Arithmetic Properties of the Bell Polynomials*

L. Carlitz
Duke University, Durham, North Carolina
Dedicated to H. S. Vandiver on his eighty-third birthday

1. Introduction

Let $x, \alpha_{1}, \alpha_{2}, \alpha_{3}, \cdots$ denote indeterminates. The general Bell polynomial [3, Ch. 2]

$$
\begin{equation*}
\phi_{n}(x)=\phi_{n}\left(x ; \alpha_{1}, \alpha_{2}, \alpha_{3}, \cdots\right)=Y_{n}\left(\alpha_{1} x, \alpha_{2} x, \alpha_{3} x, \cdots\right) \tag{1.1}
\end{equation*}
$$

may be defined by $\phi_{0}(x)=1$ and

$$
\begin{equation*}
\phi_{n}(x)=\sum A_{n}\left(k_{1}, k_{2}, k_{3}, \cdots\right) \alpha_{1}^{k_{1}} \alpha_{2}^{k_{2}^{2}} \alpha_{3}^{k_{3}} \cdots x^{k}, \tag{1.2}
\end{equation*}
$$

where $k=k_{1}+k_{2}+k_{3}+\cdots$,

$$
A_{n}\left(k_{1}, k_{2}, k_{3}, \cdots\right)=\frac{n!}{k_{1}!(1!)^{k_{1}} k_{2}!(2!)^{k_{2}} k_{3}!(3!)^{k_{3}} \cdots}
$$

and the summation in the right member of (1.2) is over all nonnegative integers $k_{1}, k_{2}, k_{3}, \cdots$ such that

$$
\begin{equation*}
k_{1}+2 k_{2}+3 k_{3}+\cdots=n \tag{1.3}
\end{equation*}
$$

Note in particular that (1.1) implies

$$
\begin{equation*}
Y_{n}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \cdots\right)=\phi_{n}\left(1 ; \alpha_{1}, \alpha_{2}, \alpha_{3}, \cdots\right) . \tag{1.4}
\end{equation*}
$$

The coefficients $A_{n}\left(k_{1}, k_{2}, k_{3}, \cdots\right)$ are evidently positive integers and it is clear from (1.3) that, for fixed n, the number of $A_{n}\left(k_{1}, k_{2}, k_{3}, \cdots\right)$ is equal to $P(n)$, the number of unrestricted partitions of n. In [1], [2] the writer considered the following problem. Let p be a fixed prime and let $\theta(n)$ denote the number of coefficients $A_{n}\left(k_{1}, k_{2}, k_{3}, \cdots\right)$ that are prime to p so that

$$
\theta(n)=P(n) \quad(n<p) .
$$

The writer proved that

$$
\begin{equation*}
\theta\left(p^{r_{1}}+p^{r_{2}}+\cdots+p^{r_{m}}\right)=\sum_{n=0}^{m} \sigma_{m, m-n} B_{n} \tag{1.5}
\end{equation*}
$$

[^0]where $\sigma_{m, n}$ is the nth elementary symmetric function of the distinct integer $r_{1}, r_{2}, \cdots, r_{m}$ and B_{n} is the Bell number defined by $B_{0}=1$ and
$$
B_{n+1}=\sum_{s=0}^{n}\binom{n}{s} B_{s} .
$$

In the general case it was proved that

$$
\begin{gather*}
\theta\left(a_{1} p^{r_{1}}+a_{2} p^{r_{2}}+\cdots+a_{m} p^{r_{m}}\right) \\
=\sum_{j_{1}=0}^{a_{1}} \cdots \sum_{j_{m}=0}^{a_{m}}\binom{r_{1}+j_{1}-1}{j_{1}} \cdots\binom{r_{m}+j_{m}-1}{j_{m}} P\left(a_{1}-j_{1}, \cdots, a_{m}-j_{m}\right) \tag{1.6}
\end{gather*}
$$

where $r_{1}, r_{2}, \cdots, r_{m}$ are distinct integers,

$$
0 \leqslant a_{j}<p \quad(j=1, \cdots, m)
$$

and $P\left(a_{1}, a_{2}, \cdots, a_{m}\right)$ denotes the number of partitions of the " m-partite" number $\left(a_{1}, a_{2}, \cdots, a_{m}\right)$.

In the present paper we treat the following problem. For fixed n, k let $\theta(n, k)$ denote the number of coefficients $A_{n}\left(k_{1}, k_{2}, k_{3}, \cdots\right)$ with

$$
\begin{equation*}
k_{1}+2 k_{2}+3 k_{3}+\cdots=n, \quad k_{1}+k_{2}+k_{3}+\cdots=k \tag{1.7}
\end{equation*}
$$

that are prime to p. It follows from (1.7) that

$$
\theta(n, k)=P_{k}(n) \quad(n<p)
$$

where $P_{k}(n)$ denotes the number of partitions of n into k parts. We shall prove the following results. In the first place
where r_{1}, \cdots, r_{m} are distinct integers $\sigma_{m, j}(x)$ denotes the j th elementary symmetric function of $u_{1}(x), \cdots, u_{m}(x)$,

$$
u_{j}(x)=x^{p}+x^{p^{2}}+x^{p^{2}}+\cdots+x^{p^{j}}
$$

and $B_{n}(x)$ is the single-variable Bell polynomial defined by $B_{0}(x)=1$ and

$$
B_{n+1}(x)=x \sum_{j=0}^{n}\binom{n}{j} B_{j}(x) .
$$

When $x=1$, it is evident that (1.8) reduces to (1.5).

In the general case we show that

$$
\begin{gather*}
\sum_{k=0}^{\infty} \theta\left(a_{1}^{r_{1}}+\cdots+a_{m} P^{r_{m}}, k\right) \\
=\sum_{j_{1}=0}^{a_{1}} \cdots \sum_{j_{m}=0}^{a_{m}} D_{r_{1}}\left(j_{1}, x\right) \cdots D_{r_{m}}\left(j_{m}, x\right) P\left(a_{1}-j_{1}, \cdots, a_{m}-j_{m} ; x\right), \tag{I.9}
\end{gather*}
$$

where r_{1}, \cdots, r_{m} are distinct integers, $0<a_{s}<p(1 \leqslant s \leqslant m)$,

$$
P\left(a_{1}, \cdots, a_{m} ; x\right)=\sum_{k=0}^{\infty} P_{k}\left(a_{1}, \cdots, a_{m}\right) x^{m}
$$

$P_{k}\left(a_{1}, \cdots, a_{m}\right)$ is the number of partitions of $\left(a_{1}, \cdots, a_{m}\right)$ into exactly k parts and

$$
D_{r}(a, x)=\left(x^{p}+x^{p}+\cdots+x^{p^{r}}\right)^{(a)}
$$

where in the expansion of the right side the multinomial coefficients are deleted.

It is easily verified that (1.9) contains (1.6).

2. Preliminaries

Let p be a fixed prime. It is familiar that the binomial coefficient $\binom{b}{a}$ is prime to p if and only if the following conditions are satisfied.

$$
\begin{array}{ll}
a=a_{0}+a_{1} p+a_{2} p^{2}+\cdots & \left(0 \leqslant a_{j}<p\right) \\
b=b_{0}+b_{1} p+b_{2} p^{2}+\cdots & \left(0 \leqslant b_{j}<p\right)
\end{array}
$$

and

$$
\begin{equation*}
b_{j} \leqslant a_{j} \quad(j=0,1,2, \cdots) \tag{2.1}
\end{equation*}
$$

By an arithmetic function we shall understand a mapping from the nonnegative integers into the reals. If f, g are two arithmetic functions we define the Lucas product $h=f * g$ by means of

$$
\begin{equation*}
h(n)=\sum_{r=0}^{n}{ }^{*} f(r) g(n-r) \quad(n=0,1,2, \cdots) \tag{2.2}
\end{equation*}
$$

where the asterisk indicates that the summation is restricted to r such that
$\binom{n}{r}$ is prime to p. The Lucas product is associative and commutative. The function u defined by

$$
\begin{equation*}
u(n)=\delta_{n 0} \tag{2.3}
\end{equation*}
$$

satisfies $f^{*} u=f$ for all f. For given f, a function g exists satisfying

$$
\begin{equation*}
f * g=u \tag{2.4}
\end{equation*}
$$

if and only if $f(0) \neq 0$. In particular for the function I defined by

$$
I(n)=1 \quad(n=0,1,2, \cdots)
$$

we have $I * \mu=u$, where μ is defined by

$$
\begin{equation*}
\mu\left(a_{0}+a_{1} p+a_{2} p^{2}+\cdots\right)=\mu\left(a_{0}\right) \mu\left(a_{1} p\right) \mu\left(a_{2} p^{2}\right) \cdots\left(0 \leqslant a_{j}<p\right) \tag{2.5}
\end{equation*}
$$

and

$$
\mu\left(a p^{j}\right)=\left\{\begin{aligned}
1 & (a=0) \\
-1 & (a=1) \\
0 & (1<a<p)
\end{aligned}\right.
$$

As an application we have

$$
g(n)=\sum_{r=0}^{n}{ }^{*} f(r)
$$

if and only if

$$
f(n)=\sum_{r=0}^{n}{ }^{*} \mu(r) g(n-r)
$$

We define the function

$$
\begin{equation*}
d_{r}=I^{r}=I^{*} \cdots * I \quad(r=1,2,3, \cdots) \tag{2.6}
\end{equation*}
$$

In particular we put $d=d_{2}=I^{*} I$ so that

$$
\begin{equation*}
d(n)=\sum_{r=0}^{n *} 1 \tag{2.7}
\end{equation*}
$$

If

$$
n=a_{0}+a_{1} p+a_{2} p^{2}+\cdots \quad\left(0 \leqslant a_{j}<p\right)
$$

then we have

$$
\begin{equation*}
d_{k}(n)=\prod_{j=1}^{k}\binom{a_{j}+k-1}{k-1} \quad(k=1,2,3, \cdots) \tag{2.8}
\end{equation*}
$$

It is easily verified that $d_{k}(n)$ is equal to the number of k-nomial coefficients

$$
\frac{n!}{n_{1}!\cdots n_{k}!} \quad\left(n_{1}+\cdots+n_{k}=n\right)
$$

that are prime to p.

$$
\text { 3. Some Properties of } \phi_{n}(x)
$$

If we put

$$
\begin{equation*}
A=A(t)=\sum_{n=1}^{\infty} \alpha_{n} \frac{t^{n}}{n!} \tag{3.1}
\end{equation*}
$$

then

$$
\begin{equation*}
e^{A x}=\sum_{n=0}^{\infty} \phi_{n}(x) \frac{t^{n}}{n!} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
D^{n} e^{A x}=Y_{n}\left(A^{\prime} x, A^{\prime \prime} x, A^{\prime \prime \prime} x, \cdots\right) e^{A x}, \tag{3.3}
\end{equation*}
$$

where

$$
D=\frac{d}{d t}, \quad A^{\prime}=\frac{d A}{d t}, \quad A^{\prime \prime}=\frac{d^{2} A}{d t^{2}}, \quad \cdots
$$

and, as in the Introduction,

$$
Y_{n}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \cdots\right)=\phi_{n}\left(1 ; \alpha_{1}, \alpha_{2}, \alpha_{3}, \cdots\right)
$$

In particular, when $n=p^{r}$, (3.3) becomes

$$
\begin{equation*}
D^{p^{\tau}} e^{A x}=Y_{p^{r}}\left(A^{\prime} x, A^{\prime \prime} x, A^{\prime \prime \prime} x, \cdots\right) e^{A x} \tag{3.4}
\end{equation*}
$$

Now

$$
\begin{equation*}
D^{p} e^{A x} \equiv\left(A^{\prime p} x^{p}+A^{(p)} x\right) e^{A x} \quad(\bmod p) \tag{3.5}
\end{equation*}
$$

(We recall that the statement

$$
\sum_{0}^{\infty} A_{n} \frac{t^{n}}{n!} \equiv \sum_{0}^{\infty} B_{n} \frac{t^{n}}{n!} \quad(\bmod p)
$$

means

$$
A_{n} \equiv B_{n}(\bmod p) \quad(n=0,1,2, \cdots)
$$

where the A_{n}, B_{n} are polynomials with integral coefficients.) Since in what follows all congruences are $(\bmod p)$, we shall usually omit the modulus.

Since $A^{\prime p} \equiv \alpha_{1}{ }^{p}$, it follows from (3.2) and (3.5) that

$$
\begin{equation*}
\phi_{n+p}(x) \equiv \alpha_{1}{ }^{p} x^{p} \phi_{n}(x)+x \sum_{j=0}^{n}\binom{n}{j} \alpha_{j+p} \phi_{n-j}(x) . \tag{3.6}
\end{equation*}
$$

If we replace n by $n p$ in (3.6) we get

$$
\begin{equation*}
\phi_{(n+1) D}(x) \equiv \alpha_{1}{ }^{p} x^{p} \phi_{n p}(x)+x \sum_{j=0}^{n}\binom{n}{j} \alpha_{(j+1) p} \phi_{(n-j) p}(x) . \tag{3.7}
\end{equation*}
$$

Since

$$
\phi_{n+1}(x)=x \sum_{j=0}^{n}\binom{n}{j} \alpha_{j+1} \phi_{n-j}(x),
$$

it follows from (3.7) that

$$
\phi_{n p}(x) \equiv Y_{n}\left(\alpha_{1}{ }^{p} x^{p}+\alpha_{p} x, \alpha_{2 p} x, \alpha_{3 p} x, \cdots\right)
$$

or equivalently

$$
\begin{equation*}
Y_{n p}\left(\alpha_{1} x, \alpha_{2} x, \alpha_{3} x, \cdots\right) \equiv Y_{n}\left(\alpha_{1}^{p} x^{p}+\alpha_{p} x, \alpha_{2 p} x, \alpha_{3 p} x, \cdots\right) . \tag{3.8}
\end{equation*}
$$

Replacing n by $n p$ (3.8) becomes

$$
Y_{n p^{2}}\left(\alpha_{1} x, \alpha_{2} x, \alpha_{3} x, \cdots\right) \equiv Y_{n}\left(\alpha_{1}^{p^{2}} x^{p^{2}}+\alpha_{p}{ }^{p} x^{p}+\alpha_{p^{2}} x, \alpha_{2 p^{2}} x, \alpha_{3 p^{2}} x, \cdots\right) .
$$

The general formula is evidently

$$
\begin{align*}
\phi_{n p^{r}}(x) & =Y_{n p^{r}\left(\alpha_{1} x, \alpha_{2} x, \alpha_{3} x, \cdots\right)} \\
& =Y_{n}\left(\alpha_{1}^{p^{r}} x^{p^{r}}+\cdots+\alpha_{p^{r} x} x, \alpha_{2 p^{r}} x, \alpha_{3 p^{r}} x, \cdots\right) \tag{3.9}
\end{align*}
$$

Since $Y_{1}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \cdots\right)=\alpha_{1}$, (3.9) implies

$$
\begin{equation*}
\phi_{p^{r}}(x) \equiv \alpha_{1}^{p^{r}} x^{p^{r}}+\alpha_{p}^{p^{r-1}} x^{p^{p-1}}+\cdots+\alpha_{p^{r} x} . \tag{3.10}
\end{equation*}
$$

It follows that

$$
\begin{aligned}
Y_{p^{r}}\left(A^{\prime} x, A^{\prime \prime} x, A^{\prime \prime \prime} x, \cdots\right) & \equiv\left(A^{\prime} x\right)^{p^{r}}+\left(A^{(p)} x\right)^{y^{r-1}}+\cdots+A^{\left(p^{r}\right)} x \\
& \equiv\left(\alpha_{1} x\right)^{p^{r}}+\left(\alpha_{p} x\right)^{p^{r-1}}+\cdots+\left(\alpha_{p^{r-1}} x\right)^{p}+A^{\left(y^{r}\right)} x
\end{aligned}
$$

Hence (3.4) yields

$$
\begin{equation*}
\phi_{n+p^{r}}(x) \equiv \sum_{j=0}^{r-1}\left(\alpha_{p^{j}} x\right)^{p^{r-i}} \phi_{n}(x)+x \sum_{j=0}^{n}\binom{n}{j} \alpha_{p^{r}+j} \phi_{n-j}(x) . \tag{3.11}
\end{equation*}
$$

It is convenient at this point to state a formula of a different nature, namely,

$$
\begin{equation*}
Y_{n}\left(\alpha_{1}+y, \alpha_{2}, \alpha_{3}, \cdots\right)=\sum_{j=0}^{n}\binom{n}{j} y^{n-j} Y_{n-j}\left(\alpha_{1}, \alpha_{2}, \alpha_{3} \cdots,\right), \tag{3.12}
\end{equation*}
$$

which is an immediate consequence of (3.2).
In the next place, by (3.9) and (3.12)

$$
\begin{gathered}
Y_{a p^{r}}\left(A^{\prime} x, A^{\prime \prime} x, A^{\prime \prime \prime} x \cdots,\right) \equiv Y_{a}\left(\alpha_{1}^{p^{r}} x^{p^{r}}+\cdots+\alpha_{p^{r-1}}^{p} x^{p}+A^{(p)} x, A^{\left(2 p^{\tau}\right)} x, \cdots\right) \\
\equiv \sum_{j=0}^{a}\binom{a}{j}\left(\alpha_{1}^{p^{r}} x^{p^{r}}+\cdots+\alpha_{p^{r-1}} x\right)^{a-j} \cdot Y_{j}\left(A^{\left(p^{r}\right)} x, A^{\left(2 p^{r}\right)} x, \cdots\right)
\end{gathered}
$$

$$
\text { 4. The Functions } \Theta(n, x) \text { and } \Theta_{j}(n, x)
$$

We have defined $\theta(n, k)$ as the number of coefficients $A_{n}\left(k_{1}, k_{2}, k_{3}, \cdots\right)$ with

$$
\begin{equation*}
k_{1}+2 k_{2}+3 k_{3}+\cdots=n, \quad k_{1}+k_{2}+k_{3}+\cdots=k \tag{4.1}
\end{equation*}
$$

that are prime to p. We now define

$$
\begin{equation*}
\Theta(n, x)=\sum_{k=0}^{n} \theta(n, k) x^{k} \tag{4.2}
\end{equation*}
$$

where x is an indeterminate. Indeed it will be convenient to consider a slightly more general function. Put

$$
\begin{equation*}
\theta_{j}(n, k)=\sum_{r=0}^{n_{*}} d_{j}(r) \theta(n-j, k) \tag{4.3}
\end{equation*}
$$

where the notation is that of Section 2. Thus $\theta_{j}(n, k)$ is the Lucas product of $d_{j}(n)$ and $\theta(n, k)$. The parameter k is held fixed; the Lucas product is with respect to n only.

We now define

$$
\begin{equation*}
\Theta_{j}(n, x)=\sum_{k=0}^{n} \theta_{j}(n, k) x^{k} . \tag{4.4}
\end{equation*}
$$

It follows at once from (4.3) and (4.4) that

$$
\begin{equation*}
\Theta_{j}(n, x)=\sum_{r=0}^{n}{ }^{*} d_{j}(r) \Theta(n-r, x) \tag{4.5}
\end{equation*}
$$

Note in particular that

$$
\theta_{0}(n, k)=\theta(n, k), \quad \Theta_{0}(n, x)=\Theta(n, x)
$$

Returning to (3.8) and applying (3.12) we get

$$
\begin{equation*}
Y_{n p}\left(\alpha_{1} x, \alpha_{2} x, \alpha_{3} x, \cdots\right) \equiv \sum_{j=0}^{n}\binom{n}{j}\left(\alpha_{1} x\right)^{(n-j) p} Y_{j}\left(\alpha_{p} x, \alpha_{2 p} x, \alpha_{3 p} x, \cdots\right) \tag{4.6}
\end{equation*}
$$

In counting the number of coefficients on the right side of (4.6) that are prime to p, it is evident that the external factor $\left(\alpha_{1} x\right)^{(n-j) p}$ causes no overlapping. Hence we get

$$
\theta(n p, k)=\sum_{j=0}^{n} * \theta(n-j, k-j p)
$$

Then

$$
\begin{aligned}
\Theta(n p, x) & =\sum_{k=0}^{n p} \theta(n p, k) x^{k}=\sum_{k=0}^{n p} x^{k} \sum_{j=0}^{n} * \theta(n-j, k-j p) \\
& =\sum_{j=0}^{n} x^{* p} \sum_{k=0}^{(n-j) \cdot p} \theta(n-j, k) x^{k}
\end{aligned}
$$

and therefore

$$
\begin{equation*}
\Theta(n p, x)=\sum_{j=0}^{n} x^{j p} \Theta(n-j, x) \tag{4.7}
\end{equation*}
$$

Define

$$
\begin{equation*}
I(n, x)=x^{n} \quad(n=0,1,2, \cdots) \tag{4.8}
\end{equation*}
$$

when $x=1$ this function reduces to $I(n)$ as defined in Section 2. Thus (4.8) becomes

$$
\begin{equation*}
\Theta(n p, x)=\sum_{j=0}^{n} I\left(j, x^{p}\right) \Theta(n-j, x) \tag{4.9}
\end{equation*}
$$

Replacing n by $n p$, (4.9) becomes

$$
\begin{aligned}
\Theta\left(n p^{2}, x\right) & =\sum_{j=0}^{n} I\left(j, x^{p^{2}}\right) \Theta((n-j) p, x) \\
& =\sum_{j=0}^{n} I\left(j, x^{p^{2}}\right) \sum_{k=0}^{n-j} I\left(k, x^{p}\right) \Theta(n-j-k, x) \\
& =\sum_{m=0}^{n} \Theta \Theta(n-m, x) \sum_{j+k=m}^{*} I\left(j, x^{p^{2}}\right) I\left(k, x^{p}\right)
\end{aligned}
$$

Thus $\Theta\left(n p^{2}, x\right)$ is the Lucas product of $\Theta(n, x), I\left(n, x^{p}\right), I\left(n, x^{p^{2}}\right)$. The general formula of this type can be stated without any difficulty. When $x=1$ it reduces to

$$
\theta\left(n p^{r}\right)=\Theta\left(n p^{r}, 1\right)=\sum_{j=0}^{n} d_{r}(j) \theta(n-j)=\theta_{r}(n)
$$

Making use of (4.5) we get

$$
\begin{aligned}
\Theta_{j}(n p, x) & =\sum_{r=0}^{n} d_{j}(r p) \Theta((n-r) p, x) \\
& =\sum_{r=0}^{n} d_{j}(r) \sum_{s=0}^{n-r} I\left(s, x^{p}\right) \Theta(n-r-s, x) \\
& =\sum_{s=0}^{n} \pi\left(s, x^{p}\right) \sum_{r=0}^{n-s} d_{j}(x) \Theta(n-r-s, x)
\end{aligned}
$$

so that

$$
\begin{equation*}
\Theta_{j}(n p, x)=\sum_{s=0}^{n} I\left(s, x^{p}\right) \Theta_{j}(n-s, x) \tag{4.10}
\end{equation*}
$$

By means of (4.9) we can easily compute $\Theta\left(p^{r}, x\right)$. Indeed, (4.9) yields

$$
\begin{aligned}
\Theta\left(p^{r}, x\right) & =\sum_{j=0}^{p^{r-1}} I(j, x) \Theta\left(p^{r-1}-j, x\right) \\
& =\Theta\left(p^{r-1}, x\right)+I\left(p^{r-1}, x^{p}\right) \\
& =\Theta\left(p^{r-1}, x\right)+x^{\nu^{r}}
\end{aligned}
$$

It follows at once that

$$
\begin{equation*}
\Theta\left(p^{r}, x\right)=\sum_{s=0}^{\infty} x^{p^{s}} \tag{4.11}
\end{equation*}
$$

More generally, (4.10) implies

$$
\begin{equation*}
\Theta_{j}\left(p^{r}, x\right)=\sum_{s=0}^{r} x^{\nu^{s}}+j \quad(j=0,1,2, \cdots) \tag{4.12}
\end{equation*}
$$

5. Proof of (1.8)

Put

$$
\begin{equation*}
n=p^{r}+m, \quad 0 \leqslant m<p^{r} \tag{5.1}
\end{equation*}
$$

Then (3.11) becomes

$$
\begin{equation*}
\phi_{n}(x) \equiv \sum_{j=0}^{r-1}\left(\alpha_{p} x\right)^{p^{r-j}} \phi_{m}(x)+x \sum_{j=0}^{m} *\binom{m}{j} \alpha_{p^{r}+j} \phi_{m-j}(x) . \tag{5.2}
\end{equation*}
$$

In counting the number of coefficients in the right member of (5.2) that are prime to p, it is clear from (5.1) that there is no overlapping. It follows that

$$
\theta(n, k)=\sum_{j=0}^{r-1} \theta\left(m, k-p^{r-j}\right)+\sum_{j=0}^{m} \theta(m-j, k-1) .
$$

Then

$$
\begin{aligned}
\Theta(n, x) & =\sum_{k=0}^{n} x^{k} \sum_{j=0}^{r-1} \theta\left(m, k-p^{r-j}\right)+\sum_{k=1}^{n} x^{k} \sum_{j=0}^{m} \theta(m-j, k-1) \\
& =\sum_{j=0}^{r-1} x^{p^{r-j}} \sum_{k=0}^{n-p^{r-j}} \theta(m, k) x^{k}+x \sum_{j=0}^{m} \sum_{k=0}^{n-1} \theta(m-j, k) x^{k} \\
& =\sum_{j=1}^{r} x^{p^{2}} \Theta(m, x)+x \sum_{j=0}^{m} * \Theta(m-j, x)
\end{aligned}
$$

Hence if we put

$$
\begin{equation*}
u_{r}(x)=\sum_{j=1}^{r} x^{p^{j}} \tag{5.3}
\end{equation*}
$$

it is clear that

$$
\begin{equation*}
\Theta(n, x)=u_{r}(x) \Theta(m, x)+x\left(\Theta_{1}(m, x)\right. \tag{5.4}
\end{equation*}
$$

This formula admits of an immediate generalization, namely,

$$
\begin{equation*}
\Theta_{j}(n, x)=\left(u_{r}(x)+j\right) \Theta_{j}(m, x)+\Theta_{j+1}(m, x) \quad(j=0,1,2, \cdots) \tag{5.5}
\end{equation*}
$$

It is convenient to put

$$
\begin{equation*}
n_{k}=p^{r_{1}}+p^{r_{2}}+\cdots+p^{r_{k}} \quad(k=1,2,3, \cdots) \tag{5.6}
\end{equation*}
$$

where $0 \leqslant r_{1}<r_{2}<\cdots<r_{k}$. Then (5.5) becomes

$$
\begin{equation*}
\Theta_{j}\left(n_{k}, x\right)=\left(u_{r_{k}}(x)+j\right) \Theta_{j}\left(n_{k-1}, x\right)+x \Theta_{j+1}\left(n_{k-1}, x\right) \tag{5.7}
\end{equation*}
$$

We have already computed $\Theta_{j}\left(p^{r}, x\right)$; in the present notation (4.12) becomes

$$
\begin{equation*}
\Theta_{j}\left(p^{r}, x\right)=u_{r}(x)+x \vdash j . \tag{5.8}
\end{equation*}
$$

Then by (5.7)

$$
\begin{aligned}
& \Theta_{j}\left(p^{r_{1}}+p^{r_{2}}, x\right)=\left(u_{r_{2}}(x)+j\right)\left(u_{r_{1}}(x)+x+j\right)+x\left(u_{r_{2}}(x)+x+j+1\right) \\
&=\left(u_{r_{1}}(x)+j\right)\left(u_{r_{2}}(x)+j\right)+x\left(u_{r_{1}}(x)+u_{r_{2}}(x)+2 j\right) \\
&+x^{2}+x \\
& \Theta_{j}\left(p^{r_{1}}+p^{r_{2}}+p^{\left.r_{3}, x\right)=}\right.\left(u_{r_{3}}(x)+j\right) \Theta_{j}\left(p^{r_{1}}+p^{r_{2}}, x\right)+x \Theta_{j+1}\left(p^{r_{1}}+p^{\left.r_{0}, x\right)}\right. \\
&=\left(u_{r_{1}}(x)+j\right)\left(u_{r_{2}}(x)+j\right)\left(u_{r_{3}}(x)+j\right) \\
&+x \sum\left(u_{r_{1}}(x)+j\right)\left(u_{r_{2}}(x)+j\right) \\
&+\left(x^{2}+x\right) \sum\left(u_{r_{1}}(x)+j\right)+x^{3}+3 x^{2}+x
\end{aligned}
$$

where the sums on the right are with respect to the indices $1,2,3$.
This suggests the general formula

$$
\begin{equation*}
\Theta_{j}\left(p^{r_{1}}+\cdots+p^{r_{k}}, x\right)=\sum_{s=0}^{k} \sigma_{k, k-s}^{(j)}(x) B_{s}(x) \tag{5.9}
\end{equation*}
$$

where $\sigma_{k, m}^{(j)}(x)$ denotes the m th elementary symmetric function of the quantities

$$
u_{r_{1}}(x)+j, \quad u_{r_{2}}(x)+j, \quad \cdots, \quad u_{r_{k}}(x)+j
$$

and $B_{s}(x)$ is a polynomial in x of degree s that is independent of $k, r_{1}, r_{2}, \cdots, r_{k}$.
It is, however, convenient to prove a more general result. Consider

$$
\begin{equation*}
\Theta_{j}\left(n_{k}+m, x\right)=\sum_{s=0}^{k} C_{k, k-s}(j, x) \Theta_{j+s}(m, x) \tag{5.10}
\end{equation*}
$$

where now

$$
0 \leqslant m<p^{r_{k}}<\cdots<p^{r_{1}}
$$

and $C_{k, k-s}(j, x)$ is independent of m. Assuming that (5.10) holds up to and including the value k, we have, for $m<p^{r_{k+1}}<p^{r_{k}}$,
$\Theta_{j}\left(n_{k+1}+m, x\right)=\Theta_{j}\left(n_{k}+p^{r_{k+1}}+m, x\right)$

$$
\begin{aligned}
& =\sum_{s=0}^{k} C_{k, k-s}(j, x) \Theta_{j+s}\left(p^{\gamma_{k+1}}+m, x\right) \\
& =\sum_{s=0}^{k} C_{k, k}(j, x)\left\{\left(u_{r_{k+1}}(x)+j+s\right) \Theta_{j 1 s}(m, x)\right.
\end{aligned}
$$

$$
\left.+x \Theta_{j+s+1}(m, x)\right\}
$$

$$
=\sum_{s=\mathbf{0}}^{k+1}\left\{\left(u_{r_{k+1}}(x)+j+s\right) C_{k, k-s}(j, x)\right.
$$

$$
\left.+x C_{k, k-s+1}(j, x)\right\} \Theta_{j+s}(m)
$$

We note that if

$$
\sum_{s=0}^{k} D_{k s}(x) \Theta_{s}(m, x)=0 \quad(m=0,1, \cdots, M)
$$

where k is fixed, $D_{k s}(x)$ is independent of m and M is arbitrarily large, then

$$
D_{k s}=0 \quad(0 \leqslant s \leqslant k)
$$

It accordingly follows that

$$
C_{k+1, k-s+1}(j, x)=\left(u_{r_{k+1}}(x)+j+s\right) C_{k, k-s}(j, x)+x C_{k . k-s+1}(j, x)
$$

replacing s by $k-s+1$ we get
$C_{k+1, s}(j, x)=\left(u_{r_{k+1}}(x)+k-s+j+1\right) C_{k, s-1}(j, x)+x C_{k, s}(j, x)$.
The initial conditions are

$$
C_{00}(j, x)=1, \quad C_{0 s}(j, x)=0 \quad(s \neq 0)
$$

Put

$$
\begin{equation*}
f_{k}^{(j)}(x, y)=\sum_{s=0}^{k} C_{k s}(j, x) y^{k-s} \tag{5.12}
\end{equation*}
$$

Then, using (5.11), we find that

$$
f_{k+1}^{(j)}(x, y)=\left(u_{r_{k+1}}(x)+j+x y\right) f_{k}^{(i)}(x, y)+y \frac{\partial f_{k}^{(j)}(x, y)}{y} .
$$

We rewrite this in the operational form

$$
\begin{equation*}
f_{k+1}^{(i)}(x, y)=\left(u_{r_{k+1}}(x)+j+x y+y D\right) d_{k}^{(j)}(x, y), \tag{5.13}
\end{equation*}
$$

where $D=\partial / \partial y$. Then (5.13) implies

$$
f_{k}^{(j)}(x, y)=\prod_{s=1}^{k}\left(u_{r_{s}}(x)+j+x y+y D\right) \cdot 1=\sum_{s=0}^{k} \sigma_{k, s}^{(j)}(x)(x y+y D)^{k-s} \cdot 1,
$$

where $\sigma_{k, s}^{(j)}(x)$ is the sth elementary symmetric function of the quantities

$$
u_{r_{1}}(x)+j, \quad u_{r_{2}}(x)+j, \quad \cdots, \quad u_{r_{k}}(x)+j .
$$

Also it is easily verified that

$$
\begin{equation*}
(x y+y D)^{k} \cdot 1=\sum_{n=0}^{k} S(k, n) x^{n} y^{n}, \tag{5.14}
\end{equation*}
$$

where

$$
\begin{equation*}
S(k, n)=\frac{1}{n!} \sum_{s=0}^{n}(-1)^{n-s}\binom{n}{s} s^{k} . \tag{5.15}
\end{equation*}
$$

Thus

$$
f_{k}^{(j)}(x, y)=\sum_{n=0}^{k} \sigma_{k, k-n}^{(j)}(x) \sum_{i=0}^{n} S(n, t) x^{t} y^{t} .
$$

Comparison with (5.11) yields

$$
C_{k, k-t}(j, x)=\sum_{n=t}^{t} \sigma_{k, k-n}^{(j)}(x) S(n, t) x^{t}
$$

and therefore (5.10) becomes

$$
\begin{equation*}
\Theta_{j}\left(n_{k}+m, x\right)=\sum_{t=0}^{k} \Theta_{j+t}(m, x) \sum_{n=t}^{k} \sigma_{k, k-n}^{(j)}(x) S(n, t) x^{t} . \tag{5.16}
\end{equation*}
$$

We may now state our first principle result.

Theorem 1. Let $0 \leqslant m<p^{r_{k}}<\cdots<p^{r_{1}}$ and let $\sigma_{i, n}^{(j)}(x)$ denote the nth elementary symmetric function of the quantities

$$
u_{r_{1}}(x)+j, \quad u_{r_{2}}(x)+j, \quad \cdots, \quad u_{r_{k}}(x)+j
$$

where

$$
u_{r}(x)=\sum_{s=1}^{r} x^{p^{s}} .
$$

Then (5.16) holds for $j=0,1,2, \cdots$.
When $m=0,(5.16)$ becomes, since $\Theta_{j}(0, x)=1$,

$$
\begin{aligned}
\Theta_{j}\left(n_{k}, x\right) & =\sum_{t=0}^{k} \sum_{n=t}^{k} \sigma_{k, k-n}^{(j)}(x) S(n, t) x^{t} \\
& =\sum_{n=0}^{k} \sigma_{k, k-n}^{(j)}(x) \sum_{t=0}^{n} S(n, t) x^{t}
\end{aligned}
$$

Hence if we put

$$
\begin{equation*}
B_{n}(x)=\sum_{t=0}^{n} S(n, t) x^{t} \tag{5.17}
\end{equation*}
$$

it is easy to identity $B_{n}(x)$ with the Bell polynomial defined by means of $B_{0}(x)=1$ and

$$
\begin{equation*}
B_{n+1}(x)==x \sum_{s=0}^{n}\binom{n}{s} B_{s}(x) . \tag{5.18}
\end{equation*}
$$

We may state
Theorem 2. Let $r_{1}, r_{2}, \cdots, r_{k}$ be distinct integers. Then we have

$$
\begin{equation*}
\Theta_{j}\left(p^{r_{1}}+\cdots+p^{r_{k}}, x\right)=\sum_{n=0}^{k} \sigma_{k, k-n}^{(j)}(x) B_{n}(x) \tag{5.19}
\end{equation*}
$$

where $\sigma_{k, k-n}^{(j)}(n)$ has the same meaning as in the previous theorem and $B_{n}(x)$ is the Bell polynomial defined by (5.18).

6. The General Case

Let

$$
\begin{equation*}
D_{r}(n, x)=I\left(n, x^{p}\right) * \cdots * I\left(n, x^{p^{r}}\right), \tag{6.1}
\end{equation*}
$$

where

$$
\begin{equation*}
I(n, x)=x^{n} \quad(n=0,1,2, \cdots) \tag{6.2}
\end{equation*}
$$

Then by the discussion following (4.9) we have

$$
\begin{equation*}
\Theta\left(n p^{r}, x\right)=\sum_{s=0}^{n_{k}} D_{r}(s, x) \Theta(n-s, x) . \tag{6.3}
\end{equation*}
$$

In particular, since

$$
\theta(a, k)=P_{k}(x) \quad(a<p)
$$

where $P_{k}(n)$ is the number of partitions of a into exactly k parts, we have

$$
\begin{equation*}
\Theta\left(a p^{r}, x\right)=\sum_{s=0}^{a} D_{r}(s, x) P(a-s, x) \quad(a<p) \tag{6.4}
\end{equation*}
$$

where

$$
\begin{equation*}
P(a, x)=\sum_{k=0}^{a} P_{k}(a) x^{k} \tag{6.5}
\end{equation*}
$$

Now put

$$
\begin{equation*}
n=a p^{r}+m \quad\left(0 \leqslant a<p ; 0 \leqslant m<p^{r}\right) \tag{6.6}
\end{equation*}
$$

Then by (3.3), (3.12), and (3.13)

$$
\begin{aligned}
D^{a p^{r}} e^{A x} & =Y_{a p^{r}}\left(A^{\prime} x, A^{\prime \prime} x, A^{\prime \prime \prime} x, \cdots\right) e^{A x} \\
& \equiv Y_{a}\left(\left(A^{\prime} x\right)^{y^{r}}+\cdots+A^{\left(p^{r}\right)} x, A^{\left(2 p^{r}\right)} x, \cdots\right) \\
& \equiv \sum_{j=0}^{a}\binom{a}{j}\left\{\left(A^{\prime} x\right)^{p^{r}}+\cdots+\left(A^{\left(p^{r-1}\right)} x\right)^{p}\right\}^{a-j} \cdot Y_{j}\left(A^{\left(p^{r}\right)} x, A^{\left(2 p^{r}\right)} x, \cdots\right) \\
& \equiv \sum_{j=0}^{a}\binom{a}{j}\left\{\left(\alpha_{1} x\right)^{p^{r}}+\cdots+\left(\alpha_{p^{r-1} x}\right)^{p}\right\}^{n-1} \cdot Y_{j}\left(A^{\left(p^{r}\right)} x, A\left({ }^{2 p^{r}}\right) x, \cdots\right)
\end{aligned}
$$

Put

$$
\left(A^{\left(i p^{r}\right)}\right)=\sum_{m=0}^{\infty} C_{j}^{(i)}(m) \frac{t^{m}}{m!} \quad(0<i<p)
$$

and let $\gamma_{j}^{(i)}(m)$ denote the number of terms in $C_{j}^{(i)}(m, x)$ with $p \nmid c$. Then if

$$
m=a_{0}+a_{1} p+a_{2} p^{2}+\cdots \quad\left(0 \leqslant a_{t}<p\right)
$$

we have

$$
\begin{equation*}
\gamma_{j}^{(i)}(m)=P_{j}\left(a_{0}, a_{1}, a_{2}, \cdots\right), \tag{6.8}
\end{equation*}
$$

where $P_{j}\left(a_{0}, a_{1}, a_{2}, \cdots\right)$ denotes the number of partitions of $\left(a_{0}, a_{1}, a_{2}, \cdots\right)$ into exactly k parts. If we now put

$$
Y_{j}\left(A^{\left(p^{r}\right)} x, A^{\left(2 p^{r}\right)} x, \cdots\right)=\sum_{m=0}^{\infty} B_{j}^{(r)}(m, x) \frac{t^{\prime \prime \prime}}{m!}
$$

and $\beta_{j}(m, k)$ denotes the number of terms x^{k} in $B_{j}^{(r)}(m, x)$ with $p \nmid b$, the

$$
\begin{equation*}
\beta_{j}(m, k)=\sum \gamma_{j_{1}}^{(1)} * \gamma_{j_{2}}^{(2)} * \cdots, \tag{6.9}
\end{equation*}
$$

where the summation is over all nonnegative j_{1}, j_{2}, \cdots such that

$$
j_{1}+2 j_{2}+\cdots-j, \quad j_{1}+j_{2}+\cdots-k
$$

It follows at once from (6.9) that

$$
\begin{equation*}
\beta_{j}(m, x)=\sum \gamma_{j_{1}}^{(1)} * \gamma_{j_{2}}^{(2)} * \cdots x^{j_{1}+j_{2}+\cdots}, \tag{6.10}
\end{equation*}
$$

where $j_{1}+2 j_{2}+\cdots=j$ and

$$
\beta_{j}(m, x)-\sum_{k=0}^{m} \beta_{j}(m, k) x^{k}
$$

In the next place, since

$$
\phi_{a p_{r}+m}(x) \equiv \sum_{j=0}^{a}\binom{a}{j}\left\{\left(\alpha_{1} x\right)^{p^{r}}+\cdots+\left(\alpha_{p^{r-1}} x\right)^{p}\right\} \cdot \sum_{s=0}^{m_{*}} B_{j}^{(r)}(x, s) \phi_{m-s}(x),
$$

we get

$$
\begin{equation*}
\Theta\left(a p^{r}+m, x\right)=\sum_{j=0}^{a}\left(u_{r}(x)\right)^{(a-j)} \sum_{s=0}^{m_{*}} \beta_{j}(s, x) \Theta(m-s, x) \tag{6.11}
\end{equation*}
$$

where $u_{r}(x)$ is defined by (5.3) and the notation $\left(u_{r}(x)\right)^{(a-j)}$ indicates that after expansion the multinomial coefficients are deleted. It is easily verified that

$$
\begin{equation*}
\left(u_{r}(x)\right)^{(a)}=D_{r}(a, x) \quad(a<p) \tag{6.12}
\end{equation*}
$$

We shall now show that

$$
\begin{gather*}
\Theta\left(a_{1} p^{r_{1}}+\cdots+a_{z} p^{r_{z}, x}\right) \\
=\sum_{j_{s}=0}^{a_{s}} D_{r_{1}}\left(j_{1}, x\right) \cdots D_{r_{z}}\left(j_{z}, x\right) Q\left(a_{1}-j_{1}, \cdots, a_{z}-j_{z} ; x\right), \tag{6.13}
\end{gather*}
$$

where $Q\left(a_{1}-j_{1}, \cdots, a_{z}-j_{z} ; x\right)$ is independent of r_{1}, \cdots, r_{z} and

$$
0 \leqslant a_{s}<p \quad(1 \leqslant s \leqslant z) ; \quad r_{1}<r_{2}<\cdots<r_{z}
$$

For $z=1,(6.13)$ is in agreement with (6.4); indeed

$$
Q(a ; x)=P(a ; x)
$$

We assume that (6.13) holds up to and including the value z and apply (6.11) with $m=a_{1} p^{r_{1}}+\cdot+a_{z} p^{r_{z}}$. Then if $0<a<p$ and $r>r_{k}$ we have by (6.11) and (6.12)

$$
\Theta\left(a p^{r}+m, x\right)=\sum_{j=0}^{a} D_{r}(a, x) \sum_{m^{\prime}=0}^{m} \beta_{j}\left(m-m^{\prime}, x\right) \Theta\left(m^{\prime}, x\right)
$$

By the inductive hypothesis

$$
\begin{array}{r}
\sum_{m^{\prime}=0}^{m} \beta_{i}\left(m-m^{\prime}, x\right) \Theta\left(m^{\prime}, x\right)=\sum_{b_{\mathrm{s}}=0}^{a_{s}} \beta_{j}\left(m-m^{\prime}, x\right)
\end{array} \sum_{j_{s}=0}^{b_{s}} D_{r_{1}}\left(j_{1}, x\right) \cdots D_{r_{z}}\left(j_{z}, x\right), ~\left(b_{1}-j_{1}, \cdots, b_{z}-j_{z} ; x\right), ~ \$
$$

where

$$
m^{\prime}=b_{1} p^{r_{1}}+\cdots+b_{z} p^{r_{z}}
$$

Thus

$$
\begin{aligned}
\Theta\left(a p^{r}+m, x\right)=\sum_{j=0}^{a} D_{r}(j, x) & \sum_{j_{s}=0}^{a_{s}} D_{r_{1}}\left(j_{1}, x\right) \cdots D_{r_{z}}\left(j_{z}, x\right) \\
& \cdot \sum_{b_{s}=j_{s}}^{a_{s}} \beta_{a-j}\left(m-m^{\prime}, x\right) Q\left(b_{1}-j_{1}, \cdots, b_{z}-j_{z} ; x\right)
\end{aligned}
$$

This completes the proof of (6.13); moreover it shows that

$$
\begin{gathered}
\underset{\sim}{q}\left(a_{1}-j_{1}, \cdots a_{z}-j_{z}, a-j ; x\right) \\
=\sum_{b_{s}=j_{s}}^{a_{s}} \beta_{a-j}\left(m-m^{\prime}, x\right) \underset{\sim}{Q\left(b_{1}-j, \cdots, b_{z}-j_{z} ; x\right) .}
\end{gathered}
$$

This may be replaced by

$$
\begin{equation*}
Q\left(a_{1}, \cdots, a_{z}, a ; x\right)=\sum_{b_{s}=0}^{a_{s}} \beta_{\alpha}\left(m-m^{\prime}, x\right) Q\left(b_{1}, \cdots, b_{z} ; x\right) . \tag{6.14}
\end{equation*}
$$

It remains to show that

$$
\begin{equation*}
Q\left(a_{1}, \cdots, a_{z} ; x\right)=P\left(a_{1}, \cdots, a_{z} ; x\right) \tag{6.15}
\end{equation*}
$$

where

$$
P\left(a_{1}, \cdots, a_{z} ; x\right)=\sum_{k} P_{k}\left(a_{1}, \cdots, a_{z}\right) x^{k}
$$

and $P_{k}\left(a_{1}, \cdots, a_{z}\right)$ is the number of partitions of $\left(a_{1}, \cdots, a_{z}\right)$ into exactly k parts. We recall that

$$
\begin{equation*}
\sum_{l=1}^{\infty} x^{k} \sum_{a_{1}, \ldots, a_{z}=0}^{\infty} P_{k}\left(a_{1}, \cdots, a_{z}\right) x_{1}^{a_{1}} \cdots x_{z}^{a_{z}}=\prod_{a_{1}, \ldots, a_{z}=0}^{\infty}\left(1-x_{1}^{a_{1}} \cdots x_{z}^{a_{z}} x\right)^{-1} \tag{6.16}
\end{equation*}
$$

In proving (6.15) we drop the restriction $a_{s}<p$ and assume that (6.10) and (6.14) hold for all $a_{s} \geqslant 0$. Finally when (6.16) is applied to (6.13) the restriction is restored.

We have already seen that (6.15) holds when $z=1$. We now assume that (6.15) holds up to and including the value z. Thus (6.14) becomes

$$
Q\left(a_{1}, \cdots, a_{z}, a ; x\right)=\sum_{b_{s}=0}^{a_{s}} \beta_{a}\left(m-m^{\prime}, x\right) P\left(b_{1}, \cdots, b_{z} ; x\right)
$$

so that

$$
\begin{gathered}
\sum_{a_{1}, \ldots, a_{z}, a=0}^{\infty} Q\left(a_{1}, \cdots, a_{z}, a ; x\right) y_{1}^{a_{1}} \cdots a_{z}^{a_{z}} y^{a} \\
=\sum_{a_{1}, \ldots, a_{z}=0}^{\infty} \sum_{b_{1}, \ldots, b_{z}=0}^{\infty} \sum_{a=0}^{\infty} \beta_{a}\left(a_{1} p^{r_{1}}+\cdots+a_{z} p^{r_{z}} ; x\right) \\
=\prod_{b_{1} \ldots, h_{z}=0}^{\infty}\left(1-y_{1}^{b_{1}} \cdots y_{z}^{b_{z}} x\right)^{-1} \\
\cdot P\left(b_{1}, \cdots, b_{z} ; x\right) y_{1}^{a_{1}+b_{1} \cdots y_{z}^{a_{z}+b_{z} y^{a}}} \\
\sum_{a_{1} \ldots, a_{s}=0}^{\infty} \sum_{a=9}^{\infty} \beta_{a}\left(a_{1} p^{r_{1}}+\cdots+a_{z} p^{\left.r_{z} ; x\right) y_{1}^{a_{1}} \cdots y_{z}^{a_{z}} y^{a^{\prime}} .}\right.
\end{gathered}
$$

By (6.10) and (6.8) the multiple sum on the right is equal to

$$
\begin{aligned}
& \sum_{j_{1}, j_{2} \ldots \ldots=0}^{\infty} \sum_{a_{t s}=0}^{\infty} \prod_{s} P_{j_{s}}\left(a_{1 s}, \cdots, a_{z s}\right) y_{1}^{\Sigma a_{1 s}} \cdots y_{z}^{\sum a_{z s}} y^{\Sigma s j_{s}} x^{\Sigma j_{s}} \\
= & \prod_{s=1}^{\infty} \sum_{j_{1}, s_{2}, \ldots=0}^{\infty} \sum_{n_{1}, \ldots, n_{z}=0}^{\infty} P_{j s}\left(n_{1}, \cdots, n_{k}\right) y_{1}^{n_{1}} \cdots y_{z}^{n_{z}} x_{s}^{j_{s}} y^{s s_{s}} \\
= & \prod_{s=1}^{\infty} \prod_{n_{1}, \ldots, n_{z}=0}^{\infty}\left(1-y_{1}^{n_{1}} \cdots y_{z}^{n_{z}} y^{s} x\right)^{-1} .
\end{aligned}
$$

Therefore
$\sum_{a_{1}, \ldots, a_{z}=0}^{\infty} Q\left(a_{1}, \cdots, a_{z}, a ; x\right) y_{1}^{a_{1}} \cdots y_{z}^{a_{z}} y^{a}=\prod_{n_{1}, \ldots, n_{2}, n=0}^{\infty}\left(1-y_{1}^{n_{1}} \cdots y_{z}^{n_{z}} y^{n} x\right)^{-1}$,
which evidently completes the induction.
We may now state
Theorem 3. Let r_{1}, \cdots, r_{z} be distinct integers and let $0<a_{3}<p$, $1 \leqslant s \leqslant z$. Then

$$
\begin{gathered}
\Theta\left(a_{1} p^{r_{1}}+\cdots+a_{z} p^{z}, x\right) \\
=\sum_{j_{s}=0}^{a_{\varepsilon}} D_{r_{1}}\left(j_{1}, x\right) \cdots D_{r_{z}}\left(j_{z}, x\right) P\left(a_{1}-j_{1}, \cdots, a_{z}-j_{z} ; x\right),
\end{gathered}
$$

where

$$
P\left(a_{1}, \cdots, a_{z} ; x\right)==\sum_{k=0}^{\infty} P_{k}\left(a_{1}, \cdots, a_{z}\right) x^{z}
$$

$P_{k}\left(a_{1}, \cdots, a_{z}\right)$ is the number of partitions of $\left(a_{1}, \cdots, a_{z}\right)$ into k parts and

$$
D_{r}(a, x)=\left(x^{p}+x^{p^{2}}+\cdots+x^{p^{r}}\right)^{(a)}
$$

where in the expansion of the right member the multinomial coefficients are deleted.

References

1. L. Carlitz. Some arithmetic properties of the Bell polynomials. Bull. Amer. Math. Soc. 71 (1965), 143-144.
2. L. Carlitz. Some arithmetic properties of the Bell polynomials, Rend. Circolo Mat. Palermo 13 (1964), 345-368.
3. J. Riordan. "An Introduction to Combinatorial Analysis." New York and London, 1958.

[^0]: * Supported in part by NSF grant GP-1593.

