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a b s t r a c t

E-cadherin, the primary epithelial adherens junction protein, has been implicated as playing a critical

role in nucleating formation of adherens junctions, tight junctions, and desmosomes. In addition to its

role in maintaining structural tissue integrity, E-cadherin has also been suggested as an important

modulator of cell signaling via interactions with its cytoplasmic binding partners, catenins, as well as

with growth factor receptors. Therefore, we proposed that loss of E-cadherin from the developing

mouse intestinal epithelium would disrupt intestinal epithelial morphogenesis and function. To test

this hypothesis, we used a conditional knockout approach to eliminate E-cadherin specifically in the

intestinal epithelium during embryonic development. We found that E-cadherin conditional knockout

mice failed to survive, dying within the first 24 hours of birth. Examination of intestinal architecture at

E18.5 demonstrated severe disruption to intestinal morphogenesis in animals lacking E-cadherin in the

epithelium of the small intestine. We observed changes in epithelial cell shape as well as in the

morphology of villi. Although junctional complexes were evident, junctions were abnormal, and barrier

function was compromised in E-cadherin mutant intestine. We also identified changes in the epithelial

cell populations present in E-cadherin conditional knockout animals. The number of proliferating cells

was increased, whereas the number of enterocytes was decreased. Although Wnt/b-catenin target

mRNAs were more abundant in mutants compared with controls, the amount of nuclear activated

b-catenin protein was dramatically lower in mutants compared with controls. In summary, our data

demonstrate that E-cadherin is essential for intestinal epithelial morphogenesis and homeostasis

during embryonic development.

& 2012 Elsevier Inc. All rights reserved.
Introduction

As proper epithelial morphogenesis is essential for organ
function, defining the roles that specific cell junction and adhe-
sion molecules play in driving formation and maintenance of
epithelial structure is necessary. Several studies of E-cadherin
revealed an important role for this cell adhesion molecule in
epithelial organization and maintenance (Perez-Moreno et al.,
2003; Schneeberger and Lynch, 2004; Van Roy and Berx, 2008).
For example, Madin–Darby canine kidney (MDCK) cells incubated
with anti-E-cadherin antibodies failed to assemble not only
adherens junctions but also tight junctions and desmosomes
implicating E-cadherin as required for junctional complex forma-
tion (Gumbiner et al., 1988; Troxell et al., 2000). Studies of
E-cadherin in vivo have been less clear in defining an essential
role for E-cadherin in junctional complex assembly. Global knock-
out suggested that E-cadherin was required because the trophec-
toderm epithelium failed to form in its absence (Larue et al.,
1994). Conditional ablation of E-cadherin from mammary
ll rights reserved.
epithelium, epidermis, thyroid follicular epithelium, and hepatic
epithelium, however, did not result in tight junction or desmo-
some loss although epidermal deletion caused increased tight
junction permeability and neonatal lethality because of a non-
functional skin water barrier (Boussadia et al., 2002; Young et al.,
2003; Tinkle et al., 2004; Tunggal et al., 2005; Battle et al., 2006;
Cali et al., 2007). Studies looking at E-cadherin in the intestinal
epithelium demonstrated a key role for E-cadherin in the main-
tenance of normal intestinal epithelial homeostasis (Hermiston
and Gordon, 1995a, 1995b; Hermiston et al., 1996). Expression of
a dominant-negative N-cadherin protein (NCADD) in villus enter-
ocytes caused loss of endogenous E-cadherin protein resulting in
cell adhesion and shape defects. Barrier function was also defec-
tive in NCADD-expressing enterocytes. Crypt cells that lacked
NCADD protein and therefore maintained endogenous E-cadherin
protein showed increased proliferation, which likely compensated
for defective enterocytes on the villus (Hermiston and Gordon,
1995a). In contrast, over-expression of E-cadherin in mice
resulted in slower cellular migration from crypt to villus,
decreased proliferation, and increased apoptosis (Hermiston
et al., 1996). Recently, Schneider et al. (2010) used tamoxifen-
inducible Villin-Cre to remove E-cadherin from the adult mouse
intestinal epithelium. Animals lacking E-cadherin developed
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hemorrhagic diarrhea requiring euthanasia. Epithelial architec-
ture was abnormal with cells shedding into the lumen. There
were changes in maturation and positioning of secretory lineages
(goblet and Paneth cells). The proliferative zone was markedly
expanded, and increased numbers of apoptotic cells were present.
Migration of cells along the villus was also enhanced. Moreover,
in contrast to deletion in other organ systems in which junctional
complex assembly was unaffected by elimination of E-cadherin,
loss of E-cadherin from the adult intestinal epithelium resulted in
loss of both adherens junctions and desmosomes whereas tight
junctions were unaffected (Schneider et al., 2010). The function-
ality of tight junctions, however, was not assessed.

Because E-cadherin has been implicated as playing critical
roles in epithelial cell adhesion and signal transduction and
because modulation of its expression in the adult small intestine
caused epithelial defects, we proposed that loss of E-cadherin
from the developing mouse intestinal epithelium would result in
severe disruption of intestinal epithelial morphogenesis and
homeostasis. Therefore, to assess the role that E-cadherin plays
in intestinal development, we employed a conditional knockout
approach using a non-inducible Villin-Cre, which directs robust
recombination in the intestinal epithelium during development
(Madison et al., 2002). We found that neonates lacking intestinal
E-cadherin died shortly after birth. Villus structure and cell shape
were both abnormal, and barrier function was compromised. We
observed a decrease in the total number of epithelial cells present
in mutant tissue. Of the specific differentiated cell types, enter-
ocytes were lost whereas secretory populations were relatively
stable. Proliferation was increased in animals with an E-cadherin
deficient intestinal epithelium, and apoptosis was unchanged.
Finally, b-catenin levels were decreased in mutant intestine
compared with control. Paradoxically, we detected increased
mRNA abundance of several b-catenin transcriptional targets in
mutant epithelium compared with control epithelium. Based on
these data, we conclude that intestinal E-cadherin expression is
required for formation and maintenance of a functional intestinal
epithelium in mice.
Materials and methods

Animals

Derivation of Cdh1loxP (Cdh1tm2Kem) and Villin-Cre (Tg(Vil-

cre)997Gum) mice has been previously described (Boussadia
et al., 2002; Madison et al., 2002). Embryonic mice were generated
by timed matings considering noon on the day of a vaginal plug as
E0.5. Genotypes were determined by PCR analysis of ear punch
DNA following a standard protocol. PCR primers used were:
Cdh1loxP, gtgacaggaaaggcatatcagcaacaagat, gtgagctggtacccatggag-
gacactga; Villin-Cre caagcctggctcgacggcc, cgcgaacatcttcaggttct. For
proliferation studies, 200 mg 5-ethynyl-2‘deoxyuridine (EdU) was
administered by intraperitoneal injection three hours prior to
euthanizing animals. The Medical College of Wisconsin’s Animal
Care Committee approved all animal procedures used in
this study.

Histochemistry, immunohistochemistry, and immunofluorescence

Tissue harvested from the midpoint of E18.5 small intestine
was fixed in zinc formalin or 4% paraformaldehyde. Hematoxylin
and eosin staining and alcian blue staining were performed
according to standard procedures (Bancroft and Gamble, 2007).
The Vector Red Phosphatase Substrate Kit (Vector Labs, Burlin-
game, CA) was used to detect alkaline phosphatase activity. For
immunohistochemistry, antibodies were applied to tissue after
citric acid antigen retrieval. To visualize staining, R.T.U. Vectastain
Elite ABC reagent (Vector Labs, Burlingame, CA) and a Metal
Enhanced DAB substrate kit (Thermo Scientific, Rockford, IL) were
used. For immunofluorescence, fresh frozen sections were fixed
with 3% paraformaldehyde prior to antibody staining. DAPI
(Invitrogen, Carlsbad, CA; 1:5000) was used to visualize nuclei.
EdU staining was performed using the Click-it Edu Alexa-Fluor
594 kit (Invitrogen, Carlsbad, CA). See Supplemental Table 1 for
antibody details.

Electron microscopy

Embryonic (E18.5) small intestine was dissected into 2.5%
glutaraldehyde in 0.1 M cacodylate buffer and embedded in EPON
812 epoxy resin. Sections (60 nm) were contrasted with uranyl
acetate and lead citrate. For tracer experiments, embryonic mouse
gut was dissected into sodium cacodylate buffer pH 7.4 and fixed
in 2% glutaraldehyde containing either Lanthanum nitrate or
Ruthenium red tracers (Lewis and Knight, 1992). Sections were
examined using a Hitachi 600 transmission electron microscope.

Oligonucleotide array analysis

Total RNA (300 ng) isolated from three independent control
and experimental E18.5 small intestines was used to prepare
oligonucleotide array probes following the protocol described in
the GeneChip Whole Transcript Sense Target Labeling Assay
manual (Affymetrix, Santa Clara, CA). We hybridized a total of
six Mouse Gene 1.0 ST arrays (Affymetrix, Santa Clara, CA), three
for control samples and three for experimental samples, with
fragmented, biotinylated ssDNA probes. Images were acquired
using a GeneChip Scanner 3000 (Affymetrix, Santa Clara, CA).
GeneChip Operating Software (GCOS) and NetAffx from Affyme-
trix, dChip 2010 software (Li and Wong, 2001), and Ingenuity
Pathway Analysis software were used in combination to analyze
the data. Log-transformed gene expression values were deter-
mined using dChip 2010. We selected a fold-change cutoff of
þ/�2.0 fold, pr0.05. Differentially expressed transcript identi-
fiers annotated using NetAffx are listed in Supplemental Table 2.
The set of differentially expressed genes was analyzed by IPA for
biological function analysis according to the method outlined in
the Ingenuity 9.0 manual.

Epithelial cell isolation

Small intestine harvested from control and E-cadherin cKO
E18.5 embryos was cut along its longitudinal axis and incubated
in cell dissociation buffer (BD Biosciences, San Jose, CA) for 6 h at
4 1C with gentle agitation to release epithelial cells (Madison
et al., 2005; Li et al., 2007).

Quantitative reverse transcription polymerase chain

reaction (qRT-PCR)

DNase treated total RNA isolated from epithelial cells of three
independent control and E-cadherin mutant E18.5 intestines was
used to generate cDNA with the Superscript VILO cDNA synthesis
kit (Invitrogen, Carlsbad, CA). qRT-PCR was performed using
TaqMan assays and TaqMan Gene Expression Master Mix
(Applied Biosystems, Carlsbad, CA). TaqMan assays utilized are
listed in Supplemental Table 3. Data were analyzed using DataAs-
sist software (Applied Biosystems, Carlsbad, CA). Gapdh was used
for normalization. Each gene was assayed in at least two inde-
pendent experiments. Error bars represent standard error of the
mean (SEM).
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Immunoblotting

Protein was extracted from tissue or isolated epithelial cells of
control and E-cadherin mutant E18.5 small intestines. For whole
cell extracts, cell pellets were lysed in buffer containing 0.5% NP-
40, 50 mM Tris–HCl, pH 8.0, 10% glycerol, 0.1 mM EDTA, 250 mM
NaCl, and HALTTM Protease Inhibitor cocktail without EDTA
(Thermo Scientific, Rockford, IL). For nuclear extracts, cells were
lysed using the NE-PER Nuclear and Cytoplasmic Extraction
Reagents (Thermo Scientific, Rockford, IL), HALTTM Protease
Inhibitor cocktail without EDTA (Thermo Scientific, Rockford, IL),
and HALTTM Phosphatase Inhibitor cocktail (Thermo Scientific,
Rockford, IL). Proteins (5 mg whole cell extract or 2.5 mg nuclear
extract) separated using Nu-PAGE Bis-Tris 4–12% gradient gels
(Invitrogen, Carlsbad, CA) were transferred to Immun-Blot poly-
vinylidene difluoride (PVDF) membrane (Bio-Rad, Hercules, CA)
by wet transfer using NuPAGE transfer buffer (Invitrogen, Carls-
bad, CA) with 10% methanol and 0.01% SDS. Antibodies utilized
are listed in Supplemental Table 1.
Results

Deletion of E-cadherin from the intestinal epithelium results in

neonatal lethality

We employed a conditional knockout approach to eliminate
E-cadherin specifically in the intestinal epithelium during
embryonic development. Upon genotyping 193 weanlings, we
identified only one animal with the mutant Cdh1loxP/loxP Villin-Cre

genotype (Table 1), and this animal showed normal levels of
E-cadherin likely reflecting inefficiency of Cre recombinase (data
not shown). Based on these data, we conclude that E-cadherin

conditional knockout (cKO) mice fail to survive. Therefore, we
sought to determine the age at which loss of E-cadherin results in
lethality. Observation of newborn pups revealed a subset that
were lethargic with distended, dark abdomens within 6 to 12 h of
birth (Fig. 1A). A notably smaller milk spot was also observed.
Genotyping of these pups demonstrated their genotype to be
Cdh1loxP/loxP Villin-Cre (E-cadherin cKO). Examination of the gross
anatomy of the dissected gastrointestinal tract revealed that
mutant pups had a dilated small intestine lacking normal appear-
ing yellow chyme and instead containing dark fluid (Fig. 1B).
Moreover, small intestine length differed significantly between
controls and E-cadherin mutants (Fig. 1C). Analysis of hematox-
ylin-eosin stained intestinal tissue sections harvested from con-
trol and E-cadherin cKO embryos at E18.5 showed that loss of
E-cadherin severely disrupted intestinal morphogenesis (Fig. 1D).
Villi of mutant intestine were either absent or severely blunted
and misshapen, and mutant intestinal epithelial cells were
rounded instead of the typical columnar morphology (Fig. 1D).
We verified loss of E-cadherin protein in the small intestine of E-

cadherin cKOs by immunoblot and immunohistochemistry
(Fig. 1E and 1F). Although Villin-Cre becomes active in the
intestine by E14.5 (Madison et al., 2002), we found that robust
loss of E-cadherin protein was not evident until E17.5–E18.5.
Table 1
E-cadherin loxP/loxPVillin-Cre mice fail to survive to wean-

ing age of 3 weeks.

Genotype Number of weanlings

E-cadherin loxP/þ 51

E-cadherin loxP/loxP 77

E-cadherin loxP/þ Villin-Cre 64

E-cadherin loxP/loxPVillin-Cre 1
Therefore, we chose to focus on the phenotype at E18.5 when loss
of E-cadherin protein was maximal.

Barrier function is disrupted in E-cadherin cKO small intestine

Although studies of E-cadherin in multiple organ systems
failed to demonstrate an essential role for E-cadherin in junc-
tional complex assembly (Boussadia et al., 2002; Young et al.,
2003; Tinkle et al., 2004; Tunggal et al., 2005; Battle et al., 2006;
Cali et al., 2007), elimination of E-cadherin in the adult intestinal
epithelium resulted in loss of adherens junctions and desmo-
somes (Schneider et al., 2010). Therefore, we determined the
status of cell-cell junctions in E18.5 control and E-cadherin
mutant small intestine. In control tissue, adjacent cells were
tightly associated as a simple columnar epithelium (Fig. 2A, upper
left). Mutant epithelial cells, however, appeared loosely con-
nected and had a rounded morphology (Fig. 2A, upper right).
Microvillus morphology appeared unchanged between controls
and mutants. Higher magnification inspection of cell-cell junc-
tions in control tissue showed extensive, well-developed junc-
tional complexes (Fig. 2A, lower left). Despite the abnormal
appearance of the intestinal epithelium, we observed junctional
complexes throughout the E-cadherin mutant tissue although
qualitatively these junctions were abbreviated compared with
those of control tissue (Fig. 2A, lower right). To evaluate junction
integrity, we used tracer molecules in combination with trans-
mission electron microscopy. As expected, junctions present in
control intestinal epithelium prevented passage of tracers into the
intercellular space (Fig. 2B, left). Tracer presence on the lateral
cell membrane was detected in only 4 of 100 junctions observed
in control tissue. In contrast, E-cadherin cKO intestinal epithelium
failed to block paracellular tracer passage (Fig. 2B, right). We
detected tracer penetration at 88 of 100 junctions observed in
mutant tissue. Based on these data, we conclude that although
tight junctions are present in E-cadherin mutant intestinal
epithelium, these junctions are abnormal and that barrier func-
tion is compromised.

Loss of E-cadherin in the intestinal epithelium results in widespread

changes in gene expression

In addition to promoting cell-cell adhesion, cadherin mole-
cules have been implicated as important modulators of cell
signaling via interactions with cytoplasmic binding partners such
as catenins (McCrea et al., 2009; Cavallaro and Dejana, 2011).
Moreover, cadherin molecules have been shown to modulate
signaling and gene expression through interactions with growth
factor receptors including the FGF receptor and the EGF receptor
(McCrea et al., 2009; Cavallaro and Dejana, 2011). Therefore, we
performed Affymetrix oligonucleotide array analysis to identify
genes with altered expression in E-cadherin mutant intestinal
tissue compared with control tissue. Using dChip, we compared
the small intestinal gene expression profiles of three control and
three E-cadherin cKOs at E18.5. We identified 371 genes with
expression increasedZ2.0 fold (pr0.05) and 522 genes with
expression decreasedZ2.0 fold (pr0.05) (Supplemental Table 2).
We utilized Ingenuity Pathway Analysis (IPA) software to cate-
gorize these genes and examined the top five affected biological
functions. We found cellular movement, cellular growth and
proliferation, cell-to-cell signaling, cell morphology, and cellular
development as the top five biological functions identified from
the data set of genes with increased expression in E-cadherin
mutant intestine compared with control intestine (Fig. 3). We
found lipid metabolism, small molecule biochemistry, vitamin
and mineral metabolism, amino acid metabolism, and cell signal-
ing as the top five biological functions identified from the data set



Fig. 1. Deletion of E-cadherin in the small intestinal epithelium results in neonatal lethality. (A) Image shows control Cdh1loxP/þ Villin-Cre (left) and experimental Cdh1loxP/

loxP Villin-Cre (right, cKO) neonatal pups. Overall size of the pups was similar. The milk spot was apparent in the control pup, whereas it was not distinct in the cKO pup.

Moreover, the mutant pup had a distended abdomen, which appeared dark in color, making the E-cadherin cKO pups readily distinguishable from control litter mates after

birth. (B) Image shows gastrointestinal tracts harvested from neonatal control Cdh1loxP/þ Villin-Cre (left) and experimental Cdh1loxP/loxP Villin-Cre (right, cKO) pups. The

control intestine contained normal yellow appearing chyme, whereas the mutant intestine was dilated and contained a dark fluid. (C) Small intestine length (cm) of control

(n¼55) and Cdh1loxP/loxP Villin-Cre cKO (n¼42) E18.5 embryos was measured. Mutant small intestines (gray bar) were shorter than control small intestines (black bar).

Error bars show SEM. A two-sample Student t test was used to determine p-value (***pr0.001). (D) Hematoxylin and eosin stained small intestine from control (left) and

Cdh1loxP/loxP Villin-Cre cKO (right) E18.5 mice demonstrated severe disruption of the intestinal epithelium in cKO mice compared with controls. Villi were severely blunted

or absent in cKO mice. Cell shape was altered from the normal columnar morphology to a rounded morphology. Lower panels represent higher magnification images taken

from a region of the original image. Scale bar ¼100 mm. (E) Immunoblot analysis of E18.5 whole cell extracts demonstrated a decreased amount of E-cadherin protein in

intestine of Cdh1loxP/loxP Villin-Cre cKO embryos compared with controls. b-ACTIN was used as the loading control. (F) E-cadherin protein (brown membrane staining) was

detected ubiquitously throughout the epithelium of control E18.5 small intestine using immunohistochemistry. E-cadherin protein, however, was absent from the majority

of the epithelium in E18.5 mutant small intestine. Lower panels represent higher magnification images taken from a region of the original image. Scale bar¼100 mm.
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of genes with decreased expression in E-cadherin mutant intes-
tine compared with control intestine (Fig. 3).

Expression of claudins is altered in E-cadherin mutant intestine

Because we found that tight junction integrity was compro-
mised in E-cadherin mutant intestine, we examined our gene
array data to identify changes in expression of tight junction
components and found several claudin transcripts as aberrantly
expressed in mutant intestine. Claudin 1 (Cldn1) expression was
decreased �3.9 fold in mutants compared with controls; levels of
both Claudin 3 (Cldn3) and Claudin 4 (Cldn4) were increased in
mutants compared with controls, þ2.3 and þ8.5 fold, respec-
tively. qRT-PCR confirmed Cldn1 transcript to be decreased
(�16.4) and Cldn3 and Cldn4 transcripts to be increased (þ2.4
and þ14.2, respectively) (Fig. 4A). Both CLDN1 and CLDN4



Fig. 2. The epithelial barrier is disrupted in small intestine lacking E-cadherin.

(A) Control and Cdh1loxP/loxP Villin-Cre cKO intestinal tissue harvested at E18.5 was

analyzed using transmission electron microscopy (TEM). Top panel shows images

at low magnification demonstrating the altered cellular shape observed in the

intestinal epithelium of E-cadherin cKO embryos. Instead of containing tightly

packed, columnar enterocytes as in control tissue (left), mutant tissue contained

loosely associated, rounded epithelial cells (right). Lower panel demonstrates that

both control and E-cadherin cKO tissue contained junctional complexes (white

arrows). Such complexes, however, were smaller and less elaborated in mutant

tissue compared with control tissue. These complexes were observed in the pits

between the rounded mutant cells. (B) To assess the integrity of the junctions

present in mutant tissue, we incubated control and mutant tissue with tracer

molecules during fixation and then processed these for TEM. Because the tracer

molecules used cannot penetrate functional tight junctions, we observed punctate

black staining at the apical surface between two juxtaposed control cells (white

arrow). In contrast, we observed that the tracer molecule penetrated between

mutant cells. Abundant black staining was evident along the lateral membrane of

two juxtaposed mutant cells (white arrow heads).
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protein levels were also changed (Fig. 4B); CLDN3 protein levels,
however, were not found to be consistently increased in mutants
compared with controls at E18.5 (Fig. 4B).

E-cadherin cKO intestinal epithelium contains increased proliferative

cells compared with control epithelium

The finding that proliferation was one of the top five biological
functions predicted by IPA software to increase in E-cadherin
deficient intestine compared with control intestine led us to
investigate in more detail proliferation in the absence of E-cad-
herin. Several transcripts involved in proliferation were identified
by IPA as increased in E-cadherin mutants compared with con-
trols including CD44 antigen (Cd44), Cyclin-dependent kinase 6

(Cdk6), Early growth response 1 (Egr1), and Myelocytomatosis

oncogene (Myc). We performed qRT-PCR using RNA harvested
from isolated intestinal epithelial cells and confirmed Cd44, Cdk6,
Egr1, and Myc transcripts as significantly more abundant in
E-cadherin mutant intestinal epithelium compared with control
epithelium (Fig. 5A). In addition, although not identified by array
analysis, we examined by qRT-PCR the expression of two addi-
tional characteristic cell proliferation markers, Cyclin D1 (Ccnd1),
which is the cyclin binding partner of CDK6 (Sherr, 1995), and
SRY-box containing gene 9 (Sox9), which marks the proliferative
intervillus region of the small intestine (Bastide et al., 2007;
Spence et al., 2011). We found both transcripts to be more
abundant in E-cadherin deficient intestinal epithelium compared
with control epithelium (Fig. 5A). In addition to containing
increased Myc transcript, E-cadherin mutant intestine contained
a greater abundance of MYC protein compared with control tissue
(Fig. 5B). Increases in gene products involved in cellular prolifera-
tion in the intestinal epithelium of E-cadherin cKOs could repre-
sent single cells expressing these genes at higher levels or an
increase in the total number of cells expressing these markers.
Immunohistochemical staining for CD44 and SOX9 demonstrated
increased staining in the intestinal epithelium of E-cadherin cKOs
compared with that of controls (Fig. 5C) suggesting that these
transcripts were more abundant because there are more prolif-
erative cells in E-cadherin deficient intestine compared with
control intestine. Therefore, to quantify proliferation in E18.5
control and E-cadherin mutant intestinal epithelium, we mea-
sured incorporation of 5-ethynyl-2‘deoxyuridine (EdU) after a
three hour pulse. The disorganized epithelial structure of the
mutant intestine made it difficult to distinguish between prolif-
erative cells residing in the epithelium and proliferative cells
residing in the underlying connective tissue and muscle layers.
Therefore, we stained tissue sections for EdU incorporation
(proliferative cells), expression of laminin (a connective tissue
marker), and DAPI (nuclear stain) (Fig. 6A). We counted DAPIþ ,
LAM- cells to determine the total number of epithelial cells
per field and EdUþ ,DAPIþ , LAM- to determine the subset of
proliferating epithelial cells per field (n¼53 fields from 9 control
animals and n¼62 fields from 6 mutant animals). We found that
mutant tissue contained roughly half the number of epithelial
cells compared with control tissue (Figs. 6B, 21578 average
epithelial cells per control field vs. 10975 average epithelial
cells per mutant field, po0.001). Although there were fewer total
epithelial cells in mutant tissue, proliferating cells were more
abundant in mutants compared with controls. We observed a 20%
increase in the number of proliferative cells in mutant epithelium
compared with control epithelium (Figs. 6B, 3772 average EdUþ
epithelial cells per control field vs. 4473 average EdUþ epithe-
lial cells per mutant field, p¼0.054).

Previous studies of E-cadherin function in the mouse intestine
demonstrated changes in epithelial apoptotic cell death when
E-cadherin levels were modulated (Hermiston et al., 1996;
Schneider et al., 2010). The presence of cellular debris sloughed
into the intestinal lumen of our mutants as well as our finding
that there were fewer epithelial cells present in mutants com-
pared with controls indicated that apoptosis was possibly chan-
ged in embryonic small intestine lacking E-cadherin. Therefore,
we stained for apoptotic cells in intestinal tissue lacking E-cad-
herin using an antibody against active caspase 3. We failed to
detect a change in apoptosis in the adherent epithelial cell
population in intestinal tissue of E-cadherin cKO embryos com-
pared with controls (Fig. 6C). We did, however, observe apoptotic



Fig. 3. Loss of E-cadherin in the small intestine resulted in changes in the gene expression profile of Cdh1loxP/loxP Villin-Cre cKO mice compared with controls. Ingenuity

Pathway Analysis (IPA) software was used to analyze oligonucleotide array data collected from small intestinal RNA isolated from three independent control and three

independent E-cadherin cKO embryos at E18.5. Signal values were computed using dChip 2010 software, and a data set containing those genes with expression changes

Z2.0 (pr0.05) between control and mutant tissue were inputed into IPA software. Of the 904 genes annotated by IPA software, 728 were associated with biological

functions in Ingenuity’s Knowledge Base and were therefore eligible for biological function analysis. Such analysis identified the biological functions that were most

significant to the data set. A right-tailed Fisher’s exact test was used to calculate a p-value determining the probability that each biological function assigned to that data

set is due to chance alone. The y-axis displays significance as -log(p-value). The yellow threshold line denotes p¼0.05. The identified biological functions are listed on the

x-axis. Left graph shows those functions most significantly associated with the set of genes with increased expression in mutant small intestine compared with control;

right graph shows those functions most significantly associated with the set of genes with decreased expression in mutant small intestine compared with control.

Fig. 4. Claudin mRNA and protein levels are altered in Cdh1loxP/loxP Villin-Cre cKO small intestine compared with control tissue. (A) Levels of Claudin transcripts present in

the intestinal epithelium of E18.5 control (n¼3) and E-cadherin cKOs (n¼3) were determined using qRT-PCR. Cldn1 was decreased, whereas Cldn3 and Cldn4 were

increased. Gapdh was used for normalization. Error bars show SEM. A two-sample Student t test was used to determine p-value: *pr0.05, **pr0.01, ***pr0.001

(B) Immunoblot analysis of E18.5 whole cell extracts demonstrated a decreased amount of CLDN1 protein in the intestine of Cdh1loxP/loxP Villin-Cre cKO animals compared

with controls. In contrast, CLDN4 protein abundance was increased in E-cadherin cKO intestine compared with controls. Although gene array and qRT-PCR data showed

Cldn3 to be higher in cKOs compared with controls, immunoblotting did not show a consistent increase in CLDN3 protein in E-cadherin cKO small intestine at E18.5. GAPDH

was used as the loading control for these experiments.
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cells detached in the lumen suggesting that cell death occurred
after detachment from the epithelium.

Enterocytes are reduced in E-cadherin mutant intestinal epithelium

whereas secretory lineages are unchanged

When dominant-negative N-cadherin was expressed in the
villus epithelium, enterocytes were lost (Hermiston and Gordon,
1995a). Moreover, decreased staining for Villin, a marker of the
brush border, in small intestine of adult E-cadherin cKO mice also
suggested an enterocyte defect in the absence of E-cadherin
(Schneider et al., 2010). Based on these data and our gene array
data indicating that several metabolic pathways were negatively
impacted by loss of E-cadherin in the developing intestinal
epithelium (Fig. 3), we examined the status of enterocytes in
small intestine of E18.5 E-cadherin cKOs. Array data showed



Fig. 5. Cdh1loxP/loxP Villin-Cre cKO small intestine contains increased numbers of CD44 and SOX9 positive cells. (A) Cellular proliferation was evaluated using qRT-PCR to

compare the abundance of gene products involved in proliferation between the intestinal epithelium of E18.5 control (n¼3) and Cdh1loxP/loxP Villin-Cre cKOs (n¼3). All

transcripts assayed, except Lgr5, were found to be more abundant in cKOs compared with controls. Gapdh was used for normalization. Error bars show SEM. A two-sample

Student t test was used to determine p-value: *pr0.05, **pr0.01, ***pr0.001 (B) Immunoblot analysis of E18.5 whole cell extracts demonstrated an increased amount of

MYC protein in intestine of Cdh1loxP/loxP Villin-Cre cKO animals compared with controls, which was in agreement with gene array and qRT-PCR data showing Myc transcript

to be more abundant in intestine of cKOs compared with controls. ACTIN was used as a loading control. (C) Control and E-cadherin mutant E18.5 small intestinal tissue was

stained using antibodies against CD44v6 and SOX9. CD44 (brown membrane staining) was properly localized to the intervillus regions, which is the proliferative

compartment of the mouse E18.5 small intestine, in control tissue. In contrast, CD44 staining was detected throughout the mutant small intestine epithelium. In addition,

staining was more intense in mutant tissue compared with control tissue. SOX9 (brown nuclear staining) was properly localized to the intervillus regions in control tissue.

Mutant tissue, however, contained SOX9 positive cells dispersed throughout the epithelium. Sections were counterstained with hematoxylin. Scale bars¼50 mm.
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Fabp1, Fapb2, and Lct, three canonical enterocyte markers, as
significantly decreased in E-cadherin deficient intestine compared
with control intestine (Supplemental Table 2), and qRT-PCR
confirmed these results (Fig. 7A). Decreases in enterocyte-specific
transcripts in E-cadherin cKO embryos could represent single cells
expressing these genes at lower levels or a decrease in the total
number of cells expressing these markers. Therefore, we used
histochemical staining for brush border intestinal alkaline phos-
phatase activity to examine the enterocyte population in E18.5
control and E-cadherin mutant intestine. Although control tissue
stained robustly for alkaline phosphatase activity, E-cadherin
deficient tissue either stained weakly or failed to stain for alkaline
phosphatase activity (Fig. 7B). Together, these data support the
conclusion that the mature enterocyte population is reduced in
E-cadherin mutant intestine compared with control.

We also examined the goblet and enteroendocrine lineages in
intestines of control and E-cadherin cKO embryos at E18.5.
Because Paneth cells do not arise until after birth, these cells
could not be evaluated. Alcian blue histochemical staining iden-
tified goblet cells in control and mutant intestine. Goblet cells in
mutant tissue often stained less intensely compared with those in
control tissue (Fig. 7C). We determined the proportion of goblet
cells present in the epithelium of control and mutant intestine by
counting both total epithelial cells (HNF4þ) and alcian blue
positive goblet cells in serial sections. We found no significant
difference in the percentage of goblet cells present in mutant
epithelium compared with control epithelium (control 5.4%,
n¼13 sections, 3 embryos; mutant 6.2%, n¼12 sections,
3 embryos). In agreement with cell counting data, qRT-PCR
demonstrated equivalent expression of the goblet cell markers
Muc1, Muc2, and Muc4 in control and mutant epithelial fractions
(Fig. 7A). Unexpectedly, we did detect increased levels of Muc3

transcript (þ6.3 fold) in E-cadherin mutant epithelial fractions
compared with control fractions (Fig. 7A). Muc3, however, is
expressed by intestinal epithelial cell types in addition to goblet
cells (Ho et al., 2006; Kim and Ho, 2010). Of interest, MUC3 has
been implicated as playing a role in epithelial restitution and
wound healing suggesting that its increase reflects a response by
the epithelium to counteract the dramatic cell loss caused by
E-cadherin deletion (Ho et al., 2006). Immunohistochemical
staining for the enteroendocrine cell marker Chromogranin A
(ChgA) demonstrated this cell population as present in both
control and E-cadherin deficient intestinal epithelium (Fig. 7D).
Because enteroendocrine cells represent roughly 1% of the intest-
inal epithelium, it was difficult to determine if there was a change
in ChgAþ cell numbers in mutant tissue by counting since we
detected so few of these cells per stained section. Therefore, to get
a more accurate assessment of the enteroendocrine cell popula-
tion, we used qRT-PCR to measure the abundance of enteroendo-
crine cell markers Ngn3 and ChgA. These markers were detected at
slightly lower amounts in mutant epithelium compared with
control (1.5 to 2.0 fold reduced) (Fig. 7A).

Activated b-catenin is decreased in E-cadherin mutant small

intestinal epithelium

It has been proposed that E-cadherin sequesters b-catenin at
the cell membrane thereby regulating the pool of nuclear b-
catenin available to be transcriptionally active (Van Roy and Berx,
2008). If this is true in the intestinal epithelium, one would



Fig. 6. Cdh1loxP/loxP Villin-Cre cKO small intestine contains increased proliferative cells compared with control tissue. (A) Proliferation was measured in E18.5 control and E-

cadherin cKO small intestinal epithelia by staining for EdU incorporation. Because of the severe disruption observed in the mutant tissue, it was difficult to discern

proliferating epithelial cells from proliferating mesenchymal cells. Therefore, sections were co-stained using an antibody against a component of the mesenchyme, laminin

(left panels, EdU¼red, DAPI¼blue; center panels, EdU¼red, laminin¼green; right panels, EdU¼red, laminin¼green, DAPI¼blue). Scale bars¼50 mm. (B) Using

micrographs of intestinal tissue stained with EdU, Laminin, and DAPI, we counted the total number of epithelial cells (DAPIþ , Laminin -) and the number of proliferating

epithelial cells (DAPIþ , Laminin -, EdUþ) in both controls (n¼9 E18.5 intestines, 53 fields) and mutants (n¼6 E18.5 intestines, 62 fields). Although the number of total

epithelial cells was lower in mutants compared with controls, the number of proliferating epithelial cells was greater in E-cadherin cKO small intestine compared with

control small intestine (black bars, controls; gray bars, mutants). Error bars show SEM. A two-sample Student t test was used to determine p-value (***po0.0001,
#p¼0.0542). (C) Sections from eight control animals and seven mutant animals were stained with an antibody against active caspase-3 (red staining). DAPI was used to

visualize nuclei (blue staining). No change in the number of apoptotic cells associated with the epithelium was detected between E-cadherin cKOs and controls. There were,

however, increased numbers of sloughed cells in the lumen of mutant tissue staining positive for active caspase-3. Scale bars¼50 mm.
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predict that deletion of E-cadherin from the intestinal epithelium
would result in changes in b-catenin protein distribution in
mutant tissue. Moreover, our observation of an increased prolif-
erative population in mutants compared with controls suggests
increased b-catenin activity in mutant tissue. Comparison of the
abundance of seven b-catenin target transcripts between control
and E-cadherin deficient intestinal epithelium – Ascl2, Axin2,
Cd44, Ccnd1, Lgr5, Myc, and Sox9 – demonstrated all except Lgr5

to be increased in E-cadherin mutant epithelium compared with
control epithelium (Fig. 5A) (Wnt homepage, http://www.stan
ford.edu/group/nusselab/cgi-bin/wnt/main and Jubb et al., 2006;
Van Der Flier et al., 2009) indicating that activated b-catenin was
indeed increased in mutant epithelium compared with control.
Therefore, we collected epithelial cell fractions and analyzed the
abundance of b-catenin transcript and nuclear activated b-catenin
(ABC) protein present in control and mutant intestinal epithe-
lium. An antibody recognizing the active form of b-catenin
protein, namely b-catenin dephosphorylated on Ser37 and
Thr41 residues, was used in immunoblotting (Staal et al., 2002).
To control for the number of epithelial cell nuclei represented in
the extracts, we normalized to the level of HNF4a protein, which
is a nuclear-localized, epithelial-specific transcription factor.
Contrary to our expectation and although there was no change
in the level of b-catenin mRNA (Fig. 8A), we detected significantly

http://www.stanford.edu/group/nusselab/cgi-bin/wnt/main
http://www.stanford.edu/group/nusselab/cgi-bin/wnt/main


Fig. 7. Enterocytes are reduced in E-cadherin deficient small intestinal epithelium. (A) The abundance of markers of specific epithelial cell populations (enterocytes, goblet

cells, and enteroendocrine cells) present in the intestinal epithelium of E18.5 control (n¼3) and Cdh1loxP/loxP Villin-Cre cKOs (n¼3) was evaluated using qRT-PCR. Markers of

the enterocyte population (Fabp1, Fabp2, Lct) were severely decreased in the intestinal epithelium of E-cadherin cKOs compared with controls (�4.8, �5.5, �13.0 fold,

respectively). Markers of the goblet cell population (Muc1, Muc2, Muc3, Muc4) were largely unchanged except for a significant increase in Muc3 abundance (þ6.0 fold).

Markers of the enteroendocrine population (ChgA, Ngn3) were slightly lower in the intestinal epithelium of E-cadherin cKOs compared with controls. Gapdh was used for

normalization. Error bars show SEM. A two-sample Student t test was used to determine p-value: *pr0.05, **pr0.01, ***pr0.001 (B) Control and E-cadherin mutant

E18.5 small intestinal tissue was stained for alkaline phosphatase (AP) activity, a marker of the enterocyte brush border. Alkaline phosphatase activity was robustly

detected along the surface of the villi in control tissue (red membrane staining). Although present, alkaline phosphatase positive cells were less abundant in mutant tissue,

and the staining intensity was less robust. (C) Control and E-cadherin mutant E18.5 small intestinal tissue was stained with alcian blue (AB) to identify goblet cells. Both

control and mutant tissue contained comparable numbers of goblet cells although the intensity of the stain was lesser in some goblet cells present in mutant tissue. Lower

panels of C show higher magnification of a region of upper panels. (D) Control and E-cadherin mutant E18.5 small intestinal tissue was stained with an antibody against

Chromogranin A (ChgA), a marker of the enteroendocrine population. Both control and mutant tissue contained ChgAþ cells. Sections in all panels were counterstained

with hematoxylin. Scale bars ¼ 100 mm.
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less activated b-catenin protein in nuclear extracts from E-cad-
herin mutant intestine compared with control tissue (Fig. 8B and
D). In agreement, immunoblotting with an antibody recognizing
total b-catenin protein demonstrated lower amounts of total b-
catenin protein in nuclear extracts from mutants compared with
controls (Fig. 8C and D). Moreover, immunoblotting of cytoplas-
mic fractions showed decreased amounts of both activated and
total b-catenin protein in mutants compared with controls
(Fig. 8B, C, and D). Therefore, we conclude that the absence of
E-cadherin failed to increase nuclear pools of b-catenin protein.
Rather, loss of E-cadherin resulted in decreased amounts of both
nuclear and cytoplasmic b-catenin protein. These data suggest
that E-cadherin stabilizes cellular b-catenin pools, and in its
absence, b-catenin protein is subjected to increased proteolytic
degradation.
Discussion

Taken together, our data uncover a novel and essential role for
E-cadherin during embryonic development of the small intestine.
Mice lacking E-cadherin specifically in the small intestinal epithe-
lium die shortly after birth. Absence of normal villi and loss of
enterocytes in the intestine of E-cadherin mutants suggest
decreased surface area for nutrient absorption. Therefore, mutant
pups likely died from hypoglycemia because of an absorption
defect. Consistent with malnutrition, we detected a trend toward
lower serum glucose levels in mutant pups compared with
control pups at 5–6 h after birth (Supplemental Fig. 1). It is also
possible that decreased feeding contributes to the observed
neonatal demise. The presence of a smaller milk spot in mutant
pups (Fig. 1A) suggests less feeding by the mutant neonates.



Fig. 8. Activated, nuclear-localized b-catenin protein is decreased in Cdh1loxP/loxP Villin-Cre cKO intestinal epithelium compared with control epithelium. (A) qRT-PCR

demonstrated no change in the abundance of b-catenin transcript in the intestinal epithelium of Cdh1loxP/loxP Villin-Cre cKOs compared with controls. qRT-PCR was

performed using cDNA generated from three independent control and Cdh1loxP/loxP Villin-Cre cKO epithelial preparations. Gapdh was used for normalization. Error bars show

SEM. (B) Immunoblot analysis of E18.5 nuclear (NE) and cytosolic (CE) extracts prepared from epithelial cell fractions of control and E-cadherin mutant intestines was

performed using an antibody that recognizes the active form of b-catenin protein, namely b-catenin dephosphorylated at residues Ser37 and Thr41. Such analysis

demonstrated a decreased amount of Activated b-catenin (ABC) protein in the intestinal epithelium of Cdh1loxP/loxP Villin-Cre cKO animals compared with controls in both

fraction types. HNF4a, a nuclear and epithelial specific marker, was used as the loading control for nuclear extracts; GAPDH was used as the loading control for cytosolic

extracts. (C) Immunoblot analysis of E18.5 nuclear (NE) and cytosolic (CE) extracts prepared from epithelial cell fractions of control and E-cadherin cKO intestines was

performed using an antibody that recognizes total b-catenin protein. Such analysis demonstrated a decreased amount of b-catenin (B-CAT) protein in the intestinal

epithelium of Cdh1loxP/loxP Villin-Cre cKO animals compared with controls in both fraction types. HNF4a (NE) and GAPDH (CE) were used as the loading controls. (D) Blots

shown in panels B and C were quantified using densitometry. Graph shows the average abundance of Activated b-catenin (ABC) and total b-catenin (B-CAT) protein present

in nuclear (NE) and cytosolic (CE) extracts prepared from epithelial cell fractions of control (black bars) and E-cadherin cKO (gray bars) intestines. Control ABC NE and CE

n¼5, cKO ABC NE and CE n¼7, Control B-CAT NE and CE n¼3, and cKO B-CAT NE and CE n¼5. HNF4A (NE) and GAPDH (CE) were used for normalization. Error bars show

SEM. A two-sample Student t test was used to determine p-value: *p¼0.05931, **pr0.01, ***pr0.001.
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In contrast to Schneider et al. (2010), who observed loss of
desmosomes in a model of E-cadherin deletion in the adult mouse
intestinal epithelium, we identified junctional complexes containing
desmosomes in E-cadherin deficient embryonic intestinal epithelium
(Fig. 2). Our data, however, demonstrated that although junctional
complexes were present in the intestinal epithelium of E-cadherin

cKO E18.5 embryos, these junctions were abnormal, appearing
abbreviated in mutants. Moreover, the junctions present in mutant
tissue failed to block paracellular transport of small tracer molecules
demonstrating defective barrier function in the absence of E-cadherin.
This agrees with the findings of Tunggal et al. (2005) who showed a
barrier defect in epidermis lacking E-cadherin. Our findings together
with those of Schneider et al. (2010) suggest that the role of
E-cadherin in junctional complex assembly and maintenance differs
depending upon the maturity of the intestinal epithelium.

Selectivity and strength of tight junctions in a given tissue is
thought to be regulated by the combination of claudin proteins
composing tight junctions (Schneeberger and Lynch, 2004; Hewitt
et al., 2006). Our observation that CLDN1 and CLDN4 protein levels
were dramatically altered in E-cadherin deficient epithelium pro-
vides an explanation for the increased tight junction permeability
present in mutant epithelium. Analysis of animals lacking Cldn1 in
the skin demonstrated a crucial role for this claudin protein in
epidermal tight junction function. Neonates lacking epidermal Cldn1

died because of water loss (Furuse et al., 2002). Moreover, mice
lacking E-cadherin in the epidermis had decreased amounts of
CLDN1 protein in the skin, and these neonates also died because
of water barrier failure (Tunggal et al., 2005). CLDN4 protein was
also decreased in E-cadherin deficient skin (Tunggal et al., 2005).
Deletion of E-cadherin in the intestine in our system, however, led to
increased CLDN4 protein in E-cadherin mutants compared with
controls. CLDN4 was virtually absent from control intestine but was
highly abundant in E-cadherin mutant intestine. These data suggest
that although E-cadherin plays a role in regulating tight junction
permeability through claudin proteins, the exact mechanism
through which this occurs varies among organs.

We report increased proliferation in E-cadherin deficient intest-
inal epithelium compared with control epithelium. Similar changes
in proliferation were observed in other studies of E-cadherin in the
small intestine. Expression of dominant-negative N-cadherin
(NCADD) in the intestinal epithelium led to an expansion of the
proliferative zone in the crypt, whereas over-expression of E-cad-
herin in the intestinal epithelium resulted in decreased proliferation
(Hermiston and Gordon, 1995a; Hermiston et al., 1996). Moreover,
conditional knockout of E-cadherin in the adult small intestine
resulted in a markedly expanded proliferative zone (Schneider
et al., 2010). We conclude that the increased number of proliferative
cells observed in E-cadherin cKO mice likely occurred as a compen-
satory response to repair the severely disrupted architecture of the
intestinal epithelium. Hermiston and Gordon (1995a) drew a similar
conclusion regarding increased proliferation observed in intestinal
crypts of mice expressing NCADD protein. Because E-cadherin
deficient intestinal epithelium contained fewer total epithelial cells
compared with control epithelium, we conclude that increasing the
number of proliferative cells was not sufficient to rescue epithelial
cell numbers.
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Examination of the differentiated intestinal epithelial cell popu-
lations present in E-cadherin cKOs demonstrated a reduced number
of enterocytes compared with controls. The simplest explanation of
this observation is that E-cadherin deletion disrupts cell adhesion
thereby allowing enterocytes localized on the villi to slough into the
lumen. Electron microscopy revealed large gaps between epithelial
cells in E-cadherin cKO intestinal tissue, whereas control epithelial
cells were tightly juxtaposed with each other. Moreover, we
frequently observed cellular debris in the lumen of gut. Other
studies of E-cadherin deficient organs, however, demonstrated
defective differentiation in the absence of E-cadherin. Boussadia
et al. (2002) showed that loss of E-cadherin in the mammary gland
impaired terminal differentiation of the alveolar epithelium of the
lactating mammary gland. Moreover, Young et al. (2003) demon-
strated that E-cadherin is required for proper differentiation of
keratinocytes. Therefore, our observation of an increased number
of proliferative cells in small intestine lacking E-cadherin compared
with controls may reflect a shift from differentiation toward
proliferation. Increased proliferation, however, could also occur as
a compensatory response to combat loss of enterocytes as discussed
above. Our data cannot discriminate between these two scenarios.

If our observation of increased proliferative cells and decreased
enterocytes reflects a shift from differentiation to proliferation, we
would expect to see similar loss of other differentiated epithelial cell
types, namely goblet cells and enteroendocrine cells. We found that
the proportion of goblet cells present in E-cadherin cKO tissue as well
as the expression of goblet cell markers were virtually unchanged in
mutants compared with controls suggesting that the observed
reduction of the enterocyte population cannot be completely
explained by loss of cells because of cell adhesion defects. Although
we were not able to count reliably the number of enteroendocrine
cells given these cells are rare, measurement of enteroendocrine cell
transcripts revealed only subtle decreases in these markers (less than
2 fold changes) suggesting that this population was subtly impacted if
at all. Based on these findings, we cannot exclude the possibility that
in addition to cell loss because of compromised cell adhesion,
E-cadherin deletion selectively disrupts the enterocyte differentiation
program in E-cadherin cKOs.

Because we observed an increase in the proliferative cell popula-
tion and a concomitant increase in multiple b-catenin target gene
mRNAs, we expected to detect increased accumulation of nuclear
active b-catenin protein in E-cadherin mutants compared with
controls. We found, however, a 7.7 fold decrease in the amount of
nuclear activated b-catenin protein present in E-cadherin mutant
epithelium compared with control epithelium. The level of cytosolic
activated b-catenin protein as well as that of total b-catenin protein
present in E-cadherin deficient epithelium was also lower compared
with control tissue. Similar to our results, elimination of E-cadherin
from the epidermis as well as the thyroid resulted in decreased
abundance of b-catenin protein (Tinkle et al., 2004; Tunggal et al.,
2005; Cali et al., 2007). One explanation for our paradoxical b-catenin
finding, namely that b-catenin target gene mRNAs increased in
abundance while b-catenin protein itself decreased, is that b-catenin
target gene expression occurred as a result of a b-catenin-indepen-
dent transcriptional pathway in mutant epithelium. One such path-
way is mediated through a closely related catenin family member,
junction plakoglobin (g-catenin), which has been shown to respond
to Wnt ligands to both positively and negatively influence gene
transcription (McCrea et al., 2009). Moreover, junction plakoglobin
has been shown to activate TCF/LEF-dependent transcription in b-
catenin deficient cell lines (Maeda et al., 2004; Kim et al., 2011). It is
also possible that antagonists of b-catenin transactivation are
expressed at lower levels in mutant epithelium thereby effectively
lowering the threshold of nuclear b-catenin required to activate
transcription. Our oligonucleotide array data uncovered two mole-
cules related to known b-catenin antagonists as less abundant in
mutant tissue compared with control tissue. Dapper homolog 2,
antagonist of beta-catenin (xenopus) (Dact2) and Disabled-1 (Dab1)
were decreased -2.0 and -3.9 fold, respectively. Although these
molecules have not yet been shown to modulate b-catenin activity,
their related family members DACT1 and DAB2 do negatively impact
b-catenin transactivation (Gao et al., 2008; Jiang et al., 2009).
Conclusions

Based on these data, we conclude that intestinal E-cadherin is
required for the formation of a functional intestinal epithelium in
mice. Without E-cadherin in the intestine, animals fail to survive.
Our studies highlight a key role for E-cadherin in intestinal epithelial
morphogenesis and homeostasis during embryonic development.
The phenotype observed likely occurs as result of both direct and
indirect effects of E-cadherin loss. Breakdown of adherens junctions
themselves as well as disruption of the signaling pathways regulated
by adherens junctions both may impact intestinal development and,
therefore, aspects of the observed phenotype. Moreover, there are
likely compensatory events occurring in the face of such a dramatic
disruption to epithelial architecture.
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