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Abstract 

Niemi, V., Power languages and density, Discrete Applied Mathematics 32 (1991) 183-193. 

The class of all languages can be seen as a distributive lattice with respect to a preorder defined 

by letter-to-letter morphisms. Maximal dense intervals in the lattice are investigated. The results 

are based on a construction that builds a new language, so-called power language, from subsets 

of a given language. Applications to grammar form theory and graph theory are also presented. 

1. Introduction 

The notion of a morphism plays a central role in the theory of languages. In form 

theory, our attention is focused especially on length preserving, i.e., letter-to-letter 
morphisms. We can compare two languages by asking whether the first one can be 

mapped into the other by a letter-to-letter morphism. Essentially, this relation 

defines a preorder in the whole class of languages. In fact, we obtain a well- 

organized structure: the class of languages is a distributive lattice with respect to the 

preorder. 

The structure in the lattice of languages is very rich: for instance, it contains dense 
intervals. Two characterizations for such intervals were given in [l] and [3]. In this 

paper we study the possibility of enlarging an interval while retaining density. The 

major problem is whether there are exact limits for such extension processes. In 

other words, we seek maximal dense intervals. 

It turns out that there always exists an exact bound for all extensions directing 

upwards. It means that every dense interval is contained in another one which is 

maximal from above. Unfortunately, there are no respective lower bounds in 

general. In [3] it is shown that a dense interval is maximal from below iff its lower 

limit is a so-called nonlooping language. Therefore, the existence problem of max- 

imal density reduces to search of a dense interval reaching down to some nonlooping 

language. All nonlooping languages are finite and quite “low” in the lattice order 

but, however, such intervals do exist. An explicit example is given in [4]. 

0166-218X/91/$03.50 0 1991 - Elsevier Science Publishers B.V. (North-Holland) 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82783058?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


184 V. Niemi 

Our upper bound deals with an analogue of the power set construction. Let us 
consider a language L as a set. Then the power set of L can also be interpreted as 
a language, ifall words in L are of equal length. Namely, the alphabet of the new 
language is the power set of the old alphabet and, for instance, the first letter in a 
word corresponding to a subset of L is simply the set of first letters in that subset. 
An interesting feature in this interpretation is the fact that the mapping from subsets 
to words is not necessarily injective; several subsets of L may correspond to the same 
word. 

To generalize this construction to the case where the language L contains words 
of distinct length we qualify only those subsets that consist of uniform length words. 
Again, we interpret each uniform length subset as a word over the power set 
alphabet. In this way we define, for every language L, its power language L+. 

Our main result implies that, if a dense interval contains a given language L, we 
may extend the interval to reach up to L+ but not higher without losing density, 

The ordering of languages is totally independent of grammatical hierarchies. 
However, when grammars are considered as finite languages the preorder relation 
may be applied to them, leading us to grammar form theory. Our results have 
several consequences on grammar forms. The existence problem of maximal dense 
intervals of grammar forms (see [2]) is settled. Moreover, we prove that it is 
decidable whether or not two given context-free grammars G, and G2 make up a 
maximal dense interval @?(G,),g(G,)). 

Another application is on graph theory. Directed graphs may be interpreted as 
languages consisting solely of two-letter words. Then the preorder relation between 
languages corresponds to general coloring of a digraph by another one. Our results 
suit directly to this case. 

The paper is structured as follows. Some preliminaries are presented in Section 
2 while Section 3 contains the main theorem with its proof. The existence of max- 
imal dense intervals is shown in Section 4 and consequences in grammar forms and 
digraphs are presented in Sections 5 and 6. For the end we briefly discuss some open 
questions in Section 7. 

2. Preliminaries 

Throughout the paper we use the following convention, customary in form 
theory. (The empty word is denoted by A.) 

The A-convention: Given two languages L1 and L, we say that they are equal 
(modulo A) if L, - {A} = L,- {A}. Similarly, we say two language families JZ?~ and 
9t)2 are equal (modulo ,J and 0) if for every L, - {A} #0 in 9Yi there is an L2 in &ZZ 
such that L, - { ;1} = L2 - {I> and vice versa. 

Essentially this means that we ignore the empty set in language families and the 
empty word in languages. Consult [3] for justification of this convention. 

A language form is defined as follows. Consider an arbitrary language L c E* 
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over a finite alphabet Z. A language L’ over a finite alphabet Z’ is an interpretation 
of L, in symbols L’S L, if there exists a letter-to-letter morphism h : .Z’+ Z such that 

h(L) c L. 

The morphism h is called an interpretation morphism. Throughout the paper all 
morphisms considered are assumed to be letter-to-letter. 

The linguistical family of a language form L is defined by 

g(L)=(L’/L’IL}. 

Two languages are equivalent, denoted by L, -L,, if 9?(L,) =g(Lz). 
Clearly the relation I is reflexive and transitive, hence g(L,) cg(L2) iff 

L1 5 L,. Consequently, L, - L, iff L,IL2 and L2<L,. If L,SL, but not L2rL,, 
then we say L1 is a proper interpretation of L,, written L, < L2. A language form 
L is minimal if there is no language form L’cL such that L/-L. 

We say that (L1,L2) denotes an interval, if L,<L,, and hence 9(L,)CZ(L2). 
The language L, (respectively, L2) is called the lower (respectively, upper) limit of 
the interval. The interval is dense, if for all languages L3 and L4 such that 
L, i L, < L,I L2 there exists a language L, with L, < L5 < L,. 

A dense interval (L,,L,) is maximal, if there are no languages L3 and L4 such 
that 

(i) L,IL,<L,IL,, 
(ii) L,<L, or L,<L, (or both), 

(iii) (L3, L4) is dense. 

In the sequel we denote the phrase “maximal dense interval” shortly by “MDI”. 
A language L is looping, if either L contains a word with at least two occurrences 

of the same letter or there exist distinct words wi, . . . . w, in L (mz2) and distinct 
letters al, . . . . a, in alph(L) such that ai and a;, 1 occur in wi , 15 i I m - 1, while a, 
and a, occur in w,. If L is not looping we say it is nonlooping. If L is not 
equivalent to any nonlooping language it is said to be inherently looping. 

Let us denote the family of all nonlooping languages by 9?(NL). We say that two 
languages L, and L, are nonlooping equivalent, in symbols, L, -NL2, if _9?(L,) n 
9(NL) = zZ(L,) fl Z(NL). Similarly, we write L, I NL2 to mean g(L,) n Z(NL) c 
9(L2) n g(NL). NOW L, - NL2 iff LllNLZ and L2sNL,. 

As regards definition of a grammar form, we refer to [6]. 
Let Gi and G2 be two grammar forms such that 9(G,)c9?(G2). Then they form 

an interval (S!T(Gl),~(Gz)). The interval is dense if for any two families g(G,) and 
9(G4) in the interval the following implication is valid: 

if $Z(G,)C9?(G,) then there exists a grammar form Gs such that 

~(G,)C%G,)C~(G,). 

The concept of maximal denseness is defined for grammatical families (i.e. 
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language families defined by grammar forms) analogously as for linguistical 

families above. 

Next we recall some theorems of [3]. 

Proposition 2.1. Given two languages L, and L, with L, < L,, the interval (L,, L2) 
is dense iff L 1 - N L2. (This result is originally from [ I].) 

Proposition 2.2. Let (L1,L2) be a dense interval with L, inherently looping. Then 
the interval is not maximal dense. 

Proposition 2.3. The collection of all linguistical families 

X! = {.9(L) 1 L is a language) 

is a distributive lattice with respect to the containment. 

According to Proposition 2.1, every dense interval (L1, L2) is a convex subset of 

some equivalence class [L] defined by the equivalence relation -N. The whole 

equivalence class [L] is always a sublattice of X!, as easily seen by [3, Theorem 2.91. 

Consider now an arbitrary MD1 within an equivalence class [L]. Its upper (respec- 

tively, lower) limit must be a maximal (respectively, minimal) element in [L]. Since 

[L] is a lattice, a maximal (respectively, minimal) element is necessarily greatest 

(respectively, smallest) element of [L]. This means, in particular, that every 

language belongs to at most one MDI. 

3. Main theorem 

In this section we first give the detailed construction of the power language L+. 
Then we present and prove the main theorem of the paper. 

We use the following notations. Let L be a language over a (finite) alphabet _Z, 

and k? 1. Let us denote 

L(k)=dfLnP={WELI jwj =k}. 

Let then w be a word and ir 1. We denote by wcij the ith letter in the word w. The 

latter denotation is also generalized to cover the case of languages: 

L(i)=df {w(i) 1 WEL} (cz). 

Now we are ready to begin the construction of L+. The first task is to define the 

alphabet used (we denote it by E+). The cardinality of Z+ is equal to the number 

of nonempty subsets of Z. In fact, we could use the subsets themselves as elements 

of .Z+, but for the sake of clearness we only index the elements by subsets. Thus, 

letters in the words of L+ are of the form a@‘) where 0fE’cE. For instance, we 

have letters a(a, b, c), a(a, b), a(a, c), a(b, c), a(a), a(b) and a(c) in case Z= {a, b, c}. 
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Next we construct words of the sublanguage L+(k) for each k2 1. The language 

L+ is determined completely, since L+ = Uk,l L+(k). Consider the sublanguage 

L(k) of L. Similarly as in the construction of the alphabet, we first index the words 

of L+(k) by nonempty subsets of L(k). Thus, words in the language L+(k) are of 

the form o(W) where 0# WC L(k). For instance, we might have words 

~(abc, bba,ccc), o(aa), ~(a, c) etc. in L+. 
The letters of the words o(W) are obtained by the following rule: 

(Let 0# WC L(k) and 1 Silk.) 

O( w)(i) = a( w(i)>* (RI 

In other words, the ith letter in the word indexed by words w,, . . . , w, is itself in- 

dexed by the set of ith letters in the same words. 

It is worth noting that the function CL) is not necessarily injective, while the func- 

tion a is injective per definitionem. 
The construction is now completed. It is easy to see that, if L is finite and effec- 

tively constructable, then L+ is an effectively constructable (finite) language. More- 

over, if L is recursive (respectively, recursively enumerable), then L+ is also 

recursive (respectively, recursively enumerable). 

We may now establish our main result. 

Theorem 3.1. Let L be an arbitrary language and L+ its power language. Then 
(A) L can be embedded in L+, i.e. there is a language L, such that L G LO C_ L+; 
(B) L+ ILL; 
(C) for every language L’ the following holds: if L’s,L then L’<L+. 

Proof. We must show that the power language L+ satisfies the conditions (A)-(C). 

(A) We see easily that the language L is isomorphic to the sublanguage of L+ in- 

dexed by singleton sets. More accurately: Let a E Z. Consider the morphism h ob- 

tained by restricting the function a to singleton sets, i.e. h : L’+ .Z+, a H a(a). Let 

now WEL. The ith letter of the word h(w) in (Z+)* is a(w(i)). On the other hand, 

by the rule (R), the ith letter of the word o(w) is also a(wci)). Since 

Ih( = Iwl= Ill, we have h(w) =w(w). The morphism h is clearly injective 

(since a is), and we have 

L=h(L)={o(w) 1 WEL} CL+. 

(B) We begin by observing that the relation L I .L+ follows directly from the 

condition (A). Thus, we have to prove the reverse relation. For that purpose we 

recall Theorem 3.4 from [3]. The theorem is crucial in our subsequent reasoning, 

and we have slightly strengthened it from [3]. However, the stronger version is quite 

easily deduced from the original one. 

Proposition 3.2. Let L, and L, be arbitrary languages. Denote alph(Li)=Zi for 
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i= 1,2. Then L, I NL2 iff there exists a finite-letter substitution 6 : 22, + & such 
that the following two conditions hold: 

(i) 6(a) is nonempty for every a E Z, . 
(ii) The inclusion 

6(a)c {be& 1 (VX~ . ..xi_laxi+l . ..x.EL~) 

(3Yl . ..Yi-.bYi+,...~,EL,)(Vk=l,...,t)YkE6(xk)} 

is valid. 
(Here xi = a and yi = b. Moreover, xk ~2, and yk E & for k = 1, . . . , t, and it is 
assumed that 1 I is t. In case i= 1 we make the convention that the notation 
x, . . . Xi~, means the empty word. Similarly, Xi+, . . . X, is empty, if i = t.) 

Proof of Theorem 3.1 (continued). Based on Proposition 3.2, we show that 

L+ I NL by defining a finite-letter substitution 6 : 2-k + _Z and verifying that 6 

fulfils conditions (i) and (ii).’ The substitution 6 is defined by 

a:a(Z’)-2’ for each 0fE’cZ. 

The condition (i) is clear, since 2’ is always nonempty. To prove that also (ii) 

holds let us assume that a(2’) is an arbitrary element of Z+. Furthermore, let us 

choose an arbitrary element b E o(a(Z’)) = Z’. 
We have to show that the quantified sentence in the set definition of (ii) is true 

for a = a(2’) and b. Hence, assume x1 . . . Xi_ la(Z”)xi+ 1 . . . x, EL+ . This means that 

x1 . . . Xi_ la(.Z’)xi+ 1 . . . xt = O( W) for some WC L(t). Furthermore, w( W)(i) = a@‘). 
On the other hand, the rule (R) implies that w(W)(i)= a( W(i)). Hence, Z’= W(i) 

and, in particular, b E W~i,. It follows that there exists a word w E WC_ L(t) such 

that b=wc;,, in other words, W=Y, .,.yi_lbyi+l . ..yteL. 
We still have to demonstrate that y,+ E 6(&) for each k = 1,. . . , t. Thus, let k be 

fixed. Clearly, xk = U( w)(k). On the other hand, by (R), w(w)(k) = a( Wk]). Hence, 

xk = a( Wk)), from which it follows that 6&k) = 6(a( W(k))) = W(k), by the definition 

of 6. Since w E W and yk = w(k), we may conclude that yk E I’+&) = 6 (xk). 

(C) Let L’ be a language such that L’S N L. Then it follows from Proposition 3.2 

that there exists a finite-letter substitution 6 : alph(L’) 4 Z that satisfies conditions 

(i) and (ii). 

Let us define a (letter-to-letter) morphism h : L’-+ (Z+)* by 

h : a - (x(6(a)) for each a E alph(L’). 

We have to prove that h(L’) c L+ . Let us choose an arbitrary v = al . . . a, from L’. 

We make use of the following 

Claim 3.3. o(a;) = (6(v) fl L)(i) for each i = 1, . . . , t. 

Proof. The inclusion of the latter set in the former one is clear, since a(@;) = 
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a(~)(~,. To prove the opposite inclusion let us first fix i and then choose an ar- 

bitrary b E s(aj). Now (ii) implies that there exists a word ~‘1 . .._JJ_.b_Yi+ 1 . . . Y, E L 

such that yke6(ak) for each k=l,...,t. In other words, yl ...yi_lby;+, . ..Y.E 

6(v) nL. 

In particular, b E (6(v) fl L)(;). 0 

Proof of Theorem 3.1 (continued). Let us denote W= 6(v) n L. It follows from our 

claim and the condition (i) of Proposition 3.2 that 02 W= 6(v) fl L CL(t). NOW the 

claim and the rule (R) together imply that a(a(ai))=a( yi,) = O( W)(i) for each 

i=l , . . . , t. Hence, h(v) = a(6(al . . . ar)) = a(6@1>) . *. W(%N = 4 WI,,, *. * w( WI,,, = 

lB( W)eL+. 
Thus, L’<L+ and our proof is completed. 0 

We conclude this section by an example of the power language construction. 

Example. Let L= {a”b” ) n2 l> U {b”a” / n2 l}, .Z= {c&b}. Now Z+ = {a(a),a(b), 

a(~, b)}. For the sake of (notational) convenience, we omit the a-notation and use 

brackets instead. Hence, .E+ = { [a], [b], [a, b] > . For each n = 1,2, . . ., the sublanguage 

L+(2n) consists of words o(a”b”), ~(b”a”) and o(an6”,b”a”). All sets of the 

form L+(2n - 1) are empty. Moreover, w(a”b”) = [a]“[b]“, o(b”a”) = [!?]“[a]” and 

CU(anbn, !?a”) = [a, b]“[b, a]” = [a, b]? 

Thus, L+={[a]“[b]“~nrl}U{[b]“[a]“~n~l}U{[a,b]2”~nz-l}. 

We see that, indeed, the condition (A) is satisfied, since L is isomorphic to the 

union of first two parts of L-t. 
It is easy to see that L-t is, in fact, equivalent to the language {a2}*. Therefore, 

by condition (B), L-N {a2) *. N ow it follows from Proposition 2.1 that the inter- 

val (L, {a2} *) is dense. On the other hand, L is inherently looping, hence Proposi- 

tion 2.2 implies that the interval is not a MDI. 

4. Maximal dense intervals do exist 

This section shows how Theorem 3.1 can be used to settle the existence of MDI. 

The following result is crucial for this purpose. 

Theorem 4.1. Let N be an arbitrary nonlooping language. 
l If N+ SN (that means N<N+) then (N,N+) is a MDI. 
l If N+ 5 N (that means N-N+) then N does not belong to any dense interval. 

Proof. Assume firstly that N<N+. Then (N, N+) is an interval. The condition (B) 

implies that N+ - N N, hence it follows from Proposition 2.1 that (N, N+) is dense. 

Let L’ be a language with L’- N N ( - NN+). Then, in particular, NIL’. On the 
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other hand, it follows from the condition (C) that L’S N+. Thus, L’E (N, N-t) and, 
by Proposition 2.1, it can be seen that (N, N-t) is a MDI. 

Assume secondly that N-N+ and N belongs to a dense interval (L,, L2). Hence, 
Proposition 2.1 implies that L, - N L, . Since N is nonlooping and Nr L, , it follows 
that NIL,. On the other hand, the fact NE (L1,L2) implies that N-NL2, hence 
L2 I NN. Now it follows from (C) that L,I N+, and by our assumption, 
L,c-N+ IN. Thus, L,INI L,, hence (L,, L2) cannot be an interval at all. 0 

Corollary 4.2. Every MD1 can be represented in the form (N, N+), where N is a 
nonlooping language. If N is demanded to be minimal, then the representation is 
unique within isomorphism (as easily derived from the fact that two minimal and 
equivalent language forms are also necessarily isomorphic). 

Given an arbitrarily chosen nonlooping language N, it seems to be very probable 
that the equivalence relation N-N+ holds, but there are also exceptions. As already 
mentioned in the Introduction, one such exception is presented in [4]. In this paper 
we skip the example and simply state 

Theorem 4.3. There exist MDI’s of linguistical families. 

After gaining a positive answer to an existence problem it is natural to consider 
decidability problems. Proposition 2.2 and Theorem 4.1 together give us the follow- 
ing result. 

Theorem 4.4. Given a context-free grammar G it is decidable whether or not 
L = L(G) is a lower limit of any MDI. 

Moreover, in the positive case we are able to construct the MDI in question. (Here 
the definite article “the” is justified by the observations made in the end of Section 2.) 

Proof. The decision algorithm runs as follows. First check whether L is inherently 
looping. This is decidable, since G is context-free. If the answer is negative, con- 
struct the power language L+. This step is effective, since L is necessarily finite. For 
the end check whether L+ 5 L. If, again, the answer is negative, L is the lower limit 
of the MD1 (L,L+). Otherwise, L is not a lower limit of any MDI. 0 

5. Applications to grammar forms 

To transfer Theorem 4.3 to the case of grammar forms and grammatical families, 
we first need the following fact from 131. 

Proposition 5.1. Let @?(G,),5Z?(G,)) be a dense interval such that the language 
L(G,) is inherently looping. Then the interval is not maximal dense. 
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Proposition 5.1 means that all (so far hypothetical!) MDI’s of grammatical 

families lie on the range of finite languages. More specifically, every grammatical 

family in a MD1 consists solely of finite languages. On the other hand, in the case 

where only finite languages are involved, linguistical families and grammatical 

families coincide. In particular, the equality 9@(G)) = Y?(G) holds, whenever L(G) 

is finite. Moreover, the collection of language families 

{9(G) 1 L(G) is finite} = {9(L) 1 L is finite} 

is a sublattice of the collection I referred to in Proposition 2.3. 

For these reasons our results for language forms can be carried to cover also the 

case of grammar forms. In particular, by Theorem 4.3, we obtain 

Theorem 5.2. There exist A4DI’s of grammatical families. 

From Theorem 4.4 it is possible to derive the following decidability result. 

Theorem 5.3. Given two context-free grammars G, and G, it is decidable whether 
or not @?(G,),g(G,)) is a MDI. 

Proof. By the observations made before Theorem 5.2, (JZ(G,),LZ?(G~)) is a MD1 iff 

(L(G,), L(G,)) is a MDI. Check first whether L(G,) is a lower limit of some MD1 

via the algorithm of Theorem 4.4. If the answer is positive, construct L(G,)+ and 

check whether relations L(G,)<L(G,)+ - L(G,) hold. The last step is effective, 

since G2 is context-free. 0 

6. Applications to digraphs 

As well known, graphs and directed graphs can be interpreted as (finite) languages 

with only two-letter words. The alphabet of the language is equal to the node set 

of the (di)graph. A word ab in the language corresponds to an arc from the node 

a to the node b in the digraph. Similarly, an edge between a and b in the graph cor- 

responds to the pair of words {ab, ba}. 
A coloring of a (di)graph by another (di)graph corresponds to an interpretation 

morphism from a language to another. 

An (undirected) graph may be viewed as a special type of a digraph in which all 

arcs are two-way. On the other hand, for each digraph there exists an underlying 

graph that is obtained by replacing all arcs by edges. 

In the case of graphs the question of density is clear: all intervals are dense (see 

[5]). Digraph intervals are, instead, not always dense. In fact, a digraph has a 

predecessor (with respect to the interpretation relation as a preorder) iff the underly- 

ing graph is a tree. However, it is decidable, due to Proposition 3.2, whether or not 

a given interval of digraphs is dense. 
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A new feature is the possibility to apply the power language construction in order 

to maximize any dense interval upwards. In the opposite direction the situation is 

different: for instance, the dense interval from the digraph {ab, ba} to the digraph 

{aa} cannot be maximized downwards. (It is instructive to notice that this interval 

contains all nontrivial undirected graphs. Hence, ({ab, ba}, {aa}) is the only MD1 

of graphs.) 

On the other hand, there exist dense intervals that are maximal also from below. 

All what is needed to establish an example of the latter case is a digraph D such that 

its underlying graph is a tree and it isn’t itself equivalent to the digraph D+. (Then 

the interval (D,D+) is a MDI.) An idea for construction of such a digraph is 

presented in [4], that means there exist also MDI’s of digraphs. 

7. Open problems 

An open problem that is most closely related to our discussions is the following: 

Is it decidable whether a given language L belongs to some MDI? 

The difficult case is a finite, inherently looping L. Whether L belongs to some 

MDI, depends on whether there is some nonlooping language N nonlooping 

equivalent to L. Both positive and negative answers are possible: An example of 

negative case is the language {aa} which is not nonlooping equivalent to any 

nonlooping language (as may be proved by Proposition 3.2). 

One crucial idea of this paper is the observation that all dense intervals can be 

maximized upwards. This is true for linguistical families in general, but holds pro- 

vably for grammatical families only in the finitary case. If L(G) is infinite, we can- 

not be sure that there exists a grammar, say G+, such that L(G)+ =L(G+) and 

(LZ(G),g(G+)) is maximal from above. Therefore, we may ask: 

Are there grammatical intervals @?(G,),9(G,)) that cannot be 

maximized upwards? 

Such nonlooping languages that are lower limits of MDI’s are quite rare. Thus, 

it might be possible to find some nice characterization for them. 

The notion of a power language is probably worth of interest by itself. Put some 

restrictions on L and see how they reflect in L+. 
In addition to the aforementioned problems there are interesting possibilities to 

generalize the theory. For instance, replace all letter-to-letter morphisms by 

nonerasing ones in the basic definitions. Do we still obtain a distributive lattice of 

languages, (maximal) dense intervals, etc.? 
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