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1. Introduction

A square complex is a 2-complex formed by gluing squares together. This article is
concerned with the fundamental grofipof certain square complexes of nonpositive cur-
vature, related to quaternion algebras. The Abelian subgroup structiiteso$tudied in
some detail. Before outlining the results, it is necessary to describe the construckion of

In [5, Section 3], there is constructed a lattice subgrbug I', ; of G = PGLx(Q,) x
PGLx(Q;), wherep,l =1 (mod 4) are two distinct primes. This restriction was made
because-1 has a square root i@, if and only if p = 1 (mod 4), but the construction of
I’ is generalized in [8, Chapter 3] to all paiis, /) of distinct odd primes.

The affine buildingA of G is a product of two homogeneous trees of degiges 1)
and(! + 1), respectively. The group is a finitely presented torsion free group which acts
freely and transitively on the vertices df, with a finite square complex as quotiefif I".

Here is howr" is constructed. Let

H(Z) = {x = x0 + x1i + x2j + x3k; x0, x1, X2, X3 € Z}
be the ring of integer quaternions wheéfe= j2 =k? = —1,ij = —ji = k. Letx =xo —

x1i — x2j — x3k be the conjugate of, and|x|? = xx = x3 + x? + x5 + x2 its norm.
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Letc,.d, € Q, andc;, d; € Q; be elements such thed +d2+1=0,c?+d?+1=0.
Such elements exist by Hensel's Lemma and [2, Proposition 2.5.3]. We cadi,take, if
p=1(mod 4), and; =0, if /=1 (mod 4). Define

¥ H(Z) — {0} - PGLx(Q,) x PGLx(Q))

by

. x0+x1¢p +x3dp,  —xadp +x2+ x3¢)
Yo = " :
—x1dp —x2+x3¢p X0 — X1Cp — X3d)

(1)

( x0+x1c + x3d;  —x1d; + x2+ x3¢; )
—x1d; — x2 +x3¢; X0 — x1¢; — X3d '
This formula abuses notation by identifying an elemerRGL>(Q,) x PGLx(Q;) with its
representative iGL2(Q,) x GLo(Qy).

Note thaty (xy) = ¥ ()¢ (y), ¥ (hx) = ¥ (x), if A € Z — {0}, and ¥ (x) ™1 = ¥ ().
Moreover the inverse image undgrof the identity element ifGLx(Q,) x PGLx(Qy) is
precisely

Z—{0)={x e H(Z); x0#0, x1 =x2=x3=0}.
Let

F={xeH®@y; x?=p' r;s >0
x0 0dd x1, x2, x3 even if |x|° =1 (mod 4;

x1.even xo, x2, x3 0dd, if [x|> =3 (mod 4}.

ThenI” = (I") is a torsion free cocompact lattice ¢h. Let

A:{xeF; xo0 >0, |x|2=p}, E:{yef; yo >0, |y|2=l}.

Then A containsp + 1 elements and3 contains! + 1 elements, by a result of Jacobi
[4, Theorem 2.1.8]. The images= v/ (A), B = ¢ (B) of A, B in I" generate free groups
I'y=(A)={a,..., a(,,+1)/2), Ii=(B)={(by,..., b(l+1)/2> of ranks(p+1)/2, (1+1)/2,
respectively, and" itself is generated byt U B. The 1-skeleton oft is the Cayley graph of
I relative to this set of generators. The grallphas a finite presentation with generators
{ai, ..., aps12} U {b1, ..., byt 2} and (p + 1) (I 4 1)/4 relations of the formub =

ba, wherea,a € A, b, b € B. In fact, given any: € A, b € B, there are unique elements
a € A, b € B such thaub = ba. This follows from a special case of Dickson’s factorization
property for integer quaternions [3, Theorem 8].

Proposition 1.1 [3]. Letx € I’ such that/x|2 = pl. Then there are uniquely determined
z,Z€ A, y,y € Bsuchthaty, yz = £x.
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It is worth noting thaty # ¥z in general, as demonstrated by the following example.

Examplel.2. Letp=3,/=5andx =1+2i + j +3k. Then(1— j + k)(1+2i) =x and
1-201—-j—-k)=—

We can now outline the contents of this article. A fundamental fact, upon which much
else depends, is that is commutative transitiven the sense that the relation of commuta-
tivity is transitive on non-trivial elements df. In particular/” cannot contain a subgroup
isomorphic toF2 x F2, where F»> denotes the free group of rank 2. Furthermdreis a
CSA-groupi.e. all its maximal Abelian subgroupg satisfy gIog~1 N I'p = {1} for all
gel —1Ip.

Every nontrivial elemeny € I' is the image undety of a quaternion of the form
x0 + zo(c1i + c2j + c3k) wherec, c2, c3 € Z are relatively prime. The elementis con-
tained in a unique maximal Abelian subgrofipand the integet = n(Ip) = ¢ +c5 +c3
depends only oy rather than the particular choice pf We define a class of maximal
Abelian subgroups of” isomorphic toZ?, which we call period subgroups, and which
are characterized by the condltloﬁn—) (%) = 1. Every maximal Abelian subgroup
Io = 72 is conjugate inl” to a perlod subgroup and, as the name suggests, period sub-
groups are closely related to periodic tilings of the plane. On the other hand, some maximal
Abelian subgroups of" are isomorphic t&, and we show how to construct these. Several
explicit examples and counterexamples are included.

2. The CSA property

Let 7 :H(Q) — Q — P%(Q) be defined byr (x) = Q(x1, x2, x3), which is a line inQ3
through (0, 0, 0). By [5, Section 3], two quaternions, y € H(Q) — Q commute if and
only if 7(x) = t(y). This directly implies the following lemma, which in turn has Propo-
sition 2.2 as a consequence, see also [8, Chapter 3].

Lemma 2.1. Elements:, y € I commute if and only if their images(x), ¥ (y) € I" com-
mute.

A group is said to beommutative transitivé the relation of commutativity is transitive
on its non-trivial elements.

Proposition 2.2. The groupl” is commutative transitive.

Wise has asked in [11, Problem 10.9] whether the fundamental group of any nonele-
mentary complete square complex contains a subgroup isomorpliig xoF,. We can
give a negative answer of this question, since our grbugelongs to this class of funda-
mental groups, and it is a direct consequence of Proposition 2.Z°tdaes not contain a
F> x F> subgroup. In fact, sinc€ is torsion free, and a (free) Abelian subgroupiohas
rank< 2 [7, Lemma 3.2], we have a more precise result.
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Corollary 2.3. The only nontrivial direct product subgroup 6fis Z x Z = Z2.

If y = (x) e I' — {1} then the centralizeFy = Z(y) is the unique maximal Abelian
subgroup ofl” containingy. Moreover I is determined byr (x), independent of the
choice ofx.

As described in [6, Remark 4], a group is commutative transitive if and only if the
centralizer of any non-trivial element is Abelian. A third equivalent condition (czdlae
propertyin [6]) is proved forI” in the following lemma. Itis used to show in Proposition 2.6
that I is a CSA-group i.e. all its maximal Abelian subgroups are malnormal, where a
subgrouplp of I' is malnormal (or conjugate separatdf glog~1 N I'p = {1} for all
g € I' — I'y. Any CSA-group is commutative transitive, but the converse is not true, see [6].

Lemma 2.4. If I'1 # I, are maximal Abelian subgroups d6ftheny N I = {1}.

Proof. Suppose that there exists a nontrivial elemeatii NIy If y; € I; —{1},i =1, 2,
thenyy1 = y1y andyy2 = y2y which impliesy1y2 = y2y1 by Proposition 2.2. Sincéy,
I> are maximal Abelian[y =1%. O

It is well known that there is a (surjective) homomorphism
0 :H(Q) — {0} — SG(Q)

defined byf(y)x = yxy~1 for any x = x1i + x2j + x3k € H(Q), also identified with
(x1, x2, x3) € Q3.
If y e H(Q) — Q then the axis of rotation af(y) is t(y). This is an immediate conse-
guence of the fact that
0N —y0) =y —y0)y "=y = yo.
Moreover the angle of rotation isx2where cosr = yo/|y| [10, Chapitre I, Section 3]. In
particular, the angle of rotation is a multiple ofonly if yg = 0.

Lemma 2.5. (a) Suppose that, y € H(Q) — Q and yg # 0. Thenyxy~—* commutes with
if and only ify commutes with.
(b)If a,b e I, thenbab~ commutes witla if and only if> commutes witla.

Proof. (a) If yxy~! commutes withx, then the rotation®(yxy~1) andé(x) have the
same axis. However, the axis 6{yxy™1) = 6(»)0(x)8(y)~1 is 6(y)r(x). Therefore
0(y)T(x) = t(x): in other wordsg(y)(x1, x2, x3) = £(x1, x2, x3). If 0(y)(x1, x2,x3) =
—(x1, x2, x3) thend(y) is a rotation by angler with axis perpendicular t@xs, x2, x3).
This cannot happen singg # 0. Therefored (y) has axist (x). That is,z(y) = t(x) and
consequently commutes withe. The converse is clear.

(b) If a =1 orb =1, the statement is obvious.df b € I' — {1} andbab~! commutes
with a, then representatives y for a, b in H(Q) — Q have nonzero real parts and satisfy
the same relation, by Lemma 2.1. The assertion follows from (a). Again, the converse is
clear. O
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Proposition 2.6. I" is CSA.

Proof. Suppose thatip is a maximal Abelian subgroup of and thatb € I', with
bIob=1N Iy # {1}. We must show that € Ip.

By Lemma 2.4pIob~1 = Ip. Leta € I'n. Thenbab~! commutes withz and so, by
Lemma 2.5p commutes withu. Sincelp is maximal Abelianp € Iy, O

We now recall the following known result.

Lemma 2.7. (a) [6, Proposition 9(5)A non-Abelian CSA-group has no non-Abelian solv-
able subgroups.
(b) [6, Proposition 10(3)bubgroups of CSA-groups are CSA.

Corollary 2.8. Leta € I', — {1} andb € I'; —{1}. Then eitheKa, b) = Z2 or (a, b) contains
a free subgroup of rank.

Proof. If a, b commute, thera, b) = Z2, sincel is torsion free anda, b) is not cyclic.
Assume that:, b do not commute. We will show that, b) is not virtually solvable. The
Tits Alternative for finitely generated linear groups (see [9]) then impliesthdt) con-
tains a free subgroup of rank 2. Note tHatis linear, see [8, Section 3.2] for an explicit
injective homomorphisni™ — SG;(Q). Let U be a finite index subgroup @#, b), in par-
ticular there are, s € N such thata”, b* € U. The elementa” andb® do not commute
since otherwise alse andb would commute by Proposition 2.2. It follows thétis not
Abelian. By Proposition 2.6 and Lemma 2.7(ky, b) is CSA. Lemma 2.7(a) shows that
U is not solvable. O

3. Maximal Abelian subgroups and period subgroups
Recall that the group acts freely and transitively on the vertex set of the affine building

A of PGLx(Q,) x PGLx(Qy). The building A is a product of two homogeneous trees
and the apartments (maximal flats) snare copies of the Euclidean plane tessellated by
squares.
Notation 3.1. If n is an integer angp is an odd prime, then thieegendre symbadk

" 0 if pln,
(_> = { 1 if ptnandnis a square mog,

p —1 if ptn andn is not a square mog.

Any element ofl” — {1} is the image undey of a quaternion of the form

x =xo+ zo(c1i + c2j + c3k), (2
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wherec, ¢z, c3 € Z are relatively primezg # 0, (c1, ¢2, ¢3) # (0,0, 0), and
|x|2 = xcz) + (c% + cg + c%)z% =p'l’, rs>=0.

Recall thatr (x) = Q(c1, 2, c3) € P?(Q) and that elements (x), ¥ (y) € I" — {1} com-
mute if and only ifz (x) = t(y). Moreover the centralizefy = Z (¥ (x)) is the unique
maximal Abelian subgroup af' containingy (x). Let

n(x) =n(yx)) =n(Io) = % +c5 +c5.

An Abelian subgroup of” has rank< 2 [7, Lemma 3.2]. Sincé" is torsion free, a non-
trivial Abelian subgroupip of I is isomorphic to eithef or Z2. If I'y = 72 then there
is a unique apartmend , which is stabilized byip [7, 6.8], and/p acts cocompactly by
translation on this apartment. We call;, aperiodicapartment.

Definition 3.2. A maximal Abelian subgrougp = Z2 will be called aperiod subgroup
if the apartmentdr, contains the vertex0 of A whose stabilizer inG is PGLx(Z),) x
PGLx(Z).

Since the action of” on A is vertex transitive, every maximal Abelian subgroup
I'b = 72 is conjugate inl” to a period subgroup. We want to show thai) determines
whenZpr (¥ (x)) is a period subgroup af.

Recall thatI" is generated by free group$, 17, of ranks(p +1)/2, (I +1)/2, respec-
tively. If y € I, let £(y) denote the natural word length pf in terms of the generators of
Iy, I. The condition?(y2) = 2¢(y), which is used in the next lemma, is equivalent to the
assertion thay has an axis containin@, upon whichy acts by translation.

Lemma 3.3. Leta = ¥ (x) € I', — {1} and letn = n(x). The following statements are
equivalent

(@ pin;
(b) €(a?) = 2¢(a);
(c) (%‘):1.

Similar equivalent assertions hold,jfis replaced by.
Before giving the proof, we note that

(#). ifp=1 (mod4,

<_7n>:{—(%), if p=3 (mod 4.

Proof. (a) < (b). The idea for this comes from the proof of [5, Proposition 3.15]. Write
x as in (2) with|x|2 = x(z) + nz% = p”, r > 0. Extracting a common factor, if necessary,
we may assume g€y, zo) = 1. This means that = £(a) [8, Corollary 3.11(4), Theo-
rem 3.30(1)].
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Suppose thap { n. To provel(a?) = 2¢(a) we must show thap does not divider?.
Now if p divides

x? = (x§ — nz§) + 2xozo(c1i + c2j + c3k),

then p divides the real parkg — nz%. Thereforep divides xg (since p divides p" =
xg + nzg). But this implies thatp divideszg, sincep 1 n. This contradicts the assump-
tion gcdxo, zg) = 1.

Conversely, suppose théta?) = 2¢(a). If p dividesn, then p divides xq (since p
dividesxZ + nz3). Thereforep divides the real and imaginary partsxt = (x2 — nz3) +
2x0zo(c1i + ¢2j + c3k). But this implies that(a?) < 2r, a contradiction.

(8 < (c). Suppose thap t n. Note thatp does not divideg: otherwisep also divides
xo. It follows thatzp has a multiplicative inverse (mod p). That is, one can choas&
such thatot =1 (mod p). Then

0= (xg + nz(z))tz =x2t>4+n (modp).
Sincep {n, this means thaf=") = 1. The converse is obvious.O
Lemma 3.4. If Iy = Z? is a period subgroup of andn = n(Ip), then(51) = () =1

Proof. The grouplp acts cocompactly by translation on the apartmépj containing the
vertexO. It follows thatIp contains elements e I, — {1}, b € I7 — {1}. These elements
act freely by translation on the apartment, and &%) = 2¢(a), £(b%) = 2¢(b). Therefore
(‘Tf) =(7)=1,byLemma3.3. O

Lemma35.If y =y (x) e I' — (I, UTy) andgedn(x), pl) = 1, thenZr(y) is a period
subgroup off".

Proof. Let x = xo + zo(c1i + c2j + c3k) as in (2) andn = n(x) = ¢ + ¢3 + c3. We
may assume gcslo, zo) = 1 and|x|? = x2 + nz3 = p’l°, wherer, s > 1 becausel (x) ¢
r,ur;.

The assumption ged, p/) = 1 implies that gcdozo, pl) = 1. For example, ifp | xo
then p | zo, sincep | (x3 + nz3) and p { n. This contradicts gaco, zo) = 1. Similarly,
p 1 zo. It follows from the “if” part of the proof of [5, Proposition 3.15] (and an obvious
generalization to the cases where= 3 (mod 4) orl = 3 (mod 4)) thaty = ¢ (x) liesin an
Abelian subgroug of I', with I'y = Z2. The same proof also shows thag acts cocom-
pactly by translation on an apartmestcontainingO. (The essential point in the proof of
Mozes is that(y?2) = 2¢(y).) However,Z - (y) is the unique maximal Abelian subgroup
containinglp. ThereforeZ-(y) acts cocompactly by translation on the apartménby
the unigueness assertion in [7, 6.8]. In other wo#is(y ) is a period subgroup af. O

Now we can describe the period subgroupg of
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Proposition 3.6. Let I'y be a maximal Abelian subgroup 6f, and letn = n(Ip). Thenly
is a period subgroup if and only (f*T”) =(3)=1

Before proceeding with the proof, we introduce some notation. There is a canonical
Cartan subgroug’ of G = PGLx(Q,) x PGLx(Q;) defined by

(6 9): e

The groupC acts by translation on an apartme#t which contains the verte® whose
stabilizer inG is PGLy(Z,) x PGL(Z;). The action ofC is transitive on the vertices of.

Proof of Proposition 3.6. In view of Lemma 3.4, it suffices to show tf(aipﬂ) =(F)=1

implies that Iy is a period subgroup. Suppose therefore tbg(t) = (7*) =1. Then
gcdn, pl) = 1. The result will therefore follow from Lemma 3.5, if we can show that
I is not contained i, U I7. By symmetry it is enough to prove thatiip contains an
element =y (y) € I — {1}, then it also contains an element= v (x) € I, — {1}. For
then the elemerita does not lie inl, U I7.

Write y = yo + zo(c1i + c2j + c3k), wherecs, ¢2, c3 € Z are relatively prime and =
n(y) = c% +c§ +c§. The quaterniory represents the elemendf I of word lengthé(b) =
s > 0. By Lemma 3.3) acts by translation of distaneealong an axid., containingO.

The element oGL>(Q,) x GL2(Q;) corresponding ty in the formula (1) has eigen-
valuesyg 4 zo+/—n. The assumptio(rT”) = (%) = Limplies that/=n exists in bothQ,
and(Q; and therefore that is diagonalizable irG. In other words, there exists an element
h € G such that:*bh € C.

The grouphCh~' acts by translation on the apartmentl. Also the elemenb e
hCh~1 N I acts by translation on the apartmémd, in a direction which will be called
“vertical.” Now h.A necessarily contains the axis, of b, by [1, Theorem 11.6.8(3)]. In
particular,0 € hA.

Chooseg € hCh~1 to act oniA by horizontal translation. Consider the horizontal strip
H in h A obtained by translating the vertical segmp@it »O] (see Fig. 1).

Since I' acts freely and transitively on the vertices af each vertical segment
¢'[0,bO] of H lies in thel -orbit of precisely one segment of the foi@, y 01, y € I},
£(y) = s. Moreover, there are only finitely many such segmé¢otsy O].

bO bui (0] bu 7 O

o} u; O u; O

Fig. 1. The horizontal strig .
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If i >0 theng’O =u; 0, for someu; € I, — {1}. Sinceb andg commute, we have
g'b0 =bg' O =bu;0. That is,g' [0, bO] = [u; O, bu; O], which lies in theI"-orbit of
the segmenfoO, ul._lbul-O]. By the finiteness assertion in the preceding paragraph, there
exist integerg > i > 0 such that

[0,u;bu; 0] =[0,u7*bu;0].
By freeness of the action daf,

I P
u; bul—uj buj,

andu; # u ;. Thereforeab = ba, wherea = uju;* € I, — {1}. O

A maximal Abelian subgroupgp of I" may be isomorphic t@. Here is a way of pro-
viding some examples.

Corollary 3.7. Suppose that € I', — {1}, andn = n(a) satisfies

B ()

ThenZr(a) < I', is a maximal Abelian subgroup éf, and Zr(a) = Z. A similar asser-
tion applies to elements @} — {1}.

Proof. The hypothesis implies that ged p/) = 1. If Zr(a) ¢ I'),, thenZ(a) contains
an elemeny ¢ I', U I. ThereforeZ(a) = Zr(y) is a period group, by Lemma 3.5. But
this implies(=*) = 1, by Proposition 3.6, a contradictiono

Example 3.8. Let I = I'35. This group has a presentation with generatars az, b1,
bo, b3} and relators

-1 -1 -1 -1 -1 -1 -1
{alblazbz, arbzazby ~, a1bza, “ba, a1bga1b, ~, a1b] ~a, b3, axbzazb, },

where

a=yA+j+k. at=yd-j—k,
aa=y1+j—-k, at=yd-j+k),
b=y 142,  bilt=vy(1-2),
bo=v(1+2j), by'=y@Ad-2)),
ba=vy(1+2).  byt=y(1-2%).

The subgroupai) = Zr(a1) < I3 is maximal Abelian inI" by Corollary 3.7, since
n(a1) =2, (Z)=1land(Z2) = -1.
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al az al al

b1 b3 b2 b3 bl
az az ai az

b3 b1 b3 b2 b3
al al al a2

bo bs by bs bo
ai a2 a2 a2

bs b2 bs b1 bs
al a2 ail al

Fig. 2. Part of a periodic apartment fdp < I'3 5.

The subgrougaia, al) (¥ (=5 — 60 — 2j + 4k)) is not maximal Abelian. It is con-
tained in the period subgroup

o= (aray a2, baby 'b3hy) = 72,

Indeed, n(I'p) = n(a1a;'a?) = 14, (=3%) = 1, (3?) = 1. Note thatbzb, 'b3'b1 =
Y (—11+418 4+ 65 — 12%). Part of the period lattice fafy is illustrated in Fig. 2.

Example 3.9. Let I' = I35. Considerbiaib;* = (5 — 7j + k). By Example 3.8,
{a1) is maximal Abelian inI". Therefore so also i$p = (blalbI ) = bl(al)bil Now
y = b1aSh1t = aza; 1a2 2a7tay = w(5(23+ 14j — 2k)) = ¥ (x) € I'3, with |x|2 = 52.35.

Also n(x) =n(Ip) =50, (i)) =1 and( ) 0. There is a periodic horizontal strip of

height 2 (Fig. 3), upon whiclr acts by translation. This strip is the union of the axeg of

Example 3.10. Let I = I’ 5. Conjugating the period subgroupia, *a2, bab, ‘bz b1)
of Example 3.8 byi» gives the group

-12 -1 -1,-1 — 1
Fo:(agalaz aja, -, azbzb, b3 "bia, ) <a2a1a2 ‘11“2 ,bzb bz)

= (Y (—15+ 10i + 2j + 20k), ¥ (—11— 10i — 2j — 20k)) =
which is not a period subgroup singelp) = 126, (=2°) = 1 and(=1%) = 0.

One could conjecture that every maximal Abelian subgroup &f conjugate to either a
period subgroup or to a subgroupGf or I;. The next example shows that this conjecture
is not true. We need the following definition and Lemma 3.11:

If x = x0 + x1i + x2j + x3k € H(Z), letm(x) = |x|? — R(x)? = xZ 4+ x5 + x5, where
N (x) = xo denotes the real part af Observe that:(x) = A2n(x) for some integek.
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as a al a2 a2 al a2
bs b1 bs b2 b1 b2 b3 b1
al al al al al ai al
b1 b3 b2 b1 b2 b3 b1 b3
O as ay as a2 al a2 az

Fig. 3. Part of a periodic horizontal strip.

Lemma 3.11. Letx, y € H(Z), thenm(xy%) = (|x|2)2m(y).
Proof. Using the rule$i(xy) = R(yx) and|xy|? = |x|?|y|?, we conclude:
_ _ o 2 ERY 2
m(xyx) = [xy¥|? — Rxy)? = (1x?)y12 = (120 () = (x1%)m(y). O

Example3.12. Let I = I35 andazbz = ¥ (3+ 2 + j + k). The grouplo = Zr (azb3) is
a maximal Abelian subgroup @t such thak:(I'p) = 6. We fix any element =y (x) e I'.
The maximal Abelian subgroup Ioy~! is not a subgroup off3 or I, since
yazbsy 1 € yIoy 1 is the y-image ofx(3 + 2i + j + k) whose norm is a product
of an odd power of 3 and an odd power of 5.
We claim thaty I'py~1 is not a period subgroup. Ifx|2 = 3'5%, r,s > 0, then by
Lemma 3.11

(35)2.6=m(x(3+2i + j +k)x) =rn(y Toy ™)

for some integet. It follows that 3| n(y I'oy 1), in particular

—n(ylToy ™M\ _
(F5=) -0

and Proposition 3.6 proves the claim.

Since any maximal Abelian subgroup of rank 2 is conjugate to a period subgroup, it also
follows that I'p = Z. See Fig. 4 for a periodic vertical strip of width 1 which is globally
invariant under the action @hb3. Note that(axb3)2 = bobs. Thereforeubs acts upon the
strip by glide reflection and the unique axisaebs is the vertical central line of the strip.

It is well known that period subgroups ifi always exist. See for example [8, Proposi-
tion 4.2] for an elementary proof of this fact, using doubly periodic tilings of the Euclidean
plane by unit squares. We mention a corollary of this in terms of integer quaternions.

Corollary 3.13. Given any pair(p, [) of distinct odd primes, there are y € I" and 1 <
r <4(p + 1)2( + 1) such thatry = yx and

w=p'.  pR=r, (‘”“”):(‘”(”):1.
p )
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bs bo
az
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b3 b2
a2

bo b3
az

Fig. 4. Part of a periodic vertical strip.

The integer- in this corollary comes from the constructive proof of [8, Proposition 4.2],
and its upper bound is certainly not optimal. In factpifl = 1 (mod 4), there is a direct
proof of Corollary 3.13 (with- = 1), applying the Two Square Theorem.
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