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1. INTRODUCTION 

Let x, a1 , a2 , a3 , *a- denote indeterminates. The general Bell polynomial 
[3, Ch. 21 

&l(X) = MT 011 , 012 I 013 , -*) = Y&l& 012% 4”, -) 

may be defined by C,,(X) = 1 and 

c&(x) = 2 A,(k, ) k, , k, ) . ..) c&~c$ ... 2, 

where k = k, + k, + k, + -*a, 

(1.1) 

(1.2) 

I 
&(h , k, , k, , ...I = k,!(l!)kl k,!(2:;“2 k,!(3!)“3 ... ’ 

and the summation in the right member of (1.2) is over all nonnegative 
integers k, , k, , k, , -*a such that 

k,+2k2+3k,+--=n. (1.3) 

Note in particular that (1.1) implies 

Y&l , 012 9 013 3 -) = &z(l; % , a2 , 013 , --1. V-4) 

The coefficients A,(k, , k, , k, , *--) are evidently positive integers and it 
is clear from (1.3) that, for fixed II, the number of -4,(k, , k, , k, , --.) is 
equal to P(n), the number of unrestricted partitions of 11. In [l], [2] the writer 
considered the following problem. Let p be a fixed prime and let O(n) denote 
the number of coefficients A,(k, , k, , k, , m-e) that are prime to p so that 

e(n) = P(n) (n <P)* 

The writer proved that 

e(p’l + pr2 + ... + p’m) = j$ a,,,-,B,, , 
n=0 

(1.5) 

* Supported in part by NSF grant GP-1593. 
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34 CARLITZ 

where um,n is the nth elementary symmetric function of the distinct integer 
rl , r2 , a.*, rm and B,, is the Bell number defined by B, = 1 and 

B,+l = 2 
s=o 

(:) & 

In the general case it was proved that 

e(a,prl + n2p’P t 

= 2 . . .  $J (‘1 +;: - ‘) . . .  (rm’ ‘ii: -- ‘) P(a, -jl, .  .  .  .  a,,, ~ j,,i) (1.6) 
j ,=O i,=O 

where rl , ra , .--, r,,, are distinct integers, 

O<Uj<P (j = 1, **., nz), 

and P(a, , a2 , -.-, a,) denotes the number of partitions of the “m-partite” 
number (a,, aa, *.., a,). 

In the present paper we treat the following problem. For fixed n, k let 
e(n, k) denote the number of coefficients A,(k, , k, , k, , .**) with 

k, + 2k, + 3k, + .a* = n, k, + k, + k, + ..- = k (1.7) 

that are prime to p. It follows from (1.7) that 

e(n, 4 = Ph) (n < P), 
where P,(n) denotes the number of partitions of n into k parts. We shall 
prove the following results. In the first place 

2 e(p’l + ... + prm, k) “’ .tJyl; = z am,w-j(X) Bj(x)7 (1.8) 
h-0 j=O 

where ri , .*a, r,,, are distinct integers u,,~(x) denotes the jth elementary 
symmetric function of ui(x), e-0, u,(x), 

and B,(X) is the single-variable Bell polynomial defined by B,(x) = 1 and 

When x = 1, it is evident that (1.8) reduces to (1.5). 
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In the general case we show that 

jJ quy, + '.. + fzmprm, h) 
k=O 

=$ ... 2 D,l(j,,x)-..D,(j,,x)P(u,-j,,...,u,-j,~;x), (1.9) 
j ,=O j,n=O 

where rr , ***, I, are distinct integers, 0 < a, < p (1 < s < m), 

P(u, ) .... a,; x) = $ P&z1 , ‘..) a,) .P, 
! i=O 

P,(u, , 0-a) a,) is the number of partitions of (a, , a.*, a,) into exactly K parts 

and 

&.(a, x) = (x” + x* + ... + “VP’)(=), 

where in the expansion of the right side the multinomial coefficients are 

deleted. 
It is easily verified that (1.9) contains (1.6). 

2. PRELIMINARIES 

Let p be a fixed prime. It is familiar that the binomial coefficient (,“) is 
prime to p if and only if the following conditions are satisfied. 

a = a, + alp + u,pz + *-- (0 < aj <P> 

b = b, + b,p + b,p2 + a** (0 < bj <P) 

and 
bj < Uj (j = 0, 1, 2, **.). (2-l) 

By an urithmetic function we shall understand a mapping from the non- 
negative integers into the reals. I f  f ,  g are two arithmetic functions we define 
the Lucas product h = f  * g by means of 

h(n) = $*f(Cdn - y) 
r=0 

(n = 0, 1, 2, ...), (2.2) 

where the asterisk indicates that the summation is restricted to Y such that 
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(y) is prime to p. The Lucas product is associative and commutative. The 
function u defined by 

44 = ~no (2.3) 

satisfiesf*u = f for all f. For given f, a function g exists satisfying 

f*g=u (2.4) 

if and only i f f  (0) f  0. In particular for the function Z defined by 

Z(n) = 1 (n = 0, 1, 2, . ..) 

we have Z * TV = u, where TV is defined by 

P(ao + %P + %P2 + --) = 14%) tL@lP) #4%P2) ..* (0 G % < P) (2.5) 

and 

(u = 0) 
(a = 1) 

(1 < a <p). 

As an application we have 

if and only if 

f(n) = l$*P('Mn - r). 7=0 

We define the function 

d, =I’=Z* -.. *I (r = 1, 2, 3, ***). 

In particular we put d = d, = Z *I so that 

d(n)=%*L 
7=0 

I f  
n=u,+u,p+u,p~+-~ (0 < a, < P) 

then we have 

d&z)=a(njk+k;l) (k= 1,2,3;..). 

(2.6) 

(2.7) 

(23) 
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It is easily verified that d,(n) is equal to the number of k-nomial coefficients 

n. I 

nl. 1 ... nl;! 
(nl + ... + nk = n) 

that are prime to p. 

3. SOME PROPERTIES OF &(x) 

I f  we put 

A = A(t) = 3 a, 5 
n=1 

(3-l) 

and 

eAx = 2 A(x) s 
?S=O 

DneAz = Y,(A’r, A”x, A”‘x, ...) eAr, 

(3.2) 

(3.3) 

D=-& A’ =dA d2A 
dt ’ 

A” =-, *.., 

and, as in the Introduction, 

yn(~1,~2,~2,...)=~IL(1;~1,~2,~2,...). 

In particular, when n = pc, (3.3) becomes 

Now 

Dp’eaz = YDr(A’x, A”x, A”‘x, ...) eA$. 

DPeAx s (A’PXP + A(P)x) eAz (mod PI- 

(We recall that the statement 

means 

(3.4) 

(3.5) 

A,, ES B,, (modp) (n = 0, 1, 2, **+), 
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where the A, , B, are polynomials with integral coefficients.) Since in what 
follows all congruences are (mod p), we shall usually omit the modulus. 

Since -4’~ G 01rP, it follows from (3.2) and (3.5) that 

(3.6) 

(3.7) 

it follows from (3.7) that 

drip(X) = Yn(%PXP + c$lx, %p.% 059x9 *->I 

or equivalently 

Yn,(%X, %X, a33x, --) = Y,(c$“x” + c$x, ci3px, cgp, v-r). 

Replacing n by np (3.8) becomes 

(3.8) 

The general formula is evidently 

&)r(x) = Ynp’(c$x, cL$, J[gs, .‘.) 

= Yn(afxD’ + ‘.. + - olDcx, a.+x, ff3prx, .‘. ). 

Since Yl(al , mz , 05 , -a-) = a1 , (3.9) implies 

up’ Es arfxp’ + OL;‘--IP + . . . + a,,rx. 

It follows that 

Y&l’x, A”x, A”‘x, . ..) zz (A’x)~ + (AWT)~‘-~ + ... + A’““x 

-G (cxlX)~’ + (c$.v)+ + “. + (cxpr-l x)” 

(3.9) 

(3.10) 

A(“r)“v. 
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Hence (3.4) yields 

47Z+Pr(x) E 8 (aplX)Pr-’ 4n(x) + x 2 (7) olp'+j4?zn-j(X)* 
(3.11) 

It is convenient at this point to state a formula of a different nature, namely, 

Yn(% + Y, a-2 9 a3 , ..,) = js (9 yn-‘Yn-j(al 3 0~2 3 cs “‘9 )v (3.12) 

which is an immediate consequence of (3.2). 

In the next place, by (3.9) and (3.12) 

Y,&4'x, xx, A"x . ...) CE Y&q:/ + ... + +xp + A (p)x, d2p')x, . ..) 

0 
-a) “. (c$x”r 

j=o .3 
+ . . + apF-,x)+j . k;(~(~r)~, AQP')~, . . .). 

4. THE FUNCTIONS 6+,.x) AND @&z,x) 

We have defined O(n, k) as the number of coefficients A,(k, , R, , R, , -s-) 
with 

k, + 2k, + 3k, + -*a = 11, k, + k, + k3 + -*- = k (4.1) 

that are prime to p. We now define 

O(n, x) = 2 8(n, k) xp, (4.2) 
P=O 

where x is an indeterminate. Indeed it will be convenient to consider a 
slightly more general function. Put 

Bj(?l, k) = $ dj(Y) O(Yl -j, k), 
7=0 

(4.3) 

where the notation is that of Section 2. Thus Bj(n, k) is the Lucas product of 
d,(n) and O(n, k). The parameter k is held fixed; the Lucas product is with 
respect to II only. 
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We now define 

Oj(rz, x) =: 2 ej(n, k) 9. 
k=O 

It follows at once from (4.3) and (4.4) that 

Oj(n, x) = $d,(r) O(rz - r, x). 

7=0 

Note in particular that 

flo(% 4 = @h 4, O,(n, x) = O(n, x). 

Returning to (3.8) and applying (3.12) we get 

(4.4) 

(4.5) 

Ynp(%X, %X9 w, (4.6) 

In counting the number of coefficients on the right side of (4.6) that are 
prime to p, it is evident that the external factor (c+~)(~-i)P causes no over- 
lapping. Hence we get 

e(np, R) = $$+ e(n -,j, k -jp). 
j=O 

Then 

and therefore 

j=O Is=0 

Define 

@(rip, X) = 2 3CjpO(72 -j, x). 
j=O 

I(n, x) = a? (n = 0, 1, 2, .*a); 

(4.7) 

(4.8) 

when x = 1 this function reduces to 1(n) as defined in Section 2. Thus (4.8) 
becomes 

qnp, x) = -$+ I(j, x”) @(n -j, x). (4.9) 
j=O 
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Replacing n by np, (4.9) becomes 

O(np~, x) = 2 I( j , xp*> @((n - j)P, x> 
j=O 

= $?I( j, xq p I(& x”) @(n - j - I?, x) 
j=O k=O 

= e@(n - m, x) z* I( j, S') I(k, xp). 
VIA=0 j+k=m 

Thus O(np2, x) is the Lucas product of O(n, x), I(n, XP), I(n, XP’). The general 
formula of this type can be stated without any difficulty. When x = I it 
reduces to 

B(npT) = O(nf, 1) = $*d,(j) e(n -j) = O,(n). 
j=O 

Making use of (4.5) we get 

@,(np, x) = 2 dj(YP) O((?z - Y) p, x) 
r=0 

= $qY) np qs, x”) qn - Y  - s, x) 

r-i0 s=o 

= p&, x”) g&) O(n - Y  - s, x), 

S=O i-=0 

so that 

O&p, x) = Pl(s, a"") Oj(n. - s, x). 

.I?=0 

(4.10) 

By means of (4.9) we can easily compute O(pr, x). Indeed, (4.9) yields 

O(p', x) = 'f+I( j, x) O(p'-l - j, x) 
j=O 

= qpr-1, x) + qpr-1, x”) 

= O(jY-1, x) + xpr. 
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It follows at once that 

More generally, (4.10) implies 

@,(pl‘, x) = 2 .d + j (j --1 0, 1, 2, ...). 
S=O 

Put 

5. PROOF OF (1.8) 

n = p’ + m, O<m <p’. 

Then (3.11) becomes 

(4.1 I) 

(4.12) 

(5-l) 

(5.2) 

In counting the number of coefficients in the right member of (5.2) that are 
prime to p, it is clear from (5.1) that there is no overlapping. It follows that 

r-1 m 

e(n, k) = 2 O(m, k - p’-j) + z*O(rn -. j, k - 1). 
i=O j=O 

Then 

8(n,x)=exk~~B(m,k-pr-j)+i3xk~e(m-j,k-I) 
k=O j=O k=l i=o 

= 2 xy’O(m, x) + x 9 O(m -j, x). 
i=l j-0 

Hence if we put 

u,(x) = $ x”j, 
j=l 

it is clear that 

O(n, X) = u,(x) @(m, x) + x(@,(m, 4. 

-j,k)xx 

(5.3) 

(5.4) 
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This formula admits of an immediate generalization, namely, 

Q&b 2) = h(X) + j) Qjh 4 + Qj+dw 4 (j = 0, 1, 2, *mm). 

It is convenient to put 

n, = p’l + p+2 + ” + p’” (k == 1, 2, 3, ...), 

(5.5) 

(5.6) 

where0 <rr <r, < *a. < yk . Then (5.5) becomes 

Qj(n/i t x, = (Urk(r) +j) Qj(nk-1 v x, + xQj+,(nk-, T x). (5.7) 

We have already computed O,(p’, 3~); in the present notation (4.12) becomes 

Q,(p’, x) = u,(x) + x + j. (5.8) 
Then by (5.7) 

Qj(prl + P*z, x) = (%.,(x) +j) (url(r) + x +j) + x(%,(x) + s t j + 1) 

@j(prl + fJr2 + p's, X) = (Ur,(X) + j) Qj(p’l + P’P, X) + .‘cQj+l(P7~ + pr,, X) 

+ (2 + x) 2 (uT,(x) + j) + x3 + 3s” $- x, 

where the sums on the right are with respect to the indices 1, 2, 3. 
This suggests the general formula 

Q,(p” + ‘. . + P’“, x) = -$ c&&) B,(x), (5.9) 
.S=O 

where D:,‘,(X) denotes the mth elementary symmetric function of the quanti- 
ties 

4&4 +i, u,,(x) + j, ..-, +,W +i 

and B,(x) is a polynomial in x of degree s that is independent of k, ri, y2, ..., yp. 

It is, however, convenient to prove a more general result. Consider 

Qh + m, 4 = 3 C,,,-,(.L 4 Qj+dm, 4, (5.10) 
5=0 
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where now 

0 .< m  -: p'" < "' < p" 

and C,,,-,(j, X) is independent of m. Assuming that (5.10) holds up to and 
including the value k, we have, for m < p~+l < prk, 

Oj(nn+l + 112, A-) = O,(n, + pQ+’ + m, x) 

= $ C,,,-,(j, X) Oj+s(pl'k+l + m, X) 
.S=O 

a=0 

+ x@j+,+l(m, -VI> 

l.+1 

= 2 {(u~~.+~(x) + i 4 4 Ck,k-,(.L 4 
S=O 

+ fG,k--s+l(jt x)1 @j+,(m). 

We note that if 

2 D,,(x) O,(m, x) = 0 (m = 0, 1, ..., M), 
SE0 

where k is fixed, Dks(x) is independent of m and M is arbitrarily large, then 

D,, = 0 (0 < s < k). 

It accordingly follows that 

Ck+l,k--s+l(j, 4 = (u rk+,(x) +i + 4 G,di 4 + G+-s+l(j, 4; 

replacing s by k - s + 1 we get 

Ckil.s(j, 4 = (urk+1 (x) + k - s + j + 1) Ck+J j, X) + xC,,,( j, x). (5.11) 

The initial conditions are 

Put 
Coo(j, 4 = 1, Co,( j, 4 = 0 (s # 0). 

f:?(x, y) = 2 C,,( j, x) p. 
S=O 

(5.12) 
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Then, using (5.1 l), we find that 

fcIl(x, y) = (u~~+~(x) + j + xy)fy’(x, y) + y af’il,’ ‘) . 

We rewrite this in the operational form 

fi$(x, y) = (urk+J.z”) + j + xy + YD) @‘(x, y), (5.13) 

where D = a/ay. Then (5.13) implies 

jy’(x, y) = fi (u,,.(x) +j + xy + yD) . 1 = 2 uI;j.!&) (XY + YD)~-’ . 1, 
s-1 GO 

where ~‘,!~(x) is the sth elementary symmetric function of the quantities 

%I(4 +i, u&4 +j, .-., u,,(x) + j. 

Also it is easily verified that 

(xy + yD)” . 1 = 2 S(k, 72) xnyn, 
T&=0 

where 

Thus 

fC’(x, y) = 5 u;,;,(x) 5 S(n, t) xy. 
TWO t-o 

Comparison with (5.11) yields 

c,,,-,( j, x) = 2 u;,;-,(x) S(n, t) xt 
n=t 

and therefore (5.10) becomes 

(5.14) 

(5.15) 

Oj(n, + m, x) = 2 Oj+t(m, x) 2 a,&,(x) S(n, t) x’. (5.16) 
t=o n=t 

We may now state our first principle result. 
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THEOREM 1. Let 0 < m < prk < **- < prl and let ujj,‘,(x) denote the 
nth elementary symmetric function of the quantities 

where 

Then (5.16) holds for j = 0, I, 2, “. . 
When m = 0, (5.16) becomes, since Oj(O, x) = I, 

Oj(lZ, , x) = 2 $ a:,),-,,(x) qn, t) xt 
I=0 n= t 

Hence if we put 

= 2 a$,,(x) 2 qn, t) “2. 
n=O t=o 

B,(x) = $ S(n, t) xt, (5.17) 
t=0 

it is easy to identity B,(x) with the Bell polynomial defined by means of 
B,(x) = 1 and 

(5.18) 

We may state 

THEOREM 2. Let I~, y2, ..-, yk be distinct integers. Then we have 

O,(p’l + ... + P’“, x) = -$ a&&,) B,(x), 
n=o 

(5.19) 

where o!,\-,Jn) has the same meaning as in the previous theorem and B,(x) is 
the Bell polynomial defined by (5.18). 

6. THE GENERAL CASE 

Let 

where 

D,(n, x) = Z(n, xP) * a*- * Z(n, x9’), 

Z(n, x) = x” (n = 0, I, 2, ..-). 

(6.1) 

(6.2) 
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Then by the discussion following (4.9) we have 

O(np7, x) = $D,(s, x) O(n - s, x). (6.3) 
s=o 

In particular, since 

qa, k) = Pk(X) (a < Ph 

where P,(n) is the number of partitions of a into exactly k parts, we have 

where 

qapr, x) = 2 Dr(S, x) P(a - s, x) (Q < Ph (6.4) 
3=0 

qa, x) = 2 P,(a) XI;. (6.5) 

Now put 

k=O 

n = ap’ + m (0 <a <p;O <m <p’). w9 

Then by (3.3), (3.12). and (3.13) 

DaPreAs = y apr(A’~, A”x, A”‘x, *..) eAz 

s g (7) {(A’“@J + . . . + (#P3X)P)LI-j. yj(AwJX, Ar2P’)X, . ..) 

a 

-HO 
“. .r(alx)“~ + ... -+ (apx)P)“~’ . Y,(A(Q, A(“+, .-.). 

j=O I  

Put 

(jp') = 2 q!"'(m) 2 (O<i<p) 
m=O 

and let #(m) denote the number of terms in C:i’(m, x) with p f c. Then if 

we have 

m = a, + alp + asp2 + *-- (0 <at <P)Y 

~J’)(rn) = Pj(ao , a, , a2 ) ...), (6.8) 
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where Z’j(ao, a, , a, , ...) denotes the number of partitions of (a,, , a, , a, , ...) 
into exactly k parts. If we now put 

and &(m, k) denotes the number of terms .@ in Bl”(m, X) with p-r b, the 

where the summation is over all nonnegativej, ,ja , ... such that 

jl + 2j2 + .a- = j, jl + j, + ... = k. 

It follows at once from (6.9) that 

(6.10) 

where j, + 2js + -a* = j  and 

In the next place, since 

we get 

(6.11) 

where U,.(X) is defined by (5.3) and the notation (U+(X))@-j) indicates that 
after expansion the multinomial coefficients are deleted. It is easily verified 
that 

(ur(x))‘“’ = D,(u, x) (u <p). (6.12) 

We shall now show that 

O(u,pQ + ... + uzpvz, “X) 

= 2 Drl(jl , x) ... DrI( j, , .y)Q(a, -j, , ..., a, -j,; x), (6.13) 
9 
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where Q(q -jr , a**, a, -j,; x) is independent of rr , .**, Y, and 

O<a,<P (1 < s d 4; II < r2 < -** < Y, . 

For z = 1, (6.13) is in agreement with (6.4); indeed 

Q(a; x) = P(a; x). 

We assume that (6.13) holds up to and including the value z and apply 
(6.11) with m = alp7L + * + azprz. Then if 0 < a < p and r > rk we have 
by (6.11) and (6.12) 

@(up+ + m, x) = 2 D,(a, x) 2 bj(m - m’, x) O(m’, X). 
j=O m'=O 

By the inductive hypothesis 

3 A(m - m’, 4 @(m’, x) = b$o&(m - m’, x) ,go Drl( j, , x> ... D,,(j, , 4 rn’=O s 
. Q(h -jl , ..., b, - jz; 4, 

where 

Thus 

m’ = f~~p*~ + . .. + b,pr.. 

Q(uP’+m,x)=-DD,(j,x)~Dy(j,,x)--.D,(j,,~) 
j=O j,=O 

* f$ p&m - m’, .x)Q(b, -j, , ..., b, -j,; x). 
b,=js 

This completes the proof of (6.13); moreover it shows that 

Q(a, -j, , ... a, -j, , a --j; x) 

= C /laaj(m - m’, x)Q(b, -j, ..., b, - jz; x). 
b,=js 

This may be replaced by 

a* 
Q(a, , ., a, , a; x) = 2 /&(rn - m’, x)Q(b, , ..., 6,; X). (6.14) 

b,=O 
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It remains to show that 

(6.15) 

where 

and Pe(al, .a-, a,) is the number of partitions of (a, , *e*, a,) into exactly k 
parts. We recall that 

(6.16) 

In proving (6.15) we drop the restriction a, < p and assume that (6.10) 
and (6.14) hold for all a, 2 0. Finally when (6.16) is applied to (6.13) the 
restriction is restored. 

We have already seen that (6.15) holds when z = 1. We now assume that 
(6.15) holds up to and including the value 2. Thus (6.14) becomes 

ecu1 , ..., a, , a; x) = 2 fia(m - m’, x) P(b,, ‘.., bZ; s), 
b,=O 

so that 

nl . . . . . a,=0 b1 . . . . . b,=O a=0 

P(b, , . . . . b,; X)3,;‘+bl ...Y;.+b’V~’ 

= fi (1 -y;1 . ..y.““)-l 
b,.....h,=O 
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By (6.10) and (6.8) th e multiple sum on the right is equal to 

= fi.&, 2 2 p&T, , . . . . nk)JJyl . . . y;=.&ysj* 
s-1 jl.J*,...=O nl.....n,=O 

= fi fj (1 -y:' -y;y%)-'. 

5=1 n~....,n,=O 

Therefore 

z f&z,, ...,uz,a;x)yy ..*y:zy"= fl (1 -y~...y~~y%)-', 

a,.....a,=o n~.....'n,.n=o 

which evidently completes the induction. 
We may now state 

THEOREM 3. Let rl , *a*, Y, be distinct integers and let 0 < a, < p, 
1 <s <z. Then 

O(a,prl + “. + uzpz, x) 

= 2 D,,(jll x) ... R&j,, 4 P(a, -.A, ..., az -iz; 4, 
i,=O 

where 

P(a, , . ..) a,; x) = % P,(a, , .“, a,) x2, 
k=O 

P&l , --mY a,) is the number of partitions of (aI , *me, a,) into k parts and 

D&, x) = (x” + xp2 + ... + Xp’ya), 

where in the expansion of the right member the multinomial coemts are 
deleted. 
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