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Abstract

In this paper we explore a geometrical and physical matter of the evolution governed by the generator of General Complex
Algebra, GC2. The generator of this algebra obeys a quadratic polynomial equation. It is shown that the geometrical image of
the GC2-number is given by a straight line fixed by two given points on Euclidean plane. In this representation the straight line
possesses the norm and the argument. The motion of the straight line conserving the norm of the line is described by evolution
equation governed by the generator of the GC2-algebra. This evolution is depicted on the Euclidean plane as rotational motion of
the straight line around the semicircle to which this line is tangent. Physical interpretation is found within the framework of the
relativistic dynamics where the quadratic polynomial is formed by mass-shell equation. In this way we come to a new representation
for the momenta of the relativistic particle.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

I.M. Yaglom was first who mentioned that beside of the complex numbers one may consider the General Complex
Number z = x + ey with the generator obeying the quadratic equation [1]

e2 = a1e − a0. (1.1)

Some properties of this algebra had been studied by Fjelstad and Gal [2]. In Ref. [3] the idea of general complex
algebras has been extended to the case of generators obeying n � 2-degree polynomial equations. These algebras
were denominated by the symbol GCn. The GCn algebra is n-dimensional commutative algebra which generalize
the multi-complex algebra MCn. The latter is generated by e obeying the equation en = ±1. The MCn algebra and
extensions of cosine–sine functions induced by this algebra had been used in n-order phase space formulation of the
classical mechanics (see Ref. [4]). MCn algebras form the commutative part of the Generalized Clifford algebras [5].
These algebras were used in quantum mechanics based on para-statistic description of elementary particles [6]. Also,
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on the basis of Generalized Clifford algebras had been constructed powerful method of solution of the system of
non-linear algebraic equations [7]. In Ref. [3] the GCn algebra has been used in order to build nth order oscillator
model and nth order Hamilton dynamic equations. Our further investigations of these algebras pursue an object to
find faithful geometrical representation of GCn-numbers and their applications in the theory of generalized relativistic
dynamics.

The link between hyperbolic complex algebra and the relativistic kinematics has been noted long time ago (see, for
instance, [8–10] and references therein). This link is a natural consequence of the addition formula for the velocity
defined with respect to the coordinate time. The velocity addition formula can be represented as an addition formula
for the hyperbolic tangent [11]. Then, the components of the velocity defined with respect to the proper time are
hyperbolic cosine–sine functions, which can be considered in quality of components of a hyperbolic complex number.
The geometrical interpretation of the hyperbolic complex number is given by analogue with the interpretation of
a complex number by using pseudo-Euclidean plane instead of two-dimensional Euclidean plane. In this case the
unimodular multiplicative group of the hyperbolic numbers are treated as rotations and dilatation on the pseudo-
Euclidean plane [12].

In this paper we shall restrict ourselves with the case of general complex algebra of second order and its geo-
metrical representation. We show that the geometrical representation of GC2 number is closely connected with the
classical relativistic dynamics. The generator of GC2-algebra induces an evolution equation. Thus, beside the evolu-
tion governed by the Lorentz-force equations in the relativistic dynamics one meets with a special kind of evolution
generated by the mass-shell equation given by quadratic polynomial. The situation is quite unusual in the scope of the
classical mechanics. The main task of the present paper is to find adequate geometrical and physical interpretations for
the motions generated by the GC2-algebra. We shall show that the GC2-algebra admits geometrical interpretation on
ordinary Euclidean plane: the image of the GC2-number on the Euclidean plane is a straight line fixed by two points
on the line. This idea leads to a new method of analytical description of the straight line: any straight line is associated
with the quadratic polynomial and possesses a norm and an argument. In this way we come to the interesting link
between Euclidean and Hyperbolic Geometries. According to the new analytical method the rotations of the line are
described by evolution equation governed by the generator of GC2 algebra. The physical usage of the geometrical
interpretation of the general complex algebra is realized within the framework of the relativistic mechanics which
implies a quadratic polynomial formed by mass-shell equation. The momenta of the relativistic particle are defined
via trigonometry induced by GC2 algebra. In this representation momenta of the relativistic particle possess regular
behavior near the zero-mass point. The limit to the zero-mass has a crucial importance in the physical interpretation
of the hyperbolic argument as a inverse value of the momentum of a massless particle.

The paper is presented by the following sections.
In Section 2 we recall the basic notions of the General Complex Algebra, GC2, and give an geometrical interpre-

tation for GC2-number on Euclidean plane: it is shown that on the Euclidean plane the GC2-number is presented by
a straight line. In Section 3 the relationship between hyperbolic argument and curvature of the hyperbolic planes is
established. Section 4 presents elements of the relativistic dynamics. The relativistic motion is depicted as rotational
motion of the straight line, tangent the semicircle with radius equal to mass of the particle, around this circle. A new
representation for the momenta of the relativistic particle is found.

Lemmas, definitions and theorems are numerated, for instance, as follows Lemma a.b, where a means number of
the section, b is item of the lemma.

2. General Complex Algebra and its geometrical interpretation

2.1. General complex algebra

The simplest (but important) generalization of the complex algebra, denominated as General Complex Algebra
GC2, is defined by unique generator e satisfying the quadratic equation

X2 − 2P0X + P 2 = 0, P 2
0 � P 2. (2.1)

The coefficients of this equation P0, P 2 are real numbers, ordered by P 2
0 � P 2 � 0. Due to this condition the eigen-

values are defined by real positive numbers λ1, λ2. The matrix solution of Eq. (2.1) is given by the following (2 × 2)

matrix [3]:
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E :=
(

0 −P 2

1 2P0

)
. (2.2)

This matrix can be considered as a natural matrix representation for e. The isomorphism with the matrix algebra is
used in order to define modulus of the general complex number. It can be shown that the determinant of the matrix
Z = r0 + Er1 is a unique candidate to be the squared modulus of the z = r0 + er1. Define

|z|2 → Det(Z) = Det

(
r0 −P 2r1
r1 2P0r1 + r0

)
= r0(r0 + 2P0r1) + P 2r1r1. (2.3)

The conjugated GC2-number z̄ = r̄0 + er̄1 in the matrix representation is given by adjoint to Z matrix Z+, so that

ZZ+ = Det(Z)I,

where

Z+ =
(

r0 + 2P0r1 P 2r1
−r1 r0

)
→ z̄ = (r0 + 2P0r1) − er1. (2.4)

In the same way that the usual complex number system can be used to describe trigonometry, the general complex
number system induces its trigonometric functions [2]. Let us start from Euler formulae

exp(Eφ) = g0(φ) + Eg1(φ), exp(eφ) = g0(φ) + eg1(φ). (2.5)

Let [λ1, λ2] be the set of eigenvalues of the matrix E. The eigenvalue problem for E is formulated as follows(
0 −P 2

1 2P0

)( −λ2 −λ1
1 1

)
=

( −λ2 −λ1
1 1

)(
λ1 0
0 λ2

)
. (2.6)

Consider evolution equation governed by the matrix E:

d

dφ

(
g0(φ)

g1(φ)

)
=

(
0 −P 2

1 2P0

)(
g0(φ)

g1(φ)

)
. (2.7)

The solutions of the eigenvalue problem (2.6) help to find solutions of the evolution equation (2.7). The explicit form
of these solutions with initial conditions g0(0) = 1, g1(0) = 0 are given by formulae

g0(φ) = λ2 exp(λ1φ) − λ1 exp(λ2φ)

λ2 − λ1
, g1(φ) = exp(λ2φ) − exp(λ1φ)

λ2 − λ1
. (2.8)

On the other hand, Eq. (2.7) one may consider as formulae of differentiation for g-functions.
Notice, however, that the exponential function exp(eφ) defined in (2.5) is not the unit number of GC2-algebra, i.e.

|exp(eφ)|2 �= 1. This fact is a consequence of the next formula

Det
(
exp(Eφ)

) = Det

(
g0 −P 2g1
g1 2P0g1 + g0

)
= exp(2P0φ). (2.9)

The unit GC2-number u(φ) is obtained by multiplying exp(eφ) on the factor exp(−P0φ):

u(φ) := exp(−P0φ) exp(eφ) = c(φ) + es(φ). (2.10)

The explicit form of the s–c-functions are obtained from (2.8) by using the same factor:

c(φ) = λ2 exp(−mφ) − λ1 exp(mφ)

2m
, s(φ) = exp(mφ) − exp(−mφ)

2m
, (2.11)

where 2m = λ2 − λ1. The c–s-functions obey the identity∣∣u(φ)
∣∣2 = c(φ)

(
c(φ) + 2P0s(φ)

) + P 2s2(φ) = 1, (2.12)

which is an analogue of trigonometric identity cos2(φ) + sin2(φ) = 1. The formulae of differentiation for s–c-
functions are derived from (2.7):

d

dφ

(
c(φ)

s(φ)

)
=

( −P0 −P 2

1 P0

)(
c(φ)

s(φ)

)
. (2.13)
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Lemma 2.1. GC2-number z with non-trivial modulus |z| possesses a polar representation:

z = |z|u(φ).

2.2. Analytical representation of the straight line by GC2 number

Consider straight line L on Euclidean plane E�. Let us fix two points on E� with coordinates (x1, y1), (x2, y2) in
the first quadrant, so that 0 � x1 � x2. Through these points passes the line L which cuts X-axis in x0 � 0. This line
is described by the equation y = ax + b, where the coefficients a, b are defined by formulae

a = y2 − y1

x2 − x1
, b = x2y1 − x1y2

x2 − x1
. (2.14)

The coefficient a is related with the angle θ via tangent function: a = tan(θ). The coordinates y1, y2 are linear
functions of the coordinates x1, x2:

y1 = ax1 + b, y2 = ax2 + b. (2.15)

The coordinates x1, x2 have a dimension of a distance and mark a certain length from the origin of the coordinate
system O . By using the Vieta’s formulae for each pair of the values λ1 = x1, λ2 = x2 one may put in correspondence
the quadratic polynomial

X2 − 2P0X + P 2 = 0, with 2P0 = x1 + x2, P 2 = x1x2. (2.16)

Let E be matrix solution of Eq. (2.16). Define GC2-number by

Z = aE + b, Z ∈ GC.

Consider diagonal matrix of the eigenvalues of the matrix Z,

Λ =
(

y1 = ax1 + b 0
0 y2 = ax2 + b

)
. (2.17)

Determinant of Λ, which equal to |Z|2, is calculated by taking into account (2.16),

|Z|2 = y1y2 = b(b + 2P0a) + P 2a2.

This expression is positive if the inequality x0 � x1 � x2 is satisfied.

Definition 2.1. The positive value

n := (y1y2)
1/2 = (

b(b + 2P0a) + P 2a2)1/2 (2.18)

is called the norm of the line L with respect to the parapets x = x1, x = x2.

If y1 �= 0, y2 �= 0, then according to Lemma 2.1 the number Z = aE + b, Z ∈ GC possesses polar representation.
Define c–s-functions of the argument φ by

c(φ) = b

n
, s(φ) = a

n
. (2.19)

The elements of diagonal matrix Λ in (2.17) are expressed via c–s-functions

y1 = n
(
s(φ)x1 + c(φ)

)
, y2 = n

(
s(φ)x2 + c(φ)

)
. (2.20)

By using formulae (2.11) for s–c-functions, we obtain

y1 = n exp(−mφ), y2 = n exp(mφ), with 2m = x2 − x1. (2.21)

Definition 2.2. Analytical representation given by formulae (2.20), (2.21) is called a polar representation of the straight
line, where n is a norm and the variable φ is an argument of the line L.
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Thus, for the line L passing through certain parapets x = x1 � x0, x = x2 � x0 one may find the norm n and the
argument of the line φ by

y1y2 = n2,
1

x1 − x2
log

(
y1

y2

)
= φ. (2.22)

2.3. Description of motions of the straight line in Euclidean plane defined by the norm and the argument

Within the framework of our description the line L possesses: (1) the norm and (2) the argument. Now let us
explore the following tasks:

(1) Find a motion of L which preserves the argument but changes the norm of the line.
(2) Find a motion of L which preserves the norm but changes the argument of the line.

The answer to the first task is given by the following:

Lemma 2.2. All lines passing through the point M(x0,0) possess same argument.

Proof. Consider two lines: y(1) = a1x + b1, y(2) = a2x + b2, passing through the point M(x0,0). The coefficients
ai, bi , i = 1,2 obey the following relationships

−x0 = b1

a1
= b2

a2
,

a1

a2
= b1

b2
= tan θ1

tan θ2
. (2.23)

Formula for the first line in polar representation is given by

y(1) = a1x + b1 = n1
(
s(φ)x + c(φ)

)
, where c(φ) = b1

n1
, s(φ) = a1

n1
. (2.24)

For the second line we write

y(2) = a2x + b2 = n2
(
s̃(φ)x + c̃(φ)

)
, where c̃(φ) = b2

n2
, s̃(φ) = a2

n2
. (2.25)

By using relationships (2.23)–(2.25) we come to the conclusion that

n2 = n1
tan θ2

tan θ1
, s̃(φ) = s(φ), c̃(φ) = c(φ).

Thus all these lines passing through point M(x0,0) are described by the same s–c-functions s(φ), c(φ). Hence, they
have same argument φ and differ by the norms. �

The second task is to find motion of the line which changes the argument of the line but preserves its norm.
Draw line L (Fig. 1) and take on X-axis a point P . Throughout this point draw the line parallel to Y -axis. The

intersection of this line with L denote by N . Let N be a center of the circle with radius r = NP which acroses L in
two points: A and B . Through the points A and B draw two lines parallel to Y -axis. Intersections of these lines with
X-axis denote by C and D, correspondingly. Draw semicircle C with the center in P and with the diameter 2m = CD.
The angle � APB is rectangle. Denote ψ1 = � APC, ψ2 = � BPD. Rotate rectangle � APB around the point P . The
sides of the rectangle will across the lines x = CO , x = DO at the points A′ and B ′. Denote by L1 the line passing
through A′, B ′.

Lemma 2.3. The lines L and L1 possess the same norm and differ with the arguments.

Proof. DB = m tan(ψ2), CA = m tan(ψ1) = m cot(ψ2), so that y1y2 = m2 for any 0 < ψ2 < π/2. Hence, n(L) =
n(L1), i.e. the norms of the lines L and L1 are same whereas they are described by different arguments. �

Notice, in the present choice of the parapets the norm of the line is equal to one-half interval between parapets.
Obviously, this not true in general case.
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Fig. 1.

Lemma 2.4. The lines L and L1 are tangent to the semicircle C.

The proof is fulfilled by using the elementary operations of Euclidean geometry.
The results of this section let us summarize by the following:

Theorem 2.1. Rotational motion of L around semicircle C, to which the line remains tangent, is described by functions

y(x1) = m exp(−mφ), y(x2) = m exp(mφ)

where 2m = x2 − x1, m is the radius of the semicircle, and x1, x2 are the end points of the semicircle on the X-axis.

3. Relationship between hyperbolic argument and curvature of hyperbolic geometry

3.1. Relationship between Euclidean angle and hyperbolic argument

Let L be a line passing trough the origin O and tangent to the semicircle C with center at the point P on X-axis. Let
L1 be a line passing through point O ′ with coordinates (x0,0) and tangent to the same semicircle C. Draw parapets
from end points of the semicircle. The coordinates of the parapets will x = X2, x = X1, if consider with respect to
the origin O , or x = x2, x = x1, if they are measured from the point O ′, so that, X1 = x1 + x0, X2 = x2 + x0. Let
us explore rotational motion of the line around the semicircle C. At the initial point the line L is associated with the
following polynomial:

X2 − 2
0
P 0X + 0

P 2 = 0, (3.1)

where
0
P 0 = 1

2
(X2 + X1),

0
P 2 = X1X2, m = 1

2
(X2 − X1),

and

P 2(φ0) = 0
P 2, P0(φ0) = 0

P0.

During the motion the distances P and P0 change, m is a constant. The set of dynamic quantities
0
P 2,

0
P0 as coefficients

of the polynomial (3.1) form the matrix E which generates the evolution with respect to the parameter φ. According
to Theorem 2.1 this geometrical motion is governed by the evolution equation
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d

dφ

(
c(φ)

s(φ)

)
=

⎛
⎝ − 0

P0 − 0
P 2

1
0

P0

⎞
⎠(

c(φ)

s(φ)

)
. (3.2)

At the initial point the line passes from the origin, b = 0. Hence c(φ0) = 0. According to formulae (2.11) this gives

c(φ0) = 1

2m

(
X2 exp(−mφ0) − X1 exp(mφ0)

) = 0, or exp(2mφ0) = X2

X1
. (3.3)

Let the argument φ corresponds to the position of line L1. Then, 2P0 = x1 + x2, P 2 = x1x2, so that,
0
P 0 = P0 + x0.

The function c(φ) is defined by

c(φ) = 1

2m

(
X2 exp(−mφ) − X1 exp(mφ)

) = 1

2m

(
x2 exp(−mφ) − x1 exp(mφ)

) − x0s(φ). (3.4)

Lemma 3.5. The following relationship holds true

x2 exp(−mφ) = x1 exp(mφ). (3.5)

Proof. By definition a = ms(φ), b = mc(φ), and a = tan θ , − b
x0

= tan θ . Also, m = P tan θ . Hence,

s(φ) = tan θ

m
= 1

P
and c(φ) = b

m
= −x0 tan θ

m
= −x0s(φ). (3.6)

By comparing (3.4) with (3.6) we come to Eq. (3.5). �
From (3.5) it follows that

exp(2mφ) = x2

x1
. (3.7)

This formula can be also deduced from formulae (2.21). In fact, it is easily seen that

exp
(
2mφ(b)

) = y2

y1
= aX2 + b

aX1 + b
= X2 − x0

X1 − x0
= x2

x1
.

Formulae (2.11) and (2.16), (3.1) lead to the following relations between s–c-functions and hyperbolic cosine–sine
functions:

ms(φ) = sinh(mφ), s(φ)
0
P 0 + c(φ) = cosh(mφ).

From these equations one finds

P0(φ) = 0
P 0 − x0 = m coth(mφ), P (φ) = m

1

sinh(mφ)
. (3.8)

Now, our purpose is to establish relationship between the argument φ and the angle θ . By taking into account that

m = P0 sin θ, (3.9)

formula (3.7) can be transformed as follows:

exp(2mφ) = P0 + P0 sin θ

P0 − P0 sin θ
= exp(2mφ) = 1 + sin θ

1 − sin θ
, or exp(mφ) = 1 + tan θ

2

1 − tan θ
2

. (3.10)

It is seen that this formula connects the angle θ with the hyperbolic argument φ.
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Fig. 2.

Fig. 3.

3.2. Relationship between hyperbolic argument and curvature of hyperbolic plane

Consider a straight line L and a point N not on the line (Fig. 2). Let MN be perpendicular to L, and take any
point P on L. The line MP cuts L in P . As the point P moves along L away from N there two possibilities to
consider [13]:

(1) P may return to its starting point after having traversed a finite distance. This is the hypothesis of Elliptic
Geometry.

(2) P may continue moving, and the distance NP tend to infinity. This hypothesis is true in ordinary geometry.
The ray MP then tends to a definite limiting position ML, and ML is said to be parallel to NA. If P moves along

L in the opposite sense, MP will tend to another limiting position, MK , and MK ‖ NB . In Euclidean Geometry,
the two rays KM and ML form one line, and the angles � NML and � NMK are right angles. The hypothesis of
Hyperbolic Geometry is that the rays MK , ML are distinct, so that Playfair’s axiom is contradicted [13].

Thus, through any point M two parallels ML and MK can be drawn to a given line AB , so that ML ‖ NA and
MK ‖ NB (Fig. 2). The angles NML and NMK are, by symmetry, equal, and this angle depends only on the length
of the perpendicular MN = r . It is called the angle of parallelism or the parallel-angle, and is denoted by Π(r). The
dependence of the parallel-angle on the length r is given by the main formula of hyperbolic geometry [14]:

exp

(
− r

K

)
= tan

1

2
Π, (3.11)

where K is curvature of the hyperbolic plane.
Notice, the draught in Fig. 2 is represented in symmetric form. Now, choose the line NN ′ in quality of X-axis

where the points N,N ′ will play the role of points x2, x1 (Fig. 3). Draw bisectrix of the angle Π , the angle � N ′MA′.
Denote this angle by Π/2. Draw the rectangle � A′MA. In Fig. 3 the draught we can look through two points of view.
Firstly, we see the draught in the Euclidean plane, secondly, it can be realized as a projection of hyperbolic plane with
curvature K. Within notations of Fig. 3, A′N ′ = y1, AN = y2. Remembering formula (2.21), we write
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A′N ′ = y1 = N ′M exp(mφ), AN = y2 = NM exp(−mφ). (3.12)

On the other hand,

A′N ′ = N ′M cot

(
Π

2

)
, AN = NM tan

(
Π

2

)
. (3.13)

From (3.13) and (3.12) we come to the equation

NA = NM tan

(
Π

2

)
= NM exp(−mφ). (3.14)

Here NM = m = r . Thus, by comparing (3.14) with (3.11) we get the following relationship:

φ = 1

K . (3.15)

This formula gives an interpretation of the hyperbolic argument via the curvature of the corresponding hyperbolic
plane.

4. Relativistic motion in view of GC2 algebra

In the previous sections we intentionally used the physical notations for geometric quantities, this provides an
advantage to use directly formulae of the previous section. Only, we shall keep in mind that the quantities used above
have to be given in appropriate physical units. For that purpose we will introduce the constant c-velocity of the light.

4.1. Relativistic Lorentz-force equations

Consider a motion of the relativistic particle with charge e in the external electromagnetic fields ( �E, �B). The
relativistic equations of motion with respect to the proper time τ are given by the Lorentz-force equations. These
equations can be written in the Lorentz-covariant form [15], however in order to give the main idea we shall restrict
ourselves only by consideration the projection of the Lorentz-force equations on the direction of motion (a covariant
form of the full theory of such formulation of the Lorentz-force equations the reader may find in Ref. [16])

dP

dτ
= e

mc
( �E · �n)P0,

dP0

dτ
= e

mc
( �E · �n)P, �n = �P

P
. (4.1)

These equations have to be complemented by connection between momenta and velocity

m
dr

dτ
= ( �P · �n), mc

dt

dτ
= P0, �v = d�r

dt
= �P

P0
. (4.2)

Equations (4.1) imply the first integral of motion

P 2
0 − P 2 = M2c2. (4.3)

In the case of stationary potential field, i.e. when e �E = −�∇V (r), the Lorentz-force equations imply the other constant
of motion, the energy of the relativistic particle E = cP0 + V (r). An interpretation of the constant of motion M2 can
be found by comparing with the non-relativistic equations of motion. The following two cases have to be considered
separately: (1) M �= 0, and (2) M = 0. Suppose that M �= 0. In this case Eqs. (4.1) are reduced to Newtonian equations
by supposing that M = m. Equations (4.1) admit a polar representation:

P0 = A
(
cosh(ψ) + B sinh(ψ)

)
, P = A

(
sinh(ψ) + B cosh(ψ)

)
,

dψ

dτ
= e

mc
( �E · �n). (4.4)

These solutions will satisfy (4.3) if A2(1 − B2) = M2c2. Hence B < 1 for particles with non-vanishing mass. If ψ is
chosen so that ψ = 0 for the particle in rest, then B = 0 and

P0 = mc cosh(ψ), P = mc sinh(ψ).
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Now suppose that M = 0. Then the correspondence with Newtonian mechanics breaks down. Nevertheless, in the
case M = 0 the relativistic equations of motion (4.4) formally do not lose a sense because the condition M = 0 does
not entail the equality of the m to zero. In this case m plays the role of a parameter of the equations. Equation of
motion for this class of particles inside potential field ϕ(r), dim(ϕ) = dim(c), is written as [17]:

d

dτ
logP = ±(�n · �∇)ϕ(r), (4.5)

which also admits the formal solutions

P0 = A
(
cosh(ψ) + B sinh(ψ)

)
, P = A

(
sinh(ψ) + B cosh(ψ)

)
. (4.6)

Here the constant B is defined by equation B2 = 1.

4.2. Mass-shell equation

In the mass-shell equation (4.3) the constant of motion is defined by square of the mass, which implies that in
this relationship the mass can be presented by a positive, as well, by a negative quantity. Evidently, by using only the
square of the mass we ignore an information carried by the signs of the mass. In the relativistic mechanics the value
X = cP0 − Mc2 is considered as kinetic energy of the massive particle. Noteworthy, in the relativistic mechanics we
deal with two kinds of the kinetic energies corresponding two signs of the mass. They are solutions of the following
quadratic equation:

X2 − 2cP0X + c2P 2 = 0, P 2
0 � P 2 > 0. (4.7)

This equation has two real positive solutions which we will denote as follows:

q2
1 = cP0 − Mc2, q2

2 = cP0 + Mc2. (4.8)

Here the value M (with capital letter) means the expression Mc = +
√

P 2
0 − P 2, whereas the value m means the mass

of the particle. Evidently, one may equalize M with m if P0 �= P . By using Vieta’s formulae from (4.7) and (4.8) we
come to the following mapping:

c2P 2 = q2
1q2

2 , cP0 = 1

2

(
q2

2 + q2
1

)
, Mc2 = 1

2

(
q2

2 − q2
1

)
. (4.9)

In stationary potential field for the pair of constants of motion E , M we can put in correspondence the other pair of
constants of motion:

E1 = q2
1 + V (r), E2 = q2

2 + V (r). (4.10)

4.3. Evolution generated by mass-shell equation

The evolution generated by quadratic equation (4.7) geometrically is described as a motion of the line L tangent
to the circle with radius m when the point O ′ runs from O to X1 (see Fig. 1). In this motion the distances P and P0
change, m is a constant.

The set of coefficients of the polynomial (4.7) form the matrix E which generates the evolution with respect to
the parameter φ where P 2(φ0), P0(φ0) are initial data of the evolution. Compare this geometrical motion with the
physical motion governed by Lorentz-force equation (4.3). The relativistic equations imply two constants of motion,
the energy E and mass M .

Thus, during the motion the constants of motion m, E , as well as, Ep , Eq are conserved whereas the kinetic energies
q2

1 , q2
2 will change. Hence X1 = E1, X2 = E2 and x0(φ) = V (r). Then,

cP0(φ0) = cP0(φ) + x0(φ),

which corresponds to the formula of the energy

E = cP0 + V (r).

Consequently, cP0(φ0) = E , x1 = q2, x2 = q2.
1 2
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The relativistic motion, when in quality of parameter of evolution is taken the hyperbolic argument φ, is given by
equations

d

dφ
P0 = −P 2,

d

dφ
P = −P0P. (4.11)

Solutions of this system are given by

P0(φ) = mc coth(mcφ), P (φ) = mc
1

sinh(mcφ)
. (4.12)

Compare Eqs. (4.11) with Lorentz-force equations in polar representation (4.4). We come to the following relationship
between the parameters of evolution

dψ = P dφ, P dφ = e(�n · �E)dτ.

Formulae (3.7) together with (4.8) give us the following useful relations between momenta and hyperbolic argument

exp(mcφ) = P0 + mc

P
, exp(−mcφ) = P0 − mc

P
, exp(2mcφ) = q2

2

q2
1

= P0 + mc

P0 − mc
. (4.13)

When q2
2 = q2

1 , m = 0, whereas φ �= 0. At the other limit, when q2
2 and q2

1 tend to infinity, m �= 0, whereas φ will tend
to zero.

Consider the limit when q2
1 → q2

2 . Evidently, this limit corresponds to the massless particle, because 2mc =
(q2

2 − q2
1 ) = 0. At this limit formulae for the momenta (4.12) admit regular behavior

P(m = 0) = 1

φ
, P0(m = 0) = 1

φ
.

Denote the momenta at the point m = 0 by P(m = 0) = P0(m = 0) = π0. Then hyperbolic argument φ obtains the
following interpretation:

φ(m = 0) = 1

P(m = 0)
= 1

π0
. (4.14)

Use this interpretation of φ in formulae (4.12). In this way we come to the mapping from momentum of the massless
particle onto the momentum of the massive one

mc

P
= sinh

(
mc

π0

)
,

mc

P0
= tanh

(
mc

π0

)
. (4.15)

Formula for the velocity is obtained by using relationship cP = vP0, which follows from the last formula of Eq. (4.2).
Then,

v

c
= 1

cosh(mc
π0

)
.

Formula (4.13) now can be written as follows:

exp

(
2
mc

π0

)
=

1 +
√

1 − v2

c2

1 −
√

1 − v2

c2

.
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