v3 . Uy . Up—1 1%)
V] v V3 . Uy .. v; Un—1
V1 v V3 . Uy . Up—1 v;
Setn —1 Un—1 v v3 v; Un V1
V1 Up—1 V3 . v; ... Un %)
vy v V3 . Up—1 . Up v;
V1 1%) U3 V; Uy Up—1
Setn Un_1, Un ) v3 v; V] -
U1 Up—1, Un U3 V; 1%) —
V1 1%) v3 Up—1, Un Vi —
V1 1%) U3 . V; . Up—1, Un —
Besides that, take one (j)-coloring for each j = y(G), ..., n — 2.
i i . . . . .
Let (X¢', W) fori=1,...,n%— %(G) be the associated feasible solution to each coloring. To see they are affinely

independent, consider a linear combination

n* (G o 2 -1(G)
Z 0 (XS, W) =0 such that Z o; =0.
i=l i=1

We have to see that o; =0 fori =1, ..., n? — 7(G).

The first (n)-coloring is the unique coloring that assigns color 7 to v,, then oy = 0. There is one (j)-coloring for
each j = y(G), ..., n — 2, then it is easy to get «; = O for these solutions.

The first (n — 3) colorings from each Set j for j =1, ...,n — 2, are unique in the color assigned to v;. It implies
that o;; = 0 for them.
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If we consider the set of colorings with a chosen variable equal to 1, we obtain the following implications:

(1) wy_1=1and w, =0= Z’;;}a(,,,z)nﬂ-ﬂ =0.
2) xy,_n=1= Z?j“/n—./ + tn-3n+(n-n+3 = 0.
3) xy,_j=1= u-3ytj13 + -2t jr2=0Vj=1,...,n =2

@) Xyjin—1 = l = ajpj+otp—2pntj+2=0Vj=1,...,n -2
5) xpy_n—1=1= Z?joﬁ/n—jﬂ + o—2)n+mn—-1)+2 = 0.

(6) Xy, j = 1= Ljn—j + %jn—j+1 + Cn—2)n+j+2 = ovj=1,....,n—2.

(7) Xyin = 1= %jn—j+1 + On—3)n+j+3 =0Vj=1,...,n—2.

From (4) and (6) it follows that o, j+1 = 0. Then, from (7) we obtain «(,—3),4j4+3 =0Vj=1,...,n — 2 and (5)
implies %, —2)n+(n—1)+2 = 0. Replacing in (3), we get o, —2)n+j+2 =0 Vj=1,...,n — 2 and from (4) we conclude

Ojn—j = 0 Vj = 1, R 2. Finally, (2) gives A(n=3)n+(n—1)+3 = 0.
Therefore, we have n?> — y(G) affinely independent feasible solutions. Then, these constraints define a minimal
equation system for 2. [

Now we characterize inequalities from the original formulation that define facets.
Proposition 2. Let ig € V, the following holds:

(a) Every non-negativity constraint x;,, >0 defines a facet of €¢2.
(b) For jo=1,...n— 1,if G — {ip} is not a clique then x;, , >0 defines a facet of €.

Proof.

(a) Consider one (n)-coloring that assigns color n to vertex ip and use the same procedure used in Proposition 1 to
generate feasible solutions. Now, excluding the first one, we obtain n> — y(G) — 1 colorings lying on the face
defined by the inequality.

(b) Since G — {ip} is not a clique, there are two non-adjacent vertices in G — {ip}. For notational convenience, we
denote them by v, and v,,_;. Consider one (n)-coloring that does not assign color jj to vertex ig. By following the
above technique to generate colorings, and excluding the (7)-coloring that assigns jg to ig, we obtain the necessary
feasible solutions to proof that x;;, >0 is a facet. []

Proposition 3. Let jo be any color such that y(G) < jo <n — 2, then the constraint w j, > w j,+1 defines a facet of €.

Proof. Consider the colorings from Proposition 1 except the (jo)-coloring. They lie on the face w j, = w 11, then this
is afacetof 4. [

Completing the facets defined by the model inequalities, we state the following result.

Proposition 4. The inequality w j, <3y Xij, defines a facet of 62 for all jo=1, ..., n — 1 iff there is some (1(G))-
coloring lying on the face.

Proof. Suppose that no (x(G))-coloring lies on the face. Then any feasible solution on the face satisfies wy )1 =1
and this is a contradiction.

Now, to see the inequality is a facet, it is enough to consider the set of colorings from Proposition 1, exclude the
(n — 1)-coloring that assigns color jy to v,—1 and v,, and add for all j = y(G), ..., n — 2 any (j)-coloring where color
Jjo is assigned to a unique vertex. [

3.2. Independent set inequalities

Substructures of a graph give rise to valid inequalities for the coloring polytope of the whole graph.
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We know that the set of vertices that are assigned the same color is an independent set, then its size is lower than or
equal to the stability number of the graph. If we consider any subgraph G’ = (V’, E’), adapting that property to G’ is
quite straightforward and thus

D xujy SAGwjy

veV’

is valid for all jo =1, ..., n where a(G’) is the stability number of G’.

Any (n — a(G") + 1)-coloring that assigns color jy to a maximum independent set of G’ satisfies it as an equality,
then it must be a proper face of €. However, if o(G’) > 2, it is not a facet since no (n)-coloring satisfies it at equality.
We can strengthen it by considering the color ordering to obtain

n
Doxyot D D x SUGHW)y + Wy

veV’ j=n—a(G')+1veV

Any (n — a(G’) + r)-coloring, where r > 1, has a(G’) — r vertices sharing the color with other vertices. Therefore,
there must be at most o(G’) + 1 vertices colored with r + 1 different colors, and this indicates that the inequality is

valid.
We call it Independent Set inequality. The following proposition establishes when it is a facet-defining inequality.

Proposition 5. Let V' C V, G' = G[V'] such that «(G') <a(G), jo<n — a(G’) and the valid Independent Set
inequality

n
Do wiot DL D x<a(Gwjy + waoaG

veV’ j=n—o(G")+1veV
If

o There is an independent set of size o(G') + 1 in G[V' U {v}] forallv € V\V'.
o There exists I, a maximum independent set of G', such that V\I is not a clique.
e A (1(G))-coloring lies on the face.

Then this is a facet-defining inequality.

Proof. Let F be the proper face of €2 defined by the Independent Set inequality. Suppose that there is an inequality
XX + %W < 2 valid with respect to €2 such that F € 2{(X, W) : 2% X 4+ 2" W = J}. To prove the proposition,
we have to show that ()LX , /IW, Ap) can be written as a combination of the minimal equation system and the Independent
Set inequality. We proceed to prove different cases that allow us to gather information about the coefficients of A%, 1"
and /.

We have to prove:
(@) Ay =y + 2y Y0 EV V¥n —a(G)+1<j<n— 1.

vn
(b) A3 =y + 2y YO EV.
(©) Ly = TG+t F a1 YV E VAV,
(@) 25 = A1 F An(ryar YV € VY # joand j<n — a(G").
(@) If jo=7(G) + 1 then 2% = (G A6y 41-

() 2} =0for j=x(G)+1,....n—Tand j # jo.n —«(G') + 1.

To establish their validity, we construct pairs C' = (X', W!) and C? = (X2, W?) of feasible solutions lying on F that
differ in the components that enable us to derive each case. Each feasible solution has X’s and W’s components. For
notational convenience, we note C(v) = j to indicate that x,; = 1. The W’s components follow directly from X’s.
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For the sake of simplicity, the colorings are specified on some subset of vertices, and ensuring that there are enough
colors to assign to the rest of the graph.

(a) Letj,n— oc(G/) +1 < j<n—1and v1 ceV\V, eV non—adjacent vertices. Consider C!, an (n — 1)-coloring,
such that C!(vy) = C'(v2) = j and C!(v') = ji for some v’ € V’. From this coloring, we build an (n)-coloring by
assigning color n to vy. Since both colorings are lying on F, we obtain /1,)1] Avm + AW Now, consider v € V,

v # v1 and an (n)-coloring such that C(vy) = ], Cwv)=nand C(v)) = ]() for some v/ € V’. By interchanging

colors j and n, we obtain /IX + /ll)fl =A%+ AU] ; and from it follows AX X+

(b) Consider vi € V', vy € V\V non-adjacent vertices. Consider C I an (n — 1)-coloring, such that C L) =
C(v2) = jo and C'(v') = joy. From this coloring, we build an (n)-coloring by assigning color 7 to v;. Since both

colorings are lying on F, we obtain / Avl o= }Uln + A . Now, consider v € V', v # v; and an (n)-coloring such

that C(vy) = jo, C(v) = n. By interchanging colors jy and n follows iv = ;u T /IW

(¢) Let v € V\V'. Under hypotheses, exists C", L (n — a(G"))- -coloring, on F such that Clv) = Jo and a(G")vertices
in V"’ are colored with jg. If we change to n — a(G") + 1 the color of v, we have )LUJO /rffnia((;/)H + i,vl‘/_a(G,)+l.

(d) Consider j, j <n — a(G’), j # jo. Under hypotheses, exists I C V', maximal independent set such that V\7 is
not a clique, then there are vy, v € V\/ non-adjacent vertices. Let C 1 (n — a(G"))-coloring, that assigns color
Jo to all vertices in 7 and Clop)=Clvy) = J. Now, if we change to n — a(G”) + 1 the color of vy, we conclude
that )rm }‘len—x(G’)-&-l + }u,‘?ia(G/)H. Consider v € V and an (n)-coloring such that C(v;) =n — a(G’) + 1 and
C(v) = j. By interchanging colors j and n — a(G") + 1 follows /Iff/ = iffn_a(G,)H + /IEV_OC(G,H_I.

(e) Assume that jo=>x(G) +1.Let I ={z1,..., 2906}, I C V', a maximal independent set. Consider cl, (jo—1)-
coloring, and C2,( Jo)-coloring, such that C%(z;) = JjoVi=1,...,a(G"). Let us denote by c}, and c% the colors of

v assigned by C! and C?, respectively. Since both colorings lie on F, it follows that

o(G") oa(G")

Z Avcl+Z)“zcl - Z ivz_kz/lz}o

veV\I veV\I

But )rfcl = AXZ for all v € V\I because cl c2 <n — a(G") — 1. Moreover, we prove that 'lic;[ = }“Zn—ot(G’)-H +

XK“(G,)H = )rmo + )n 2(GY+1- Combmmg these equalities, we conclude that A ] = oc(G’)/lx‘ia(G/)H.

() Letj, j # jo,n—o(G")+1and y(G)+1, ,n— 1. Consider the color r such thatr = j — 1if j — 1 # jo,
r = j — 2 otherwise. We can assume that there is C 1, (j — 1)-coloring, such that color r is assigned to more than
one vertex. From this coloring we build C2, (j)-coloring, by assigning color j to one of the vertices colored by r.
Since r # jo,n — a(G’) + 1, we know that iffr = A,}i Then, we conclude that )r}y =0. O

This inequality becomes useful if we consider substructures with known stability number. That is the case for the
following propositions.

Proposition 6. Let K be a maximal clique. The Clique inequality

Z Xpjy — Wj <O
vekK

is a facet-defining inequality of €.
Proof. It is enough to verify that V' = K satisfies the hypotheses of the above proposition.

(1) Since K is a maximal clique, every v € V\ K has anon-adjacent vertex v’ in K. Then G[K U{v}] has an independent
set of size 2.

(2) K is maximal clique, then there are vy, v € K such that vy has a non-adjacent vertex in V\ K. This implies that
V\{v2} is not a clique.

(3) Any coloring that assigns color jo to one vertex to K satisfies the inequality at equality. [J



1. Méndez-Diaz, P. Zabala / Discrete Applied Mathematics 156 (2008) 159—179 167

Proposition 7. Let Cr = {vy, ..., vk} be a hole of size k, k > 3. The Hole inequality

n

k
Doxuio+ Y, Y % <LK/2Jwjy + wa k241
i=1

j=n—k/2]+1 veV
with jo<n — |k/2] is a facet-defining inequality of €2 if:

e Forallv € V\Cx, there is an independent set of size |k/2]| + 1 in G[Cy U {v}].
e A (1(G))-coloring lies on the face.

Proof. We only have to check the first condition of Proposition 5. Since Cy is a hole of size greater than 3, we can
assert that there is I C Cy, an independent set such that V'\7 is not a clique. [J

The following results on an antihole and a path run along the same arguments as the previous result.

Proposition 8. Let Cv = {v1, ..., vi} be an antihole of size k. The Antihole inequality

k
vaijo + van—l gzwjo + wp—1 — wy
i=1

veV

with jo<n — 2 is a facet-defining inequality of €2 if:

e Forallv e V\Ck, there is an independent set of size 3 in G[ék U {v}].
o A (x(G))-coloring lies on the face.

Proposition 9. Let P, = {v1, ..., vr} a path of size k. The Path inequality

k n
va,»jo + Z vaj STh/2Twjy + wp—rk/21+1
i=1

Jj=n—[k/21+1veV

is a facet-defining inequality of €2 if.

e Forallv € V\Py, there is an independent set of size [k/2] + 1 in GI[C; U {v}].
e A (x(G))-coloring lies on the face.

3.3. Vertex inequalities

For any feasible solution of the polytope 2, constraints (3) and (4) impose that if color jj is not assigned to some
vertex, colors with label greater than jj are not assigned either. Moreover, no vertex uses more than one color. Both
observations are put together in the following result.

Proposition 10. Given ig € V and 1< jo<n, then the Block Color inequality Z;l: oXioj <wj, is a valid inequality
for €2. If x(G) + 1< jo<n — 2, then this is facet-defining inequality of €.

Proof. Consider the following feasible colorings:

(1) Any (n)-coloring that assigns color jj to ig. We call v; to the vertex colored by color i, fori =1, ..., n.So,ip=vj,.

(2) Letj,1<j<n—1,j # jo,i # j and i <n — 1. From the above coloring, we define the (n)-coloring that assigns
color j to vy, color i to v; and color n to v;. So, we construct (n — 2)(n — 2) colorings.

(3) For jo + 1<i <n — 1, from the first (n)-coloring, we define the (n)-coloring that assigns color jj to v,, color i to
vj, and color n tov;. So, we construct (n — 1 — jo) colorings.

(4) For j=1,...,n—1, consider the n-coloring that assigns color j to v, color n to v; and color i to v;Vi # j,i # n.
There are n — 1 colorings.
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(5) W.Lo.g, suppose v,—1 and v, are not adjacent. We consider the (n — 1)-coloring that assigns color i to v;Vi =
1,...,n—2,and colorn — 1 to v,_1 and v,,.

(6) Fori=1,...,n—2, we define the (n — 1)-coloring by switching color i and color n — 1 from the above (n — 1)-
coloring. With this procedure we construct n — 2 colorings.

(7) Any (j)-coloring, for each j = x(G),...,n — 2.

(8) Takethe (jo—1)-coloring.If v, is colored with ¢, then switch color ¢ with colorj. Making this forall j=1, ..., jo—1,
J # ¢, we generate jo — 2 colorings.

It is easy to see that these n> — %(G) — 1 feasible solutions are affinely independent. Then, the valid inequality is a
facetof 2. [

Letv € V, N(v) the neighborhood of v and d(v) = [N (v)|. By combining x,; 4+ xx; <w; forallk € N (v) we obtain
the valid Neighborhood inequality

Z Xkj + 5(U)ij Sé(v)wj.

keN(v)

If 7 is the size of a maximum independent set in N (v), no more than r vertices can be colored with the same color, then
the above inequality can be strengthened and

Z Xij +rxy<Srw;
keN (v)

is a valid inequality stronger than the previous one. This is not a facet-defining inequality but it becomes very useful
to improve the LP-relaxation. The original model has mn constraints x;; + xx; <w; and this size is difficult to handle
for large and dense graphs. We replace the constraints in the original model with these new constraints. Despite this
replacement relaxes the polytope, the computational experience shows it works better than the original formulation
(see Section 4.1 for details).

3.4. Multicolor inequalities

Valid inequalities can be constructed by taking non-negative linear combinations of a linear inequality description of
the set of solutions. In this way, we obtain new valid weak inequalities that are dominated by the originals. Nevertheless,
we can obtain stronger valid inequalities by applying a strengthening procedure based on the combinatorial implications
and integrality properties of the feasible solutions. Next we present some valid inequalities derived from the original
constraints x,; + xj <wj.

3.4.1. Multicolor hole
Let Cr = {vy, ..., vk} be ahole of size k and {ji, ..., jr—1} a subset of colors such that j; > j; Vi =2,...,k — 1.
Consider the following k — 2 valid inequalities:

Xuyjo F Xy jp SWjps

Xuyjs T Xugjs SWss

Kot jeer F X o) SWj_y
and

Xy ji + Xoyji F Xy 2055
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Adding these inequalities, we obtain

k—1 k—1
Xy ji T+ Z(‘xviji—l + X0 i)+ Xujny + Xy 2w + Z Wi -
i=2 i=2

Any feasible solution that binds the last added inequality fixes the color to vy, v2 and vy and satisfies 25:2] wj, =k—2
because j; > j; Vi =2, ...,k — 1. The other k — 3 vertices can contribute at most with k& — 3. Then, the coefficient
of wj can be reduced to 1. This is a proper face of 4% and it is a facet-defining inequality under the following
conditions:

e Vv € V\Cy, v has at least one non-adjacent vertex in {vy, va, vi}.
e A (y(G))-coloring lies on the face.

The proof is technically not more complicated than the previous one and runs along the same arguments.

3.4.2. Multicolor clique
Let K = {vy, ..., v,} be a clique of size p, k such that p<k<n — 1, and Col = {ji, ..., jp—1} C{l,...,k—1}.
We consider the following clique inequalities:

p
vaijéwj Vj e Col.
i=1

Adding them and considering that any coloring needs p colors to assign to K, we obtain the valid inequality
P n P
)I)ILIED DB SENEIEE) pyt
i=1 j=k i=1 jeCol jeCol
If VA\K is not a clique and y(G) + 1 <k <n — 2, it can be proved that it is a facet-defining inequality.

3.4.3. Multicolor path
Let Ky, K>, ..., K, be cliques such that K; N K; =@if j #i —1,i + 1 and |K; N K; 1| < 1. Consider the colors

Cly...,Cr,Cjgwithej <cjy<n—1Vj =1, ..., r. Combining Cligue and Block Color inequalities, we obtain
S JL P VD DIETE) DN
vekK| veksy vek, Jj= Cjo UEU _i1Ki

where R = ||J;_, Kil.

Since cj, >c¢; Vj=1,...,r,the coefficient of We;, can be reduced to R — r. Then, the following is a stronger valid
inequality:
)LD DETIEERNE SRS S DR Z we; + (R = e,
vek veky vek;, Jj=¢jy velUi_, Ki
It is a proper face of ¥2. In case that K; = {v;, vjy1} fori =1, ..., r, we have
Xvje + Z-xv,c, 1 +xvlcl +‘kack 1 + Z Z‘xvl] chl + wcj()
Jj= Cjo i=1

We call it Multicolor Path inequality. This is a facet-defining inequality under the following conditions:

e V\{vy,..., vt} is nota clique.
o If v € K;, there is a (¢, — 1)-coloring such that the assigned color to v is not ¢;.
e A (y(G))-coloring lies on the face.
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4. Implementation details of a cutting plane algorithm

In this section we describe the design and implementation of our cutting plane algorithm.
4.1. LP-relaxation

The first step in the development of a cutting plane algorithm is the definition of an initial LP-relaxation. We find that
the linear relaxation of ¥'% has too many adjacency constraints x,; + x,; <w; making its resolution too slow, mainly
for medium and high density graphs.

We analyze several alternatives to reduce formulation size.

First, we consider the possibility of finding an edge clique cover, i.e., a set C of cliques such that for every edge
{u, v} € E, there is some clique K € C such that u, v € K. In this way, adjacency constraints may be replaced by a
clique inequality defined by each clique K € C and each color j =1, ..., n. We experiment with several heuristics to
find an edge clique cover. However, computational experiments do not show a significant solution time reduction for
linear relaxations.

The second alternative we try is a weak LP-relaxation dropping all the adjacency constraints. We expected the
addition of clique inequalities during the cutting plane algorithm somehow made up for the relaxation quality loss.
Once more, computational experiments show it is not a good choice. The lower bound increase due to cutting plane
addition do not prove to be very effective.

Finally, the initial relaxation showing the best behavior is the one resulting from replacing adjacency constraints
by a weak version of the Neighborhood inequalities. The coefficient r of this inequality is replaced by the cardinal of
a clique partition of N (v) that we find by a greedy heuristic. As we mentioned above, this replacement relaxes the
polytope but allows us to handle the model for larger graphs. It proves to be very convenient, since it shows a good
balance between CPU time, memory requirements and lower bound increase.

4.2. Upper and lower bounds

Good upper as well as lower bounds on the value of the optimal solution are very important to keep the linear program
reasonably sized. A lower bound is obtained by finding a maximal clique with a greedy heuristic. All the variables
related to the vertices of the clique are fixed in the model by considering that the first n_cli (clique size) colors are
assigned to each vertex. We apply the well-known DSATUR heuristic [2] to find a feasible solution. This solution gives
an upper bound, ¥, and allows us to eliminate model variables.

4.3. Separation algorithms

Given a fractional solution of €2, we look for a set of constraints to cut it off. After adding these valid inequalities, we
resolve the LP-relaxation. The separation phase is the central part of a cutting plane algorithm and efficient separation
algorithms are crucial for the success of this approach.

Next, we describe the identification procedure of violated valid inequalities. In what follows, let (x*, w*) denote the
fractional optimal solution to the current formulation.

4.3.1. Clique and multicolor clique inequalities

The Cligque inequalities are used as cutting planes in many problems [1,12], and the separation problem is known to
be NP-Hard. In the literature we can mainly find two strategies to detect them.

The first approach is to construct in a preprocessing phase a list of maximal cliques and keep it in a pool. At
each separation round, this list is scanned in an attempt to find violated cuts. This simple procedure is very fast but,
according to our experience, it cannot detect enough cuts. It has the advantage of looking for cliques once, but the
clique construction does not exploit the information of the current fractional solution. We think this is the reason for
the poor performance observed in our computational experience.

The second approach is to look for cliques by considering the current point and by applying a greedy heuristic. For
each color jp, the greedy criterion is to go for violated Cligue inequalities, and it makes sense to do so by constructing
an ordered list of the elements in {)cl?*jO ;i €Vand x;"jo < 1} in decreasing value, where x* denotes the current fractional
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solution. If x;;, is a fractional variable, we initialize a clique with vertex i. Then, it is grown into a bigger clique trying
to add other adjacent vertices following the ordered list. We perform several trials limited by an input parameter. In
trial k, we choose the fractional variable x;/ j, such that vertex i’ is the kth adjacent vertex to i in the ordered list. We
add this vertex to the clique and then look in order in the rest of the list.

To avoid any additional computational effort, the clique found is also used to try a violated Multicolor Clique
inequality. Since »;y Xij, > wjy, then 377 37 cyxij > wj, and thus the clique has good chances to violate the
inequality. It remains to determine the set of p — 1 colors, where p is the clique size. A greedy strategy is to look for
colors where the associated clique inequality is also violated or it has the smallest slack value. Then, for each color j,
with 1< j < jo — 1, we compute S; where §; = Ziecliquexij — wj. The first p — 1 colors in order of decreasing §;
values are considered to attempt to find a violated inequality.

4.3.2. Block color inequality

These inequalities are handled by brute-force. In order to have chances to find a violated Block Color inequality, it
is necessary that w j, be fractional. Then, for all jy such that 0 < wj, < 1, we enumerate all inequalities and find those
violated by the fractional current solution.

4.3.3. Multicolor path inequality

with each edge (4, v) € E. We compute for each vertex v € V, the heaviest path in G by using a greedy procedure.
For any v € V, we initialize the candidate path P as v and make #, trials. On trial j we extend the path by adding a
vertex w characterized by being the jth maximum c,,, among all the adjacent vertices to v. Then, iteratively, vertices
are added to the path by choosing the one adjacent to the last vertex added to the path, not previously included in P and
with maximum weight.

The computational experience shows it is not convenient to allow a vertex belongs to many paths since the found
associated MultiColor Path inequalities have similar support. To avoid this situation and according to our computational
tests, it is forbidden to consider a vertex belonging to n/10 violated paths in future paths.

Moreover, long size paths have few chances to give violated inequality then, the above procedure is stopped when
the size of the path is equal to an input parameter. Our computational experiments show that paths with length greater
than 6 are not good candidates to be violated.

A path with weight greater than w; corresponds to a violated Multicolor Path inequality.

4.3.4. Hole inequality
The separation procedure is based on the GLS algorithm proposed in [5] for the Independent Set problem. Given a
graph G’ = (V’, E’), an auxiliary bipartite graph is constructed as follows. Let B = (V} U V,, Ep) be a bipartite graph
where for each v € V/ we include two vertices vy € Vi and va € Vo. If (u, v) € E’, then (u1, vp) and (vq, uz) € Ep.
It is easy to see that a path P, in B beginning in v; and ending in vy, considered as a set of nodes, is a cycle Cy, in G'.
In order to find violated hole inequalities, we consider jy such that w}’fo >0and V' C V where v € V' if x;‘jo is

fractional. We build the associated bipartite graph B and we consider a weight ¢, v, =¢y;,u, =max(0, w}?o —x* )

*
X . —X
ujo

vjo
for each edge (u, v) of B. The weight of P, is Z(u’z”)ePul max (0, w;fo — x;‘jo - x;kjo).

Thus, if it is found the shortest path between v; and vy, the cycle C,, will be a good candidate to link to a violated
hole inequality. We compute the shortest path by using the well-known Dijkstra’s algorithm.

4.4. Cut management scheme

A cutting plane algorithm constructs and solves a sequence of LP-relaxation. A set of violated constraints is added
at each iteration and it is important to take care that the linear program does not become very big, and takes a long time
to solve.

This problem can be avoided by removing previously introduced cuts that become not relevant to the current solution.
As itis usual in cutting planes algorithms, we maintain a cut pool which contains the cuts generated so far in the algorithm
that are either not included in the relaxation or subsequently dropped because they no longer appear to be active.
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This cut pool is very useful to memory management and it can also be considered as an auxiliary mechanism for
performing separation since the pool cuts can be checked quickly for violation. Since we use a heuristic procedure to
find violated constraints, it can be possible that we are not able to detect some inequalities that were detected before.
Whenever the LP has been reoptimized, we first check all cuts in the cut pool, and reoptimize the LP, if more than 200
violated cuts have been found. Otherwise we call our separation routines looking for new violated inequalities.

5. Computational experience

In this section we present our computational experience with the cutting plane algorithm. We have performed the
experiments on a Sun ULTRA workstation and the times are reported in seconds. The code is implemented in C 4 +
using the ABACUS framework [6] and CPLEX 8.1 LP solver [4]. Our goal is to evaluate the lower bound improvement
of the LP-relaxation when we strengthen it by adding valid inequalities that have already been characterized for the
polytope. We have introduced several classes of valid inequalities and have given conditions under which they are
facet-defining. However, facetness does not necessarily guarantee good performance if the inequality is considered as
a cutting plane. Even though the separation procedure is successful, the cuts may not help to increase the lower bound.

5.1. Cutting planes

An indirect way of evaluating the quality of a cutting plane is to observe the increase produced in the lower bound
when it is added to the LP-relaxation. Larger increases mean better constraints because they define deeper cuts in the
relaxation polytope. However, a right balance between different aspects has to be considered.

If the added cuts are dense, they increase memory requirements and may slow down the solution of the LP’s. Besides
that, if the separation routine for a class of inequalities is computationally expensive in relation to the lower bound
increase when they are added to the LP’s, it is not worthwhile including them in the algorithm.

We conduct experiments to determine a good cut combination scheme by considering several combinations of cut
families.

To compare the combinations, a cutting plane algorithm is applied for 50 rounds on random instances. G(n, p) is a
random graph of n vertices and an edge between each pair of vertices with independent probability p. We use random
graphs of 125 vertices with low (less than 0.3), medium (between 0.4 and 0.6) and high (more than 0.7) density.

We observe the evolution of the lower bound, LB, and take into account the CPU time needed to achieve it. The
experiments show that any combination achieves the same lower bound at the end of 50 rounds, except combinations
that exclude Clique cuts. The cutting plane performance is mainly due to the addition of these cuts.

The different combinations considered are tested on eight instances for each density. See references for each cut
combination in Table 1. Table 2 shows the average initial gap percentage (100(y — n_cli)/}), final gap percentage
(100(y — LB)/}), CPU time and the round where the best lower bound is achieved.

For low density graphs, there is no significant increase of the initial lower bound and the final lower bound is
achieved on the first rounds. In many cases, the algorithm stops before 50 rounds because it is not possible to find
violated inequalities. The CPU time increases when Hole cuts are included in the cut scheme.

For medium density graphs, the initial lower bound increases during the first iterations, then the objective function
does not change from one round to the next until the middle, and it does not change again until the end. There are no
instances where the algorithm stops because it cannot find cuts. The addition of Hole and Multicolor Clique cuts results
in CPU time increase and a reduction of rounds to achieve the final lower bound.

Table 1
Family cuts combination

C Clique

Cy Clique + Block Color + MultPath

C3 Clique + Block Color + MultPath + MultCli
Cy Clique + MultCli + Hole

Cs Clique + Block Color + MultPath + MultCli + Hole
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Table 2
Family cuts combinations on random graphs

Low density Medium density High density
Initial gap Final gap Initial gap Final gap Initial gap Final gap
47 35 52 38 43 27
Time Round Time Round Time Round
C 24 11 215 29 369 35
C> 28 11 214 28 386 35
C3 26 11 249 25 484 37
Cy 39 11 250 26 426 32
Cs 37 11 265 26 524 36
6 1+ ’ .
O High density
@ Medium density
5+ ) —
W Lower density
41
34
2 1
11
0

C1 c2 Cc3 C4 Cc5

Fig. 1. Average GAP.

For high density graphs, the lower bound increases significantly during the algorithm, even in the last rounds. The
CPU time increases significantly when Hole or Multicolor Cligue cuts are included.

The experiments show that there is no combination with the best performance for all instances. To get a more
direct comparison, Fig. 1 gives a summary of the above results by using the following measure of efficiency. For each
cut combination C;, we obtain TC; the average over the eight instances of the ratio of the difference between the
CPU time for this cut combination and the CPU time for the best cut combination for that instance over the best cut
combination. If Time; 7 is the CPU time required to achieve the lower bound with cut combination C j on instance i

and BestTime; = min{Time, ', j =1,...,5), then

8
P;= Z(Timeicj — BestTime;) /BestTime;.

i=1

The lower the value of PC, the better the combination C;. There is no clear computational winner among the
combinations considered. However, since combinations without Multicolor Clique and Hole inequalities are generally
superior in CPU time, we think it is worth including these inequalities when the algorithm cannot find any other family
cuts. The scheme using Clique, Block Color and Multicolor Path inequalities is the best for medium density graphs,
and its behavior is good enough for the other densities.
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Table 3
Separation time vs. total time
Low density Medium density High density
Total Separation % Total Separation % Total Separation %

Cy 472 6.6 14 254.8 9.2 4 472.6 11 2

C 49.6 6.8 14 255 10.8 4 481 12.4 3

C3 51.8 8 15 298.8 11.2 4 564.2 17.2 3

Cy 66.2 15.8 24 312 23.6 8 661.8 35.8 5

Cs 69.2 18 26 328.4 24.8 8 629.4 38 6

Table 4

Separation efficiency

Dens. Clique MultCli MultPath Block Hole

(%) color

0.9 31.4 31.4 80.0 0.8 29.5
29.6 39 * * 26.4
27.6 0.0 * * 21.3
259 0.0 * * 13.6
21.5 11.6 79 * 11.5

0.7 17.6 17.6 76.0 22 83.2
20.1 0.3 12.6 * 74.6
22.0 0.0 * * 73.3
19.9 0.6 2.0 * 62.1
20.2 0.0 * * 53.3

0.6 16.8 16.8 70.0 39 90.4
20.9 0.2 10.6 * 88.5
21.5 0.0 21.6 * 83.0
20.2 0.3 8.0 * 73.4
20.1 0.0 * * 69.8

0.5 20.2 14.6 70.0 1.3 94.9
242 0.1 24.0 * 91.8
20.7 35 40.6 0.0 91.1
224 0.0 * * 87.0
20.1 1.5 0.2 * 82.0

0.4 28.2 35 80.0 0.0 95.4
26.5 0.0 * * 94.1
24.7 0.0 * * 89.3
19.9 8.1 53.3 0.0 91.2
23.4 0.0 * * 85.3

0.3 33.6 2.1 80.0 * 89.3
27.9 1.9 80.0 * 87.4
26.5 0.5 100.0 * 86.4
25.5 0.0 * * 85.4
23.6 0.0 * * 80.8

5.2. Separation time

A factor that does not influence our choice of family cuts is separation procedure time. Table 3 shows for each
combination, the total average time of the eight instances in the 50 rounds of the cutting plane, the average separation
process time, and the corresponding percentage over the total average time.
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Fig. 2. Lower bound evolution on different relaxations.

It can be observed the ratio of overall separation time is not significant, although it increases as graph’s density
decreases.

The process of separating Hole inequalities is a determining factor for the increase of total separation time proportion.
The separation of Multicolor Cliques is also an important factor, although it does not have such a strong influence.
Block Color and Multicolor Path separation procedures do not cause a significant increase in the time. We consider
separation algorithms’ time is not a decisive factor to choose one combination over the other.

5.3. Separation algorithm efficiency

To evaluate the efficiency of separation algorithms to find violated inequalities, we take as measure the percentage
of violated cuts over the number of cuts analyzed by each procedure. We run five rounds of the cutting plane algorithm
on random graphs of 125 vertices and different densities. Table 4 presents the results.

Block Color and Multicolor Path inequalities present the possibility of being violated only if variables wg, which
are in the corresponding restriction, present a fractional value. Otherwise, the separation algorithm is not called. An
asterisk () shows this condition in the table.

The Multicolor Path inequality separation process has a good efficiency rate, regardless the graph density. Block
Color inequalities are explored by brute-force and the percentage of violated ones is very low. Nevertheless, since the
procedure is very fast and its inclusion shows an improvement of algorithm’s performance, such inclusion is justified.

The most inefficient separation process is the Multicolor Clique inequalities. It is a heuristic process and the percent-
ages obtained may lead to the conclusion that the strategy used might not be a good one. However, experiments with
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Table 5

Instances solved by the initial heuristics

Problem n m Vi
DSJR500_1 500 12458 12
inithx.i.1 864 18707 54
inithx.i.2 645 13979 31
inithx.i.3 621 13969 31
1e450_25a 450 8260 25
1e450_25b 450 8263 25
1e450_5¢ 450 9803 5
mulsol.i.1 197 3925 49
mulsol.i.2 188 3885 31
mulsol.i.3 184 3916 31
mulsol.i.4 185 3946 31
mulsol.i.5 185 3973 31
schooll 385 19095 14
schooll_nsh 352 14612 14
zeroin.i.l 211 4100 49
zeroin.i.2 211 3541 30
zeroin.i.3 206 3540 30
anna 138 493 11
david 87 406 11
homer 561 1629 13
huck 74 301 11
jean 80 254 10
games120 120 638 9
miles250 128 387 8
miles500 128 1170 20
miles750 128 2113 31
queen8_12 96 1368 12
qg_order30 900 26100 30

graphs with fewer vertices, and a more thorough search have not shown better results. Everything seems to indicate
they are not inequalities frequently violated by the optimal solution of the LP relaxations.

Hole separation efficiency increases as graph density decreases, whereas Clique separation efficiency maintains an
even rate regardless of density.

We use several criteria to evaluate valid inequalities: the lower bound evolution, separation algorithm times and
efficiency rate. All are related and lead us to conclude that they are not in conflict. The presence of Clique inequalities
is essential, which along with Block Color and Multicolor Path combined, provide a good cutting plane scheme.
Multicolor Clique and Hole inequalities do not present any feature that justifies their inclusion except when no other
cuts can be found.

5.4. Comparing relaxations

In Section 2 we define four polyhedra: Y62, €%, €21 and ¢ 22. Polyhedron . 2 is associated with the classical
formulation of the coloring problem. Polyhedra 2, ¢ 21 and ¥ 22 correspond to the set of solutions provided by the
three models we presented with different criteria for eliminating symmetry.

Some facet-defining inequalities derived for %7 in [3] are shared in €2, for instance, Cligue inequalities.

From the polyhedral study’s perspective, we have already pointed out the difficulty polyhedra ¥ 21 and ¥ 22 present.
However, since both are included in ¥Z, the valid inequalities arising from our study are also valid for these polyhedra.
In particular, in a number of instances we find out that Cligue inequalities are also facet-defining inequalities for both
polyhedra.

Moreover, based on our experience, the addition of Cligue inequalities in the cutting plane algorithm is essential to
improve the lower bound which provides the optimum linear relaxation value. Therefore, we consider it is reasonable
to use these inequalities in a cutting plane algorithm to compare the different relaxations.
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Table 6
Hard DIMACS instances

Problem n m n_cli b b

DSJC500_1 500 12 458 5 15 ?
DSJC1000_1 1000 49 629 6 26 ?
DSJC1000_5 1000 249 826 14 116 ?
latin_square_10 900 307 350 90 129 ?
le450_15a 450 8168 15 17 15
1e450_15b 450 8169 15 17 15
1e450_15¢ 450 16 680 15 24 15
1e450_15d 450 16 750 15 23 15
1e450_25¢ 450 17 343 25 28 25
1e450_25d 450 17 425 25 28 25
1e450_5a 450 5714 5 9 5
1e450_5b 450 5734 5 9 5
1e450_5d 450 9757 5 10 5
queenlO_10 100 2940 10 12 ?
queenll_11 121 3960 11 14 11
queenl2_12 144 5192 12 15 ?
queenl3_13 169 6656 13 16 13
queenl4_14 196 8372 14 17 ?
queenl5_15 225 10 360 15 18 ?
queenl6_16 256 12 640 16 20 ?
queen8_8 64 728 8 10 9
queen9_9 81 1056 9 11 10
mug88_1 88 146 3 4 4
mug88_25 88 146 3 4 4
mugl100_1 100 166 3 4 4
mugl00_25 100 166 3 4 4
abb313GPIA 1557 46 546 8 10 ?
willI99GPIA 701 6772 6 7 7
2-Fulllns_5 852 12 201 4 7 ?
4-Fulllns_5 4146 77 305 6 9 ?
5-Fulllns_3 154 792 7 8 8
wap01 2368 110 871 41 46 ?
wap02 2464 111 742 40 45 ?
wap03 4730 286 722 40 56 ?
wap04 5231 294 902 40 50 ?
wap05 905 43 081 50 51 ?
wap06 947 43 571 40 44 ?
wap07 1809 103 368 40 46 ?
wap08 1870 104 176 40 47 ?
qg_order40 1600 62 400 40 42 40
qg_order60 3600 212 400 60 63 60

We run the algorithm on random graph of 125 vertices and 0.3, 0.5, 0.7 and 0.9 densities. In the four formulations
we fix the color of the maximal clique found by our heuristic. The restrictions eliminating symmetric solutions are
taken into account for the remaining vertices and for colors having a label greater than the clique size. We perform 50
iterations of a cutting plane algorithm with Cligue inequalities. Fig. 2 shows the evolution of the objective function for
the four relaxations.

S €2 linear relaxation is the one presenting the worst performance and it does not achieve the same lower bound
values. The large number of symmetrical solutions found in the polyhedron is the reason for the slow progress in the
objective function increase, and also the delay time for each cutting plane algorithm iteration.

The other three relaxations show a similar performance regarding lower bound’s behavior. Nevertheless, the relaxation
resolution time in each iteration is longer for ¥2°2. This is logical since €2 has n_cli(y — n_cli) restrictions more
than ¥2. This CPU time difference increases with graph density.
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Table 7
Lower bounds DIMACS instances

Problem n m n_cli 7 b4 Cr C21

Bound Time Bound Time
DSJIC125_1 125 736 4 5 5 5 1 5 1
DSJC125_5 125 3891 9 20 17 12 77 12 73
DSIC125_9 125 6961 32 47 42 42 354 41 376
DSJC250_1 250 3218 4 9 8 5 11 5 11
DSJC250_5 250 15 668 11 36 ? 14 3339 14 3523
DSJC250_9 250 27 897 37 88 ? 48 3605 47 880
DSJIC500_5 500 62 624 12 63 ? 13 538 13 501
DSJC500_9 500 112 437 47 161 ? 59 5870 59 5344
DSJR500_1C 500 121 275 72 87 ? 80 4470 79 2093
DSJR500_5 500 58 862 117 131 ? 119 1211 119 1262
DSJC1000_9 1000 449 449 55 301 ? 66 4546 65 1497
fpsol2_i_1 496 11 654 55 65 65 65 8 65 8
fpsol2_i_2 451 8691 29 30 30 30 1 30 1
fpsol2_i_3 425 8688 29 30 30 30 1 30 1
miles1000 128 3216 41 42 42 42 0 42 0
miles1500 128 5198 71 73 73 73 0 73 0
ash331GPIA 662 4185 3 4 4 4 48 4 48
ash608GPIA 1216 7844 3 4 4 4 692 4 692
ash958GPIA 1916 12 506 3 5 4 4 4236 4 4236
1-Insertions_4 67 232 2 5 5 3 2 3 2
1-Insertions_5 202 1227 2 6 5 3 0 3 0
1-Insertions_6 607 6337 2 7 7 3 3 3 3
2-Insertions_3 37 72 2 4 4 3 0 3 0
2-Insertions_4 149 541 2 5 4 3 0 3 0
2-Insertions_5 597 3936 2 6 5 3 3 3 3
3-Insertions_3 56 110 2 4 4 3 0 3 0
3-Insertions_4 281 1046 2 5 4 3 0 3 0
3-Insertions_5 1406 9695 2 6 6 3 61 3 61
4-Insertions_3 79 156 2 4 4 3 0 3 0
4-Insertions_4 475 1795 2 5 4 3 2 3 2
1-Fulllns_3 30 100 3 4 4 4 0 4 0
1-Fulllns_4 93 593 3 5 5 4 0 4 0
1-Fulllns_5 282 3247 3 6 6 4 0 4 0
2-Fulllns_3 52 201 4 5 5 5 0 5 0
2-Fulllns_4 212 1621 4 6 6 6 4 6 4
3-Fulllns_3 80 346 5 6 6 6 0 6 0
3-Fulllns_4 405 3524 5 7 7 6 4 6 3
3-Fulllns_5 2030 33 751 5 8 8 6 292 6 292
4-Fulllns_3 114 541 6 7 7 7 0 7 0
4-Fulllns_4 690 6650 6 8 8 7 16 7 16
5-Fulllns_4 1085 11 395 7 9 8 8 55 8 55

6. Final results and conclusions

Finally, we report our results on DIMACS instances. We have performed the experiments on a Sun ULTRA work-
station and the times are reported in seconds (Machine Benchmarks User time: r100.5 =05, r200.5=0s,1300.5 =15,
r400.5 = 655, 1500.5 = 24 s).

There are instances where the lower and the upper bound obtained with the initial heuristics are equal, then the
cutting plane algorithm is not used for these graphs. These instances are showed in Table 5.

Instances where there is no lower bound increase because the algorithm terminates, either because the CPU time
limit (2 h) is reached or no further cutting planes are found, are reported in Table 6. The information provided in the
table is the number of vertices and edges, the size of the clique and the initial upper bound found by our heuristic, and
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the chromatic number (“?” means unknown). The initial lower bound is equal to the chromatic number for most of
these graphs, then it is not possible for the algorithm to improve the lower bound.

Table 7 reports instances where the lower bound is improved. The information provided in this table is the number
of vertices and edges, the chromatic number, the size of the clique found by our heuristic and the initial upper bound.
The last columns report the lower bound found for our algorithm and the times to achieve it by using LP-relaxations of
€2 and €21, respectively. The results show that the algorithm obtains a significant improvement of the initial lower
bounds with both relaxations, specially on graphs where the chromatic number is much larger than the maximum clique
size. Moreover, there are instances where our algorithm is able to solve to optimality since the initial gap is closed.

There is no relaxation with the best performance for all instances. The CPU time difference to achieve the same lower
bound between the relaxations is not as significant to prefer one relaxation over the other. There are some instances
where the lower bound obtained with ¥Z relaxation is improved although more CPU time is required.

This behavior confirms that our approach is a good strategy to obtain lower bounds when compared to the classical
maximum clique size, except in instances deliberately constructed to be hard to color.

This conclusion points out to interesting research avenues. First, further work could be directed to characterize new
valid inequalities and implement separation algorithms for them, in order to improve the cutting plane algorithm. Finally,
the cutting plane procedure can be included in a branch-and-cut algorithm to obtain a competitive exact algorithm for
graph coloring.
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