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1. Introduction

A square complex is a 2-complex formed by gluing squares together. This arti
concerned with the fundamental groupΓ of certain square complexes of nonpositive c
vature, related to quaternion algebras. The Abelian subgroup structure ofΓ is studied in
some detail. Before outlining the results, it is necessary to describe the constructionΓ .

In [5, Section 3], there is constructed a lattice subgroupΓ = Γp,l of G = PGL2(Qp) ×
PGL2(Ql ), wherep, l ≡ 1 (mod 4) are two distinct primes. This restriction was m
because−1 has a square root inQp if and only if p ≡ 1 (mod 4), but the construction o
Γ is generalized in [8, Chapter 3] to all pairs(p, l) of distinct odd primes.

The affine building∆ of G is a product of two homogeneous trees of degrees(p + 1)

and(l + 1), respectively. The groupΓ is a finitely presented torsion free group which a
freely and transitively on the vertices of∆, with a finite square complex as quotient∆/Γ .

Here is howΓ is constructed. Let

H(Z) = {x = x0 + x1i + x2j + x3k; x0, x1, x2, x3 ∈ Z}

be the ring of integer quaternions wherei2 = j2 = k2 = −1, ij = −ji = k. Let x̄ = x0 −
x1i − x2j − x3k be the conjugate ofx, and|x|2 = xx̄ = x2

0 + x2
1 + x2

2 + x2
3 its norm.
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Let cp, dp ∈ Qp andcl, dl ∈ Ql be elements such thatc2
p +d2

p +1= 0, c2
l +d2

l +1= 0.
Such elements exist by Hensel’s Lemma and [2, Proposition 2.5.3]. We can takedp = 0, if
p ≡ 1 (mod 4), anddl = 0, if l ≡ 1 (mod 4). Define

ψ :H(Z) − {0} → PGL2(Qp) × PGL2(Ql )

by

ψ(x) =
((

x0 + x1cp + x3dp −x1dp + x2 + x3cp

−x1dp − x2 + x3cp x0 − x1cp − x3dp

)
,

(
x0 + x1cl + x3dl −x1dl + x2 + x3cl

−x1dl − x2 + x3cl x0 − x1cl − x3dl

))
. (1)

This formula abuses notation by identifying an element ofPGL2(Qp)×PGL2(Ql ) with its
representative inGL2(Qp) × GL2(Ql ).

Note thatψ(xy) = ψ(x)ψ(y), ψ(λx) = ψ(x), if λ ∈ Z − {0}, andψ(x)−1 = ψ(x̄).
Moreover the inverse image underψ of the identity element inPGL2(Qp) × PGL2(Ql ) is
precisely

Z − {0} = {x ∈ H(Z); x0 �= 0, x1 = x2 = x3 = 0}.

Let

Γ̃ = {
x ∈ H(Z); |x|2 = prls, r, s � 0;

x0 odd, x1, x2, x3 even, if |x|2 ≡ 1 (mod 4);
x1 even, x0, x2, x3 odd, if |x|2 ≡ 3 (mod 4)

}
.

ThenΓ = ψ(Γ̃ ) is a torsion free cocompact lattice inG. Let

Ã = {
x ∈ Γ̃ ; x0 > 0, |x|2 = p

}
, B̃ = {

y ∈ Γ̃ ; y0 > 0, |y|2 = l
}
.

Then Ã containsp + 1 elements and̃B containsl + 1 elements, by a result of Jaco
[4, Theorem 2.1.8]. The imagesA = ψ(Ã), B = ψ(B̃) of Ã, B̃ in Γ generate free group
Γp = 〈A〉 = 〈a1, . . . , a(p+1)/2〉, Γl = 〈B〉 = 〈b1, . . . , b(l+1)/2〉 of ranks(p+1)/2, (l+1)/2,
respectively, andΓ itself is generated byA∪B. The 1-skeleton of∆ is the Cayley graph o
Γ relative to this set of generators. The groupΓ has a finite presentation with generato
{a1, . . . , a(p+1)/2} ∪ {b1, . . . , b(l+1)/2} and (p + 1)(l + 1)/4 relations of the formab =
b̃ã, wherea, ã ∈ A, b, b̃ ∈ B. In fact, given anya ∈ A, b ∈ B, there are unique elemen
ã ∈ A, b̃ ∈ B such thatab = b̃ã. This follows from a special case of Dickson’s factorizat
property for integer quaternions [3, Theorem 8].

Proposition 1.1 [3]. Let x ∈ Γ̃ such that|x|2 = pl. Then there are uniquely determin

z, z̃ ∈ Ã, y, ỹ ∈ B̃ such thatzy, ỹz̃ = ±x.



D. Rattaggi, G. Robertson / Journal of Algebra 286 (2005) 57–68 59

e.

uch
ta-
p

al
ch
p
sub-

aximal
ral

o-

e

onele-

-

It is worth noting thatzy �= ỹz̃ in general, as demonstrated by the following exampl

Example 1.2. Let p = 3, l = 5 andx = 1+ 2i + j + 3k. Then(1− j + k)(1+ 2i) = x and
(1− 2k)(1− j − k) = −x.

We can now outline the contents of this article. A fundamental fact, upon which m
else depends, is thatΓ is commutative transitive, in the sense that the relation of commu
tivity is transitive on non-trivial elements ofΓ . In particularΓ cannot contain a subgrou
isomorphic toF2 × F2, whereF2 denotes the free group of rank 2. Furthermore,Γ is a
CSA-group, i.e. all its maximal Abelian subgroupsΓ0 satisfygΓ0g

−1 ∩ Γ0 = {1} for all
g ∈ Γ − Γ0.

Every nontrivial elementγ ∈ Γ is the image underψ of a quaternion of the form
x0 + z0(c1i + c2j + c3k) wherec1, c2, c3 ∈ Z are relatively prime. The elementγ is con-
tained in a unique maximal Abelian subgroupΓ0 and the integern = n(Γ0) = c2

1 + c2
2 + c2

3
depends only onΓ0 rather than the particular choice ofγ . We define a class of maxim
Abelian subgroups ofΓ isomorphic toZ2, which we call period subgroups, and whi
are characterized by the condition

(−n
p

) = (−n
l

) = 1. Every maximal Abelian subgrou
Γ0 ∼= Z2 is conjugate inΓ to a period subgroup and, as the name suggests, period
groups are closely related to periodic tilings of the plane. On the other hand, some m
Abelian subgroups ofΓ are isomorphic toZ, and we show how to construct these. Seve
explicit examples and counterexamples are included.

2. The CSA property

Let τ :H(Q) − Q → P2(Q) be defined byτ(x) = Q(x1, x2, x3), which is a line inQ3

through(0,0,0). By [5, Section 3], two quaternionsx, y ∈ H(Q) − Q commute if and
only if τ(x) = τ(y). This directly implies the following lemma, which in turn has Prop
sition 2.2 as a consequence, see also [8, Chapter 3].

Lemma 2.1. Elementsx, y ∈ Γ̃ commute if and only if their imagesψ(x),ψ(y) ∈ Γ com-
mute.

A group is said to becommutative transitiveif the relation of commutativity is transitiv
on its non-trivial elements.

Proposition 2.2. The groupΓ is commutative transitive.

Wise has asked in [11, Problem 10.9] whether the fundamental group of any n
mentary complete square complex contains a subgroup isomorphic toF2 × F2. We can
give a negative answer of this question, since our groupΓ belongs to this class of funda
mental groups, and it is a direct consequence of Proposition 2.2 thatΓ does not contain a
F2 × F2 subgroup. In fact, sinceΓ is torsion free, and a (free) Abelian subgroup ofΓ has

rank� 2 [7, Lemma 3.2], we have a more precise result.
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Corollary 2.3. The only nontrivial direct product subgroup ofΓ is Z × Z = Z2.

If γ = ψ(x) ∈ Γ − {1} then the centralizerΓ0 = ZΓ (γ ) is the unique maximal Abelia
subgroup ofΓ containingγ . MoreoverΓ0 is determined byτ(x), independent of the
choice ofx.

As described in [6, Remark 4], a group is commutative transitive if and only if
centralizer of any non-trivial element is Abelian. A third equivalent condition (calledSA-
propertyin [6]) is proved forΓ in the following lemma. It is used to show in Proposition 2
that Γ is a CSA-group, i.e. all its maximal Abelian subgroups are malnormal, whe
subgroupΓ0 of Γ is malnormal(or conjugate separated) if gΓ0g

−1 ∩ Γ0 = {1} for all
g ∈ Γ −Γ0. Any CSA-group is commutative transitive, but the converse is not true, se

Lemma 2.4. If Γ1 �= Γ2 are maximal Abelian subgroups ofΓ thenΓ1 ∩ Γ2 = {1}.

Proof. Suppose that there exists a nontrivial elementγ ∈ Γ1∩Γ2. If γi ∈ Γi −{1}, i = 1,2,
thenγ γ1 = γ1γ andγ γ2 = γ2γ which impliesγ1γ2 = γ2γ1 by Proposition 2.2. SinceΓ1,
Γ2 are maximal Abelian,Γ1 = Γ2. �

It is well known that there is a (surjective) homomorphism

θ :H(Q) − {0} → SO3(Q)

defined byθ(y)x = yxy−1 for any x = x1i + x2j + x3k ∈ H(Q), also identified with
(x1, x2, x3) ∈ Q3.

If y ∈ H(Q) − Q then the axis of rotation ofθ(y) is τ(y). This is an immediate conse
quence of the fact that

θ(y)(y − y0) = y(y − y0)y
−1 = y − y0.

Moreover the angle of rotation is 2α where cosα = y0/|y| [10, Chapitre I, Section 3]. In
particular, the angle of rotation is a multiple ofπ only if y0 = 0.

Lemma 2.5. (a)Suppose thatx, y ∈ H(Q) − Q andy0 �= 0. Thenyxy−1 commutes withx
if and only ify commutes withx.

(b) If a, b ∈ Γ , thenbab−1 commutes witha if and only ifb commutes witha.

Proof. (a) If yxy−1 commutes withx, then the rotationsθ(yxy−1) and θ(x) have the
same axis. However, the axis ofθ(yxy−1) = θ(y)θ(x)θ(y)−1 is θ(y)τ (x). Therefore
θ(y)τ (x) = τ(x): in other words,θ(y)(x1, x2, x3) = ±(x1, x2, x3). If θ(y)(x1, x2, x3) =
−(x1, x2, x3) then θ(y) is a rotation by angleπ with axis perpendicular to(x1, x2, x3).
This cannot happen sincey0 �= 0. Thereforeθ(y) has axisτ(x). That is,τ(y) = τ(x) and
consequentlyy commutes withx. The converse is clear.

(b) If a = 1 or b = 1, the statement is obvious. Ifa, b ∈ Γ − {1} andbab−1 commutes
with a, then representativesx, y for a, b in H(Q) − Q have nonzero real parts and satis
the same relation, by Lemma 2.1. The assertion follows from (a). Again, the conve

clear. �
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Proposition 2.6. Γ is CSA.

Proof. Suppose thatΓ0 is a maximal Abelian subgroup ofΓ and thatb ∈ Γ , with
bΓ0b

−1 ∩ Γ0 �= {1}. We must show thatb ∈ Γ0.
By Lemma 2.4,bΓ0b

−1 = Γ0. Let a ∈ Γ0. Thenbab−1 commutes witha and so, by
Lemma 2.5,b commutes witha. SinceΓ0 is maximal Abelian,b ∈ Γ0. �

We now recall the following known result.

Lemma 2.7. (a) [6, Proposition 9(5)]A non-Abelian CSA-group has no non-Abelian so
able subgroups.

(b) [6, Proposition 10(3)]Subgroups of CSA-groups are CSA.

Corollary 2.8. Leta ∈ Γp −{1} andb ∈ Γl −{1}. Then either〈a, b〉 ∼= Z2 or 〈a, b〉 contains
a free subgroup of rank2.

Proof. If a, b commute, then〈a, b〉 ∼= Z2, sinceΓ is torsion free and〈a, b〉 is not cyclic.
Assume thata, b do not commute. We will show that〈a, b〉 is not virtually solvable. The
Tits Alternative for finitely generated linear groups (see [9]) then implies that〈a, b〉 con-
tains a free subgroup of rank 2. Note thatΓ is linear, see [8, Section 3.2] for an explic
injective homomorphismΓ → SO3(Q). Let U be a finite index subgroup of〈a, b〉, in par-
ticular there arer, s ∈ N such thatar , bs ∈ U . The elementsar andbs do not commute
since otherwise alsoa andb would commute by Proposition 2.2. It follows thatU is not
Abelian. By Proposition 2.6 and Lemma 2.7(b),〈a, b〉 is CSA. Lemma 2.7(a) shows th
U is not solvable. �

3. Maximal Abelian subgroups and period subgroups

Recall that the groupΓ acts freely and transitively on the vertex set of the affine build
∆ of PGL2(Qp) × PGL2(Ql ). The building∆ is a product of two homogeneous tre
and the apartments (maximal flats) in∆ are copies of the Euclidean plane tessellated
squares.

Notation 3.1. If n is an integer andp is an odd prime, then theLegendre symbolis

(
n

p

)
=

{0 if p | n,

1 if p � n andn is a square modp,

−1 if p � n andn is not a square modp.

Any element ofΓ − {1} is the image underψ of a quaternion of the form
x = x0 + z0(c1i + c2j + c3k), (2)
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wherec1, c2, c3 ∈ Z are relatively prime,z0 �= 0, (c1, c2, c3) �= (0,0,0), and

|x|2 = x2
0 + (

c2
1 + c2

2 + c2
3

)
z2

0 = prls, r, s � 0.

Recall thatτ(x) = Q(c1, c2, c3) ∈ P2(Q) and that elementsψ(x),ψ(y) ∈ Γ −{1} com-
mute if and only ifτ(x) = τ(y). Moreover the centralizerΓ0 = ZΓ (ψ(x)) is the unique
maximal Abelian subgroup ofΓ containingψ(x). Let

n(x) = n
(
ψ(x)

) = n(Γ0) = c2
1 + c2

2 + c2
3.

An Abelian subgroup ofΓ has rank� 2 [7, Lemma 3.2]. SinceΓ is torsion free, a non
trivial Abelian subgroupΓ0 of Γ is isomorphic to eitherZ or Z2. If Γ0 ∼= Z2 then there
is a unique apartmentAΓ0 which is stabilized byΓ0 [7, 6.8], andΓ0 acts cocompactly by
translation on this apartment. We callAΓ0 aperiodicapartment.

Definition 3.2. A maximal Abelian subgroupΓ0 ∼= Z2 will be called aperiod subgroup
if the apartmentAΓ0 contains the vertexO of ∆ whose stabilizer inG is PGL2(Zp) ×
PGL2(Zl ).

Since the action ofΓ on ∆ is vertex transitive, every maximal Abelian subgro
Γ0 ∼= Z2 is conjugate inΓ to a period subgroup. We want to show thatn(x) determines
whenZΓ (ψ(x)) is a period subgroup ofΓ .

Recall thatΓ is generated by free groupsΓp, Γl , of ranks(p + 1)/2, (l + 1)/2, respec-
tively. If γ ∈ Γ , let 
(γ ) denote the natural word length ofγ , in terms of the generators o
Γp, Γl . The condition
(γ 2) = 2
(γ ), which is used in the next lemma, is equivalent to
assertion thatγ has an axis containingO, upon whichγ acts by translation.

Lemma 3.3. Let a = ψ(x) ∈ Γp − {1} and let n = n(x). The following statements ar
equivalent:

(a) p � n;
(b) 
(a2) = 2
(a);
(c)

(−n
p

) = 1.

Similar equivalent assertions hold, ifp is replaced byl.

Before giving the proof, we note that(−n

p

)
=

{(
n
p

)
, if p ≡ 1 (mod 4),

−(
n
p

)
, if p ≡ 3 (mod 4).

Proof. (a) ⇔ (b). The idea for this comes from the proof of [5, Proposition 3.15]. W
x as in (2) with|x|2 = x2

0 + nz2
0 = pr , r > 0. Extracting a common factor, if necessa

we may assume gcd(x0, z0) = 1. This means thatr = 
(a) [8, Corollary 3.11(4), Theo

rem 3.30(1)].
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Suppose thatp � n. To prove
(a2) = 2
(a) we must show thatp does not dividex2.
Now if p divides

x2 = (
x2

0 − nz2
0

) + 2x0z0(c1i + c2j + c3k),

then p divides the real partx2
0 − nz2

0. Thereforep divides x0 (since p divides pr =
x2

0 + nz2
0). But this implies thatp divides z0, sincep � n. This contradicts the assum

tion gcd(x0, z0) = 1.
Conversely, suppose that
(a2) = 2
(a). If p divides n, thenp divides x0 (sincep

dividesx2
0 + nz2

0). Thereforep divides the real and imaginary parts ofx2 = (x2
0 − nz2

0) +
2x0z0(c1i + c2j + c3k). But this implies that
(a2) < 2r , a contradiction.

(a) ⇔ (c). Suppose thatp � n. Note thatp does not dividez0: otherwisep also divides
x0. It follows thatz0 has a multiplicative inverse (mod p). That is, one can chooset ∈ Z
such thatz0t ≡ 1 (mod p). Then

0≡ (
x2

0 + nz2
0

)
t2 ≡ x2

0t2 + n (modp).

Sincep � n, this means that
(−n

p

) = 1. The converse is obvious.�
Lemma 3.4. If Γ0 ∼= Z2 is a period subgroup ofΓ andn = n(Γ0), then

(−n
p

) = (−n
l

) = 1.

Proof. The groupΓ0 acts cocompactly by translation on the apartmentAΓ0 containing the
vertexO. It follows thatΓ0 contains elementsa ∈ Γp − {1}, b ∈ Γl − {1}. These element
act freely by translation on the apartment, and so
(a2) = 2
(a), 
(b2) = 2
(b). Therefore(−n

p

) = (−n
l

) = 1, by Lemma 3.3. �
Lemma 3.5. If γ = ψ(x) ∈ Γ − (Γp ∪ Γl) andgcd(n(x),pl) = 1, thenZΓ (γ ) is a period
subgroup ofΓ .

Proof. Let x = x0 + z0(c1i + c2j + c3k) as in (2) andn = n(x) = c2
1 + c2

2 + c2
3. We

may assume gcd(x0, z0) = 1 and|x|2 = x2
0 + nz2

0 = pr ls , wherer, s � 1 becauseψ(x) /∈
Γp ∪ Γl .

The assumption gcd(n,pl) = 1 implies that gcd(x0z0,pl) = 1. For example, ifp | x0
thenp | z0, sincep | (x2

0 + nz2
0) andp � n. This contradicts gcd(x0, z0) = 1. Similarly,

p � z0. It follows from the “if” part of the proof of [5, Proposition 3.15] (and an obvio
generalization to the cases wherep ≡ 3 (mod 4) orl ≡ 3 (mod 4)) thatγ = ψ(x) lies in an
Abelian subgroupΓ0 of Γ , with Γ0 ∼= Z2. The same proof also shows thatΓ0 acts cocom-
pactly by translation on an apartmentA containingO. (The essential point in the proof o
Mozes is that
(γ 2) = 2
(γ ).) However,ZΓ (γ ) is the unique maximal Abelian subgrou
containingΓ0. ThereforeZΓ (γ ) acts cocompactly by translation on the apartmentA, by
the uniqueness assertion in [7, 6.8]. In other words,ZΓ (γ ) is a period subgroup ofΓ . �
Now we can describe the period subgroups ofΓ .
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Proposition 3.6. LetΓ0 be a maximal Abelian subgroup ofΓ , and letn = n(Γ0). ThenΓ0
is a period subgroup if and only if

(−n
p

) = (−n
l

) = 1.

Before proceeding with the proof, we introduce some notation. There is a can
Cartan subgroupC of G = PGL2(Qp) × PGL2(Ql ) defined by

C =
((∗ 0

0 ∗
)

,

(∗ 0
0 ∗

))
∩ G.

The groupC acts by translation on an apartmentA, which contains the vertexO whose
stabilizer inG is PGL2(Zp)×PGL2(Zl ). The action ofC is transitive on the vertices ofA.

Proof of Proposition 3.6. In view of Lemma 3.4, it suffices to show that
(−n

p

) = (−n
l

) = 1

implies thatΓ0 is a period subgroup. Suppose therefore that
(−n

p

) = (−n
l

) = 1. Then
gcd(n,pl) = 1. The result will therefore follow from Lemma 3.5, if we can show t
Γ0 is not contained inΓp ∪ Γl . By symmetry it is enough to prove that ifΓ0 contains an
elementb = ψ(y) ∈ Γl − {1}, then it also contains an elementa = ψ(x) ∈ Γp − {1}. For
then the elementba does not lie inΓp ∪ Γl .

Write y = y0 + z0(c1i + c2j + c3k), wherec1, c2, c3 ∈ Z are relatively prime andn =
n(y) = c2

1 +c2
2 +c2

3. The quaterniony represents the elementb of Γl of word length
(b) =
s > 0. By Lemma 3.3,b acts by translation of distances along an axisLb containingO.

The element ofGL2(Qp) × GL2(Ql ) corresponding toy in the formula (1) has eigen
valuesy0±z0

√−n. The assumption
(−n

p

) = (−n
l

) = 1 implies that
√−n exists in bothQp

andQl and therefore thatb is diagonalizable inG. In other words, there exists an eleme
h ∈ G such thath−1bh ∈ C.

The grouphCh−1 acts by translation on the apartmenthA. Also the elementb ∈
hCh−1 ∩ Γl acts by translation on the apartmenthA, in a direction which will be called
“vertical.” Now hA necessarily contains the axisLb of b, by [1, Theorem II.6.8(3)]. In
particular,O ∈ hA.

Chooseg ∈ hCh−1 to act onhA by horizontal translation. Consider the horizontal s
H in hA obtained by translating the vertical segment[O,bO] (see Fig. 1).

Since Γ acts freely and transitively on the vertices of∆, each vertical segmen
gi[O,bO] of H lies in theΓ -orbit of precisely one segment of the form[O,γO], γ ∈ Γl ,

(γ ) = s. Moreover, there are only finitely many such segments[O,γO].
Fig. 1. The horizontal stripH .
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If i > 0 thengiO = uiO, for someui ∈ Γp − {1}. Sinceb andg commute, we have
gibO = bgiO = buiO. That is,gi[O,bO] = [uiO,buiO], which lies in theΓ -orbit of
the segment[O,u−1

i buiO]. By the finiteness assertion in the preceding paragraph,
exist integersj > i > 0 such that[

O,u−1
i buiO

] = [
O,u−1

j bujO
]
.

By freeness of the action ofΓ ,

u−1
i bui = u−1

j buj ,

andui �= uj . Thereforeab = ba, wherea = uiu
−1
j ∈ Γp − {1}. �

A maximal Abelian subgroupΓ0 of Γ may be isomorphic toZ. Here is a way of pro
viding some examples.

Corollary 3.7. Suppose thata ∈ Γp − {1}, andn = n(a) satisfies(−n

p

)
= 1,

(−n

l

)
= −1.

ThenZΓ (a) < Γp is a maximal Abelian subgroup ofΓ , andZΓ (a) ∼= Z. A similar asser-
tion applies to elements ofΓl − {1}.

Proof. The hypothesis implies that gcd(n,pl) = 1. If ZΓ (a) �⊂ Γp, thenZΓ (a) contains
an elementγ �∈ Γp ∪ Γl . ThereforeZΓ (a) = ZΓ (γ ) is a period group, by Lemma 3.5. B
this implies

(−n
l

) = 1, by Proposition 3.6, a contradiction.�
Example 3.8. Let Γ = Γ3,5. This group has a presentation with generators{a1, a2, b1,

b2, b3} and relators{
a1b1a2b2, a1b2a2b

−1
1 , a1b3a

−1
2 b1, a1b

−1
3 a1b

−1
2 , a1b

−1
1 a−1

2 b3, a2b3a2b
−1
2

}
,

where

a1 = ψ(1+ j + k), a−1
1 = ψ(1− j − k),

a2 = ψ(1+ j − k), a−1
2 = ψ(1− j + k),

b1 = ψ(1+ 2i), b−1
1 = ψ(1− 2i),

b2 = ψ(1+ 2j), b−1
2 = ψ(1− 2j),

b3 = ψ(1+ 2k), b−1
3 = ψ(1− 2k).

The subgroup〈a1〉 = ZΓ (a1) < Γ3 is maximal Abelian inΓ by Corollary 3.7, since( ) ( )

n(a1) = 2, −2

3 = 1 and −2
5 = −1.
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Fig. 2. Part of a periodic apartment forΓ0 < Γ3,5.

The subgroup〈a1a
−1
2 a2

1〉 = 〈ψ(−5− 6i − 2j + 4k)〉 is not maximal Abelian. It is con
tained in the period subgroup

Γ0 = 〈
a1a

−1
2 a2

1, b3b
−1
2 b−1

3 b1
〉 ∼= Z2.

Indeed,n(Γ0) = n(a1a
−1
2 a2

1) = 14,
(−14

3

) = 1,
(−14

5

) = 1. Note thatb3b
−1
2 b−1

3 b1 =
ψ(−11+ 18i + 6j − 12k). Part of the period lattice forΓ0 is illustrated in Fig. 2.

Example 3.9. Let Γ = Γ3,5. Considerb1a1b
−1
1 = ψ(5 − 7j + k). By Example 3.8,

〈a1〉 is maximal Abelian inΓ . Therefore so also isΓ0 = 〈b1a1b
−1
1 〉 = b1〈a1〉b−1

1 . Now
γ = b1a

6
1b−1

1 = a2a
−1
1 a−2

2 a−1
1 a2 = ψ(5(23+ 14j − 2k)) = ψ(x) ∈ Γ3, with |x|2 = 52.36.

Also n(x) = n(Γ0) = 50,
(−50

3

) = 1 and
(−50

5

) = 0. There is a periodic horizontal strip
height 2 (Fig. 3), upon whichγ acts by translation. This strip is the union of the axes oγ .

Example 3.10. Let Γ = Γ3,5. Conjugating the period subgroup〈a1a
−1
2 a2

1, b3b
−1
2 b−1

3 b1〉
of Example 3.8 bya2 gives the group

Γ0 = 〈
a2a1a

−1
2 a2

1a−1
2 , a2b3b

−1
2 b−1

3 b1a
−1
2

〉 = 〈
a2a1a

−1
2 a2

1a−1
2 , b2b

−1
1 b2

2

〉
= 〈

ψ(−15+ 10i + 2j + 20k),ψ(−11− 10i − 2j − 20k)
〉 ∼= Z2,

which is not a period subgroup sincen(Γ0) = 126,
(−126

5

) = 1 and
(−126

3

) = 0.

One could conjecture that every maximal Abelian subgroup ofΓ is conjugate to either
period subgroup or to a subgroup ofΓp or Γl . The next example shows that this conject
is not true. We need the following definition and Lemma 3.11:

If x = x0 + x1i + x2j + x3k ∈ H(Z), let m(x) = |x|2 − �(x)2 = x2
1 + x2

2 + x2
3, where
�(x) = x0 denotes the real part ofx. Observe thatm(x) = λ2n(x) for some integerλ.
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Fig. 3. Part of a periodic horizontal strip.

Lemma 3.11. Letx, y ∈ H(Z), thenm(xyx̄) = (|x|2)2m(y).

Proof. Using the rules�(xy) = �(yx) and|xy|2 = |x|2|y|2, we conclude:

m(xyx̄) = |xyx̄|2 − �(xyx̄)2 = (|x|2)2|y|2 − (|x|2�(y)
)2 = (|x|2)2

m(y). �
Example 3.12. Let Γ = Γ3,5 anda2b3 = ψ(3+ 2i + j + k). The groupΓ0 = ZΓ (a2b3) is
a maximal Abelian subgroup ofΓ such thatn(Γ0) = 6. We fix any elementγ = ψ(x) ∈ Γ .

The maximal Abelian subgroupγΓ0γ
−1 is not a subgroup ofΓ3 or Γ5, since

γ a2b3γ
−1 ∈ γΓ0γ

−1 is the ψ -image ofx(3 + 2i + j + k)x̄ whose norm is a produc
of an odd power of 3 and an odd power of 5.

We claim thatγΓ0γ
−1 is not a period subgroup. If|x|2 = 3r5s , r, s � 0, then by

Lemma 3.11

(3r5s)2.6= m
(
x(3+ 2i + j + k)x̄

) = λ2n
(
γΓ0γ

−1)
for some integerλ. It follows that 3| n(γΓ0γ

−1), in particular(−n(γΓ0γ
−1)

3

)
= 0

and Proposition 3.6 proves the claim.
Since any maximal Abelian subgroup of rank 2 is conjugate to a period subgroup,

follows thatΓ0 ∼= Z. See Fig. 4 for a periodic vertical strip of width 1 which is globa
invariant under the action ofa2b3. Note that(a2b3)

2 = b2b3. Thereforea2b3 acts upon the
strip by glide reflection and the unique axis ofa2b3 is the vertical central line of the strip

It is well known that period subgroups inΓ always exist. See for example [8, Propo
tion 4.2] for an elementary proof of this fact, using doubly periodic tilings of the Euclid
plane by unit squares. We mention a corollary of this in terms of integer quaternions

Corollary 3.13. Given any pair(p, l) of distinct odd primes, there arex, y ∈ Γ̃ and1 �
r � 4(p + 1)2(l + 1)2 such thatxy = yx and

2 r 2 r

(−n(x)
) (−n(y)

)

|x| = p , |y| = l ,

p
=

l
= 1.
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Fig. 4. Part of a periodic vertical strip.

The integerr in this corollary comes from the constructive proof of [8, Proposition 4
and its upper bound is certainly not optimal. In fact, ifp, l ≡ 1 (mod 4), there is a direc
proof of Corollary 3.13 (withr = 1), applying the Two Square Theorem.
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