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1. INTRODUCTION

Let x, oy , y, o, +*+ denote indeterminates. The general Bell polynomial

[3, Ch. 2]
bu(%) = (s 0y, 0y, a5, *+) = Yoy, g, o, *+°) (L.1)
may be defined by ¢y(») = 1 and
$alx) = D, Aylly , by, by, o) oahiol - o, (1.2)

where k =k, + ky 4 By + -+,

n!
)= B NINEL Byl (2152 By (31 -

An(kl )k2)k3y

and the summation in the right member of (1.2) is over all nonnegative
integers &, , k, , By, *+* such that

ky -+ 2ky 4 3ky 4 o =n. (L.3)
Note in particular that (1.1) implies
Yi(og , g, 05, =) =l 00, 05, 05, =) (1.4)

The coefficients A,(k, , k, , k; , *-*) are evidently positive integers and it
is clear from (1.3) that, for fixed n, the number of A,(k, &y, ks, ") is
equal to P(n), the number of unrestricted partitions of n. In [1], [2] the writer
considered the following problem. Let p be a fixed prime and let 8(n) denote
the number of coefficients A,(k, , &y, k3 , ***) that are prime to p so that

0(n) = P(n) (n <p)

The writer proved that

B(Prl +prg 4o +prm) = 2 am,m—nBﬂ ’ (15)
n=0
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where o, , is the nth elementary symmetric function of the distinct integer
7y, ty, ***, 1, and B, is the Bell number defined by B, = 1 and
n
n
Bn+1 - E (S) Bs .

5=0

In the general case it was proved that

O(HIPTl -+ azp"z 4 amPr'")

< & - 1 i .n - .
= 2 E (71 +]1 . (rm +!, 1) Pla, —jy, " ay —jn) (16)
j,=0 =0 - Im !
where r, , 7, *-+, 7, are distinct integers,
Ogai<P (j=1,“-,m),

and P(a, , a,, ***, a,) denotes the number of partitions of the ‘“m-partite”
number (a, , @, , ***, @)

In the present paper we treat the following problem. For fixed n, & let
8(n, k) denote the number of coeflicients 4,(&, , &, , &k, , ***) with

Ry +2k, +3ky +-=mn R+ h+hhh+ =k (L.7)
that are prime to p. It follows from (1.7) that
O(n, k) = Pu(m)  (n <P),

where P,(n) denotes the number of partitions of # into k parts. We shall
prove the following results. In the first place

2 0(p7 oo o P B) & = 0 () Bif), (18)
k=0 j=0
where 7, , -+, r,, are distinct integers o, {(x) denotes the jth elementary

symmetric function of u;(x), *--, #,(%),

ui(x) = xP + 27 £ x?® Lo g

and B,(x) is the single-variable Bell polynomial defined by By(x) = 1 and
Bu(¥) = % 2, () By(#).
j=0 *J

When x = 1, it is evident that (1.8) reduces to (1.5).
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In the general case we show that

2 e(ai'l 4o 4 amprm’ k)

k=0

ay ,,
= E E Dr1(j1 ,x) Drm(jm xx)P(al _jl y T Ay _jm; x)s (19)

W= =0

where r; , **-, r,, are distinct integers, 0 << a, <p (1 <s < m),

Ld
P(al’ '“-am;'x) == EPk(alj ”'»am)xmv
k=0

Pya, , -, a,) is the number of partitions of (4, , ***, a,,) into exactly k parts
and

D,(a, x) = (x® + x? + - 4 x7)(@,

where in the expansion of the right side the multinomial coefficients are
deleted.
It is easily verified that (1.9) contains (1.6).

2. PRELIMINARIES
Let p be a fixed prime. It is familiar that the binomial coefficient ({) is
prime to p if and only if the following conditions are satisfied.
a=a,+ap+ ap®+ - 0<a <p)
b= by + bip + byp* + - 0< b <p)

and

bi < a; (j = 0) 1’ 21 '“)' (2'1)

By an arithmetic function we shall understand a mapping from the non-
negative integers into the reals. If f, g are two arithmetic functions we define

the Lucas product h = f x g by means of
n %
hm) =2, f)gn =7 (#=0,1,2,-), (22)
r=0

where the asterisk indicates that the summation is restricted to 7 such that
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™ is prime to p. The Lucas product is associative and commutative. The
r p p

function u defined by

u(n) = 8, (2.3)
satisfies f *u = f for all f. For given f, a function g exists satisfying

frxg=u (2.4)
if and only if £(0) == 0. In particular for the function I defined by

I(n) =1 (n=0,1,2,-)
we have I x p = u, where p is defined by
way + ap + axp® + ) = plag) p(arp) wlagp?) - (0 < a; <p)  (2.5)
and
l (a =0)

wap)=4{—1 (a=1)
0 (l<a<p)

As an application we have
n, *
gm) =2, f0)
r=0

if and only if

Foy =3 wr)gln — ).

=0

We define the function
d=I"=1%--%] (r=123, ) (2.6)

In particular we put d = d, = I * I so that

7, %
dn)y=7Y, 1. 2.7
r=0
If
n=ay, + aip + ayp® + - 0<a<p)
then we have
k X k —1
dm) =TT (* :_1 ) k=123, 2.8)

i=1
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It is easily verified that d,(n) is equal to the number of k-nomial coefficients

|
L (m + A+ mg =)

ny!oong!

that are prime to p.

3. SOME PROPERTIES OF ¢,(x)

If we put
o tn
A=A = Zi o
then
o t"
e1e = 3, ()
n=0 '
and
Dreds = Y, (A'x, A"x, A"x, ) e4%,
where
2
D:d A,_dA A,,_dA

dat’ 4t e

and, as in the Introduction,

Yn(al y Ap, O3, "') z(ﬁn(l: &) 5 Koy O3y ')

In particular, when n = p7, (3.3) becomes

DY eds = V,o(A'x, A"x, A"x, -*) e4o.

Now

Dredt — (A'Px? + AWy) etz (mod p).

(We recall that the statement

n

~

S B, (modp)
(1]

n!

|
i

means

A4, = B, (mod p) (n=0,1,2, ),

G.1)

(3.2)

(3.3)

(3.4)

(3.5)
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where the 4, , B, are polynomials with integral coeflicients.) Since in what
follows all congruences are (mod p), we shall usually omit the modulus.

Since A'? = o,?, it follows from (3.2) and (3.5) that

Fraa() = w0, (3) + % 2, () st )

i=0

If we replace n by np in (3.6) we get

ﬂ__\ 7
Ptarnp(®) = oPxPdy (%) + x 2/ (J} & (40P (n—ipp(%)-
=0

Since

bais) =3 3 () b5,

j=0

it follows from (3.7) that
Pup(®) = Vi0"x7 + o, cpix, gy, *+),
or equivalently
Yop(ogX, apx, agx, -»7) = Y (0gPx% + oy, 0%, anyX, =),

Replacing 2 by np (3.8) becomes

2 2
x P .. D o + ..
Y, (g%, opx, age, ) = Y, (of &7 + a,”%7 4 a2x, a0, o2,

The general formula is evidently
¢7wr(x) = YnD'((xlxr Qg A, )
= n(a}’rx’"r 4 a0 X, g, o)
Since Yi(o; , @, o, =**) = 0y, (3.9) implies
dor(x) = afrx”r + a’;'_lx"r_l 4 .

It follows that

Y,,r(A'x, A”x, A"x, ) = (A'x)’" + (A(mx)p'-l 4o ANy

(3.6)

3.7

(3.8)

(3.9)

(3.10)

= (@) - (ape)? T A e A (g )P - 00



PROPERTIES OF BELL POLYNOMIALS 39

Hence (3.4) yields

Baipr(x) = 2 (o)™ () + xE (’]’.) Gresbnos(x). (1)

It is convenient at this point to state a formula of a different nature, namely,

n

V(o + 3, 00, 00, ) = 2 () 7" Vaci(oa s 3000 5), (3.12)

j—o *J

which is an immediate consequence of (3.2).
In the next place, by (3.9) and (3.12)

Yor(A'x, A%, A" ) = Yo(olx¥ + - + afx® + APx, A9 % )

= - ((]1) (Otf'xp" + -+ apr—lx)a—i . Yj(A(pf)x’ A(Z”r)x, )

j=0

4. Tue FuNcTioNs O(n, x) AND Oyn, x)

We have defined 6(n, k) as the number of coefficients A,(k, , &y, k3, =)
with

Byt 2ky + 3k =n, Rtk ko =k (41

that are prime to p. We now define
O(n, x) = X, 6(n, k) %, (4.2)
k=0

where x is an indeterminate. Indeed it will be convenient to consider a
slightly more general function. Put

0;(n, k) = }_‘1) di(r) 0(n — j, k), (4.3)

where the notation is that of Section 2. Thus 8,(n, k) is the Lucas product of
dy(n) and 8(n, k). The parameter & is held fixed; the Lucas product is with
respect to 7z only.
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We now define

Oin, x) = i 6;(n, k) x*. 4.4)

It follows at once from (4.3) and (4.4) that

0,(n, x) = Z* dr) On — r, x). (4.5)
7=0
Note in particular that
Oy(n, k) = 0(n, ), Oy(n, x) = O(n, x).
Returning to (3.8) and applying (3.12) we get

Yoy, agi, g, ) = *( ) (00) " Yoty gy, gy, ): (4.6)
j=0

In counting the number of coefficients on the right side of (4.6) that are
prime to p, it is evident that the external factor (oyx)!®~%)? causes no over-
lapping. Hence we get

0np, k) = 3 6n —j, k — jp).
j=0
Then
O(np, x) = Ee(np, k) xk—Ev'»E 8(n — j, k — jp)

P j

= i* xir ln—zi)-p O(n —j, k) x*

j=0 k=0

and therefore

n

Omp, x) = 3, ¥O(n — j, x). 4.7)

i=0
Define
I(n, x) = x" (n = 09 1; 2) '“); (48)

when x = 1 this function reduces to I(n) as defined in Section 2. Thus (4.8)
becomes

O(np, x) = zn}* 1(j, x7) O(n — j, x). (4.9)

i=0
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Replacing # by np, (4.9) becomes

Onp?, x) = 3" 1(j, ) O((n —j) p.%)
= i‘fl(j, x??) ni* Ik, x?) O(n —j — k, x)

= i*@(n —mx) 3, 1(j, ) Ik, ¥7).

m=0 J+k=m

Thus O(np?, x) is the Lucas product of @(n, ), I(n, x7), I(n, x*°). The general
formula of this type can be stated without any difficulty. When x =1 it
reduces to

Bnp) = O(mpr, 1) = 2,°

n
=0

d,(j) B0 — ) = Bi(n).

Making use of (4.5) we get

Oy(npr3) = 3 diep) O((n ~ 1) p, %)

r=0

= 3Va) S I, %) B(n — 7 — 5, %)

r=0 3=0
= YK, x7) Y, di(x) O — 7 — 5, %),
8=0 r=0

so that

O,(np, x) = i*l(s, x?) Oy(n — s, x). (4.10)

By means of (4.9) we can easily compute &(p", x). Indeed, (4.9) yields

o1

O(p", x) = 2*1(1‘, %) O(p™1 —j, x)

= @(Pr-lv x) + I(Pr—l7 x7)
= O(p™, x) + x7".
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It follows at once that

o(p’, x) — E X (4.11)
5=0

More generally, (4.10) implies

Oxp, x) = 2 av +j  (j=0,1,2,). (4.12)
§=0

5. Proor oF (1.8)

Put
n=p +m, 0<<m<pm. (5.1)

Then (3.11) becomes

r—1 ey 1, *im
b)) = 3 (o) () + 5 2 () wrespms®) (52)
i=0 =0
In counting the number of coefficients in the right member of (5.2) that are
prime to p, it is clear from (5.1) that there is no overlapping. It follows that

r~1 3

O(n, k) = Eﬁ(m k — r—1)+2 8(m — j, k — 1).

Then
7 r—1 m
B(n, x) = 2, 5 2, 6(m, k — r1)+2 £ 0m —j, b — 1)
k=0 3=0 i=0
r—1 n—-p m = n-l
= le’" 2 0(m, k) x* + ”E* O(m — j, k) x*
j= k=0 =0 k=0
=D, x?0O(m,x) + x 2 O(m — j, x).
i=1 =0
Hence if we put
u(x) = X, 7, (5.3)
j=1

it is clear that
B(n, x) = u(x) O@mn, x) - x(By(m, x). 5.9
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This formula admits of an immediate generalization, namely,
,(m, x) = (u(%) +7) Osm, %) + O;4(m,2)  (j=0,1,2, ). (5.3)
It is convenient to put
M= b Pk b p (= 1,23, ), (56)
where 0 <7y <7y < -+ <7 . Then (5.5) becomes
Oy(n , ) = (4, (%) +J) Osmy , ¥) + 26;15(npy , ). (5.7)
We have already computed @,(p", x); in the present notation (4.12) becomes

00", %) = u,(x) + % + j. (58)
Then by (5.7)

0,(p + P2, %) = (U (%) +J) (w,(3) +* +)) + 2w (%) + x -+ + 1)

= (u,,(x) +J) (u, (%) +J) + a(ue(x) + u,(x) + 2j)
+ %% + x,
O,(p" + " + P73, x) = (u,(x) 1) Of(p + P72, x) + 205 (P + 7, x)

= (4 (3) +7) (0, (8) + ) (0 (x) +7)
+x 2 (up(x) + ) (up (%) + )
+ (0 + ) D () +)) + 0+ 3 e,

where the sums on the right are with respect to the indices 1, 2, 3.
This suggests the general formula

k
B,(p" -+ + P, %) = 2 ol (x) Bl), (59)
§=0
where o/} (x) denotes the mth elementary symmetric function of the quanti-
ties

un(x) +]1 urg(‘x) +]r T urk(x) +]

and B,(x) is a polynomial in x of degree s that is independent of &,7,, 7,, -, 7;.
It is, however, convenient to prove a more general result. Consider

k
Oy, + m, x) = D, Cp i {J, %) Oy i(m, %), (5.10)
8=0
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where now
0 <Cm<Cp™ <o < pn

and C; ;. J, x) is independent of m. Assuming that (5.10) holds up to and
including the value &, we have, for m < prs+1 < prs,

O(npq +m, x) = Oy(ny + p + m, x)

IS
ECH L 8) Osu(pe+ + m, x)

Il

2 Crnss ) (g (@) +J + 5) Bpaalim, %)

-+ x@i+s+1(ma V)}
k+1

= D (e (%) +J + 9) Crpsly 2)

§=0

+ ka,k—s+1(j’ ‘7‘)} @}'+s(m)'
We note that if

I‘E Dyfx) Ofm,x) =0 (m=0,1, -, M),
=0
where % is fixed, D, (x) is independent of m and M is arbitrarily large, then
D=0 (0<s<k)
It accordingly follows that
Crivi—sit(h> %) = (U (%) + T + 5) CrpiJ, %) + ¥C p5ia(J, %);
replacing s by 2 — s + 1 we get
Crsrs(f, %) = (U, (8) + k — s +j + 1) Cpsa(Jy %) + 2Cyo(f, ). (5.11)
The initial conditions are

Coolr®) =1, Coljsx)=0 (s #0).
Put

Fe,y) = 2 Co(G, %) ¥, (5.12)
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Then, using (5.11), we find that

o (% 5)

fih(y) = (@ (&) +7 + ) [P 9) + ¥

We rewrite this in the operational form
£a(®, ¥) = (u, (%) +j + xy + yD) d’(x, ), (5.13)

where D = &/oy. Then (5.13) implies

P, y) = II (%) +j + 3y +yD) -1 = 2 o\ (x) (xy + yD)*~* -

8=0
where o}’ (x) is the sth elementary symmetric function of the quantities
u-r,(x) +7 uTz(x) +]r T urk(x) +]
Also it is easily verified that
k
(xy +yD) - 1 =, S(k, n) xmym, (5.14)
n=0
where
1 ¥ as (P\ &
Stkya) == 2, (= 1) ) . (5.15)
* =0
Thus

£ ) = 3 o) 3, S, 1) 4ty

n=0 t=0

Comparison with (5.11) yields
Criifi ) = 2 of kal) S(n, 1)
and therefore (5.10) becomes
k k .
Oy(n, + m, x) = Dy O, m, %) X, ok (x) S(n, 1) 5", (5.16)
=0 n=t

We may now state our first principle result.
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Tueorem 1. Let 0 <<m < p <+ <prt and let of)(x) denote the
nth elementary symmetric function of the quantities

url(x) + j’ urz(x) +]v Ty u,k(x) Tj)
where

Then (5.16) holds for j =0, 1,2, -~
When m = 0, (5.16) becomes, since @40, x) = 1,

O,(my , x) = 2201 _a(x) S(n, 1) &

n=

3ot 3 St

\
I
]

l

Hence if we put

By(x) = ES(n f) xt, (5.17)

it is easy to identity B,(x) with the Bell polynomial defined by means of
By(x) =1 and

n

B, (%) =& 2 (';) B,(%). (5.18)

We may state

TurorREM 2. Letr,, s, -+, 3 be distinct integers. Then we have

8,(p" + - +p x) = 2, ok u(¥) Bu(x), (5.19)

where o'_,(n) has the same meaning as in the previous theorem and B,(x) is

the Bell polynomial defined by (5.18).

6. THE GENERAL CASE
Let
D,(n, x) = I(n, x*) x *+- % I(n, x¥), (6.1)

where
I(n, x) = x» (n=0,1,2,-). (6.2)
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Then by the discussion following (4.9) we have

Onp', x) = 2, Di(s, x) O(n — s, x). (6.3)
8=0
In particular, since

Oa, k) = Py(x) (e <p)

where Py(n) is the number of partitions of a into exactly & parts, we have

O(ap”, x) = iop,(s, %) Pla—s,x) (a<p) (6.4)
where _
P(a, x) = ,% P(a) x*. (6.5)
Now put _
n=ap"+m (0<a<p;0<m<p) (6.6)

Then by (3.3), (3.12), and (3.13)
Devess — Y, ((A'x, A"x, A"x, ) A%

= V(A 4 e AWy, AW, )

i

a .
E (j) {(A'x)" + - + (AT %)Y - Y (A%0x, AP, )
=0 *J’

TR
=0
Put
(ip") . e () tm .
(Aﬂ)wZOC,- (m)ﬁ 0 < i< p)
and let ¥{"(m) denote the number of terms in C'9(m, %) with p+c. Then if
m=ay+aip +ap* + - (0<a, <p)

we have

7 (m) = Pay, ay, a5, ), (68)
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where Pja, , a, , a, , -**) denotes the number of partitions of (a,, a, , a,, ***)
into exactly & parts. If we now put

(400 g2 S B t"'
Yi(4 , A r) = E (m, x)

and B;(m, k) denotes the number of terms x* in B{"(m, x) with p1 b, the

Bilm, kY = D, yiP w yi oo, (6.9)
where the summation is over all nonnegativej, , j, , -*- such that
1t 20+ =], it + =k

It follows at once from (6.9) that
Bilm, x) = 2y} wyfy) e 2R (6.10)
where j; + 2j, + - =j and
Bilom ) = 2, Bm, 1)

In the next place, since

Bap,+m(X) = aE (‘jl) {(alx)pT + o+ (o‘p’_lx)p} ’ _2 By('r)(xs 5) b 5(x),

i=0

we get

My

Oap™ + m, x) = Z(u (@)@ 3 Bi(s, x) Om —s5,x),  (6.11)

8=0

where #,(x) is defined by (5.3) and the notation (u,(x))®~7) indicates that
after expansion the multinomial coefficients are deleted. It is easily verified
that

()@ =Dya,x) (a<p). (612)
We shall now show that

O(ap™ + - + a.p", %)

= 2 D,.‘(j1 yxy D (J, 8)ay — fry o ay, — jas X)), (6.13)

i=0
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where Q(a, — j, , ***, @, — J,; x) is independent of r,, -+, 7, and
0<a, <p (I<s<ay ry <1y < veo <7y,
For z = 1, (6.13) is in agreement with (6.4); indeed

Ola; x) = P(a; %).

We assume that (6.13) holds up to and including the value =z and apply
(6.11) with m = a,p™ + - + a,p™. Then if 0 < a < p and r > r, we have
by (6.11) and (6.12)

O(ap™ + m, x) = 2Dr(a, x) i Bi(m — m’, x) O(m’, x).

mi=0
By the inductive hypothesis

S Bim— ', 00m, 1) = 3, Blm — w9 Y, Do, )+ Drlc )

m’=0 i=0

Q(bl —jl y Ty bz —jz; x)!

where

m’ — blp‘rl + + bzprz.
Thus

Oap™ + m,x) = 2, D,(j, ) 2, D, (jr, %) Dy (s %)
j=0

ig=0

© D, Bas(m —m', %) Oy —fy, 7y be — jii %),
by=Jg

This completes the proof of (6.13); moreover it shows that

Oay —j1, " a, —Jzra—J; %)

= D, Bunilm — m', x) Oby — j, by — 3 %)

b=is

This may be replaced by

Oay, ' ay, @3 %) = 2y Bom —m',x)Oby, -+, b,5%).  (6.14)
b=0

409/15/1-4
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It remains to show that
Q(al’ ‘”,dz; x):P(als Tty az;x)) (615)

where

Pla,, -, a,;x) = ZP,C((I1 ) X

k

and Pya,, -, a,) is the number of partitions of (a, , *-*, a;) into exactly &
parts. We recall that

oo 0

x
S Y, Pua,aabeati= [] (1 —ade sty
=Y al

..... =0 Q..U =0

(6.16)

In proving (6.15) we drop the restriction a, < p and assume that (6.10)
and (6.14) hold for all @, > 0. Finally when (6.16) is applied to (6.13) the
restriction is restored.

We have already seen that (6.15) holds when 2 = 1. We now assume that
(6.15) holds up to and including the value z. Thus (6.14) becomes

Oay, ya,,a;%) = 2 Bo(m — m', x) P(b, , -, b,; x),

b,—0
so that
\ R G T )
2/ Q(al’ ’az‘a?“\)yl aZy
Qyeenns a,,a=0
0 x [+ ¢)
O g
= 2 2 2Bdapit o taps)
Alrees a,=0 bl ..... b,=0 a=0
. P(bl o by x) ygﬁbx },gz+bz}yl’
x
b b,
= JI =5yl
[T =0
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By (6.10) and (6.8) the multiple sum on the right is equal to

@ @0
Ta1g ... 4,05, R805, 17
2 2 H Pjs(als y T azs) yr oy Ny

Jedaeea., =0 a;3=0 s
I\v o 20
USEDUR JOR PO
:H'* 2 2 Pjs(”1; ”"nk)yll y oyt
5=1 J1.4gs...=0 Np..aas n,=0
o ¢] x
=11 11 @ —yh-si™
3=1 Nlyuiea,s n,=0
Therefore
Kf‘ O
. TR S PRSI S e |
Y, Qar, e ax)yp oyt = I =y
[T a,= Nyvessrltg, N=0

which evidently completes the induction.
We may now state

THeoREM 3. Let ry, *--, r, be distinct integers and let 0 <a, <p,
1 <s< 3 Then

O(ayp + - + ap*, x)

= 2 D-rl(jl ) "”) Dr,(j2$x) P(al ~”jl y 7Ty Gy _jz; x)’

70

where

Play, + a; x) = Epk(al ) ) X,
k=0

Pya, , +, a,) is the number of partitions of (ay, -, a,) into k parts and
D,(a, x) = (x? 4 x¥° 4 - 4 x#")®),

where in the expansion of the right member the multinomial coefficients are
deleted.
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