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Abstract

We extend the classical theory of Taylor series to a -rst-order di$erential-di$erence operator � on the
real line which includes as a particular case the Dunkl operator associated with the re0ection group Z2 on
R. More precisely, we establish -rst a generalized Taylor formula with integral remainder, and then specify
su4cient conditions for a function on R to be expanded as a generalized Taylor series. Moreover, we provide
a criterion of analyticity for functions on R involving the di$erential-di$erence operator �.
c© 2002 Elsevier Science B.V. All rights reserved.
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0. Introduction

In this paper we consider the -rst-order di$erential-di$erence operator on R

�f =
df
dx

+
A′(x)
A(x)

(
f(x)− f(−x)

2

)
; (1)

where

A(x) = |x|2�+1B(x); �¿− 1
2 ; (2)

B being a positive C∞ even function on R. In the case A(x) = |x|2�+1; �¿ − 1
2 , we regain the

di$erential-di$erence operator

D�f =
df
dx

+
(
�+

1
2

)
f(x)− f(−x)

x
; (3)
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which is known as the Dunkl operator of index � + 1
2 associated with the re0ection group Z2 on

R. Dunkl operators are parameterized -rst-order di$erential-di$erence operators on some Euclidean
space that are related to -nite re0ection groups. They are introduced in [4,5] in connection with a
generalization of the classical theory of spherical harmonics. For the mathematical and physical ap-
plications of such operators we refer to the literature cited in [11]. For instance, the one-dimensional
Dunkl operator D� plays a major role in the study of quantum harmonic oscillators governed by
Wigner’s commutation rules [6,9].
A quite new commutative harmonic analysis on the real line related to the di$erential-di$erence

operator � was initiated in [7,8] in which several analytic structures on R were generalized. Through
this paper, the classical Taylor series theory on R is extended to the di$erential-di$erence operator
�. More explicitly, we establish in Section 1 the following generalized Taylor formula with integral
remainder:

Txf(y) =
n∑

p=0

bp(y)�pf(x) +
∫ |y|

−|y|
Wn(y; z)Tx�n+1f(z)A(z) dz; (4)

where Tx; x∈R; stand for the generalized translation operators tied to the di$erential-di$erence
operator �; {Wp} and {bp}; p=0; 1; 2; : : : ; being two sequences of functions constructed inductively
from the function A. In analogy to the classical setting, we determine su4cient conditions under
which a C∞ function f on R may be expanded as a generalized Taylor series in a neighborhood
of an arbitrary point x∈R; that is, conditions which ensure that for |y| small enough, the integral
remainder in (4) tends to 0 as n → ∞. Moreover, it turns out that, except for the Dunkl operator
case, the generalized Taylor series as discussed here are not power series. In other words, the
bp; p= 1; 2; 3; : : : ; are in general not polynomials. Nevertheless, we provide in Section 2 a criterion
of analyticity on R involving the di$erential-di$erence operator �; that is, a criterion characterizing
an analytic function f on R by means of the sequence {�pf}; p=0; 1; 2; : : : . The chief device in
the proof of this criterion will be results from the theory of hypo-analytic operators (see [1]).

The notion of Taylor series was -rst extended in [2] to the Bessel di$erential operator L�=d2=dx2+
((2�+1)=x) d=dx, �¿− 1

2 . Such an extension was essentially aimed to allow a formal introduction
of a generalized translation operation on the half line tied to the Bessel operator L�. Later, TrimKeche
[12] extended the theory of Delsarte to more general second-order di$erential operators of the form

L=
d2

dx2
+
A′(x)
A(x)

d
dx
; �¿− 1

2 : (5)

It is pointed out that all the results obtained in [12] emerge as easy consequences of those stated in
the present article.

1. Generalized Taylor series

In the -rst part of this section we look for a Taylor formula with integral remainder, in which
the di$erential-di$erence operator � replaces the usual -rst derivative operator d=dx. Naturally, the
construction of such a formula will require a number of preliminary results.

Notation. Let C be the subset of R2 de-ned by C = {(x; y)∈R2 : 0¡ |y|6 |x|}.
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De-ne on C two sequences of functions {up(x; y)}; {vp(x; y)}; p = 0; 1; 2; : : : ; via the following
recursive integral formulae:

u0(x; y) =
sgn(x)
2A(x)

; v0(x; y) =
sgn(y)
2A(y)

; (6)

up+1(x; y) =
∫ |x|

|y|
vp(x; z) dz; vp+1(x; y) =

sgn(y)
A(y)

∫ |x|

|y|
up(x; z)A(z) dz: (7)

This pair of families of functions enjoys the following properties.

Lemma 1. (i) up; vp ∈C1(C) for all p= 0; 1; 2; : : : ; and satisfy for 0¡ |y|¡ |x| the relations
�xup+1(x; y) = up(x; y); �yup+1(x; y) =−vp(x; y); (8)

�xvp+1(x; y) = vp(x; y); �yvp+1(x; y) =−up(x; y): (9)

(ii) The sequences {up(x; y)} and {vp(x; y)} may also be computed recursively for p=2; 3; 4; : : : ;
by the formulae

up(x; y) = 2
∫ |x|

|y|
up−2(x; s)u1(s; y)A(s) ds; vp(x; y) = 2

∫ |x|

|y|
vp−2(x; s)v1(s; y)A(s) ds: (10)

Proof. An induction argument gives assertion (i). Assertion (ii) follows easily by combining iden-
tities (7).

Remark 1. Appealing to (10), we show inductively that for any p = 0; 1; 2; : : : ; u2p(·; y) is odd,
u2p+1(·; y) is even, |u2p(x; y)|= u2p(|x|; y); and u2p+1(x; y)¿ 0.

Notation. For x∈R put �(x) = inf |y|6|x| B(y); �(x) = sup|y|6|x|B(y); and !(x) = �(x)=�(x):

We shall need the following estimates.

Lemma 2. We have

06 u1(x; y)6




|y|−2� − |x|−2�

4��(x)
if � 
= 0;

log(|x|=|y|)
2�(x)

if �= 0;

(11)

|u2p(x; y)|6
(
x2!(x)
2�+ 2

)p u1(x; y)
|x| for p= 1; 2; 3; : : : ; (12)

06 u2p+1(x; y)6
(
x2!(x)
2�+ 2

)p
u1(x; y) for p= 0; 1; 2; : : : : (13)
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Proof. Inequalities (11) follow readily from (6) and (7). Let us check (12). By (10) we have

|u2(x; y)| = 2
∫ |x|

|y|
|u0(x; s)|u1(s; y)A(s) ds= 1

A(x)

∫ |x|

|y|
u1(s; y)A(s) ds

6
1

A(x)

∫ |x|

0
A(s) ds u1(x; y)6

|x|!(x)
2�+ 2

u1(x; y): (14)

This implies that (12) holds for p= 1. Moreover, using (10) and (14) we -nd

|u4(x; y)| = 2
∫ |x|

|y|
|u2(x; s)|u1(s; y)A(s) ds6 2u1(x; y)

∫ |x|

|y|
|u2(x; s)|A(s) ds

6 u1(x; y)
|x|!(x)
�+ 1

∫ |x|

0
u1(x; s)A(s) ds:

But by (11),

06
∫ |x|

0
u1(x; s)A(s) ds6

x2!(x)
8(�+ 1)

(15)

for any �¿− 1
2 . Therefore, (12) is true for p=2, and the full result follows by induction. Similarly,

the majorization (13) is proved inductively by use of (10) and (15).

De-ne on R the family of functions {bp} by setting b0(x) = 1, and for p= 1; 2; 3; : : : ;

bp(x) =




∫ |x|

−|x|
up−1(x; y)A(y) dy if x 
= 0;

0 if x = 0:

(16)

Remark 2. By Remark 1 it follows that for any p= 0; 1; 2; : : : ; b2p is even, b2p+1 is odd, and bp is
positive on ]0;∞[.

For our purpose of a Taylor formula involving the di$erential-di$erence operator �, a thorough
investigation of the family {bp} seems unavoidable.

Proposition 1. For any p= 0; 1; 2; : : : ;

bp(x) = O(xp) as x → 0: (17)

Proof. By (16) we have for x 
= 0, |b1(x)|=1=A(x)
∫ |x|
0 A(y) dy6 |x|!(x)=(2�+2)=O(x) as x → 0:

Moreover, from (12), (13) and (16) we deduce the estimates:

|b2p+1(x)|6
(
x2!(x)
2�+ 2

)p b2(x)
|x| ; p= 1; 2; 3; : : : ; (18)

|b2p+2(x)|6
(
x2!(x)
2�+ 2

)p
b2(x); p= 0; 1; 2; : : : : (19)
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As inequality (15) says that 06 b2(x)6 x2!(x)=4(�+1); we see that for any p=1; 2; 3; : : : ; bp(x)=
O(xp) when x → 0:

Proposition 2. The functions bp; p= 0; 1; 2; : : : are of class C1 on R and satisfy the relation

�bp+1 = bp: (20)

Proof. From its expression (16) it is clear that b1 is di$erentiable on ]0;∞[, and for any x¿ 0,

b′1(x) = 1− A′(x)
A2(x)

∫ x

0
A(y) dy = 1−

(
2�+ 1
B(x)

+
xB′(x)
B2(x)

)∫ 1

0
B(tx)t2�+1 dt; (21)

which tends to 1=(2�+2) as x → 0+. This implies that b1 is of class C1 on R and b′1(0)=1=(2�+2).
Further, it is immediate from (21) that �b1(x) = 1 for all x∈R. Now -x p= 2; 3; 4; : : : . From (8)
and (16) it is readily seen that bp ∈C1(R \ {0}) and

�bp(x) = bp−1(x) for all x 
= 0: (22)

But due to Remark 2, identity (22) becomes b′p(x) = bp−1(x) for even p, and b′p(x) = bp−1(x) −
(A′=A)(x)bp(x) for odd p. Therefore b′p(x) = O(xp−1) as x → 0, by virtue of (2) and (17). This
immediately shows that bp ∈C1(R); b′p(0) = 0, and that equality (22) also holds for x = 0.

Starting from identity (20), we shall prove inductively that the bp; p=0; 1; 2; : : : ; are C∞ functions
on R. We begin with the following technical lemma proved by a standard argument.

Lemma 3. Let f be a function of class Cn on [0;∞[; n= 0; 1; 2; : : : : Then the function

H�f(x) =




1
x�

∫ x

0
f(t)t� dt if x¿ 0;

0 if x = 0;

is of class Cn+1 on [0;∞[. Furthermore, (H�f)(p)(0) = p=(�+ p)f(p−1)(0), for p= 1; 2; : : : ; n+ 1:

Notation. For a function f : R → C denote by fe(x)=(f(x)+f(−x))=2; fo(x)=(f(x)−f(−x))=2
its even and odd part, respectively. De-ne E as the space of C∞ complex-valued functions on R,
equipped with the topology of compact convergence of all derivatives. Let Ee denote the subspace
of E consisting of even functions. E∗ stands for the subspace of E consisting functions f such that
f(0) = 0.

Lemma 4. Let m; n=0; 1; 2; : : : . Let f be a function of class Cm on R such that �mf be of class
Cn on R. Then f is of class Cm+n on R.

Proof. It is enough to consider the case where m = 1. For even f, the result is obvious since
�f = f′ for such functions. For odd f, the result follows from Lemma 3, the relation f(x) =
1=A(x)

∫ x
0 �f(t)A(t) dt; and expression (2) of A. For arbitrary f the lemma is a consequence of the

relations (�f)e = �(fo); (�f)o = �(fe):
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It is now possible to state the following proposition.

Proposition 3. bp ∈E for each p= 0; 1; 2; : : : .

Proof. The result follows inductively by use of Proposition 2 and Lemma 4.

The role of the bp; p = 0; 1; 2; : : : ; in our generalized Taylor formula shall be analogous to that
of the monomials xp=p!; p = 0; 1; 2; : : : ; in the classical Taylor formula. To specify the connection
between the families {bp} and {xp=p!}, it is useful to recall from [7] the following result.

Theorem 1. There exists a unique isomorphism V of E such that

V
d
dx

f = �Vf and Vf(0) = f(0) for all f∈E: (23)

The operator V is said to be a transmutation operator between � and d=dx on the space E. For
A(x) = |x|2�+1; �¿− 1

2 , this transmutation operator reads

Vf(x) =
"(�+ 1)√
#"(�+ 1=2)

∫ 1

−1
(1− t2)�−1=2(1 + t)f(xt) dt; (24)

and is referred to as the Dunkl intertwining operator of index �+ 1
2 associated with the re:ection

group Z2 on R (see [5,11]).

We claim the following statement.

Proposition 4. For any n= 0; 1; 2; : : : ;

bn(x) = V
(
yn

n!

)
(x); x∈R: (25)

In order to prove the proposition, we need the following simple lemma.

Lemma 5. The mapping f → �f is one-to-one from E∗ onto E. The inverse mapping is given by

�−1f(x) =
∫ x

0
fo(y) dy +

1
A(x)

∫ x

0
fe(y)A(y) dy:

Proof. If f∈E then (1) leads to (�f)e = f′
o + A′=Afo, and (�f)o = f′

e. That is,

f(x) =
∫ x

0
(�f)o(y) dy + f(0) +

1
A(x)

∫ x

0
(�f)e(y)A(y) dy: (26)

This makes the result obvious.

Proof of Proposition 4. Set cn(x) = V (yn=n!)(x); x∈R; n = 0; 1; 2; : : : . Notice that c0 = b0 = 1 by
virtue of (23) and (26). Moreover, (23) ensures that cn ∈E∗ and �cn=cn−1 for all n=1; 2; 3; : : : . So
using Propositions 1–3 and Lemma 5 we easily check by induction that cn=bn for all n=0; 1; 2; : : : ;
which is the required result.
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Remark 4. If A(x) = |x|2�+1; �¿− 1
2 , then identities (24) and (25) entail

b2p(x) =
1

(�+ 1)pp!

(x
2

)2p
; b2p+1(x) =

1
(�+ 1)p+1p!

(x
2

)2p+1

for all p= 0; 1; 2; : : : . Moreover, it is easily shown that the bn; n= 0; 1; 2; : : : ; are polynomials only
in the Dunkl operator case.

Before we formulate our generalized Taylor formula, we need to introduce in the space E cer-
tain generalized translation operators Ta; a∈R, tied to the di$erential-di$erence operator � . Such
operators are de-ned in terms of the transmutation operator V via the formula

Taf(x) = VaVx[V−1f(a+ x)]; x∈R:

Clearly for A(x)=1, we regain the ordinary translation operators on R : f → %af(x)=f(a+x): The
Ta; a∈R, are linear bounded operators from E into itself, and possess the following fundamental
properties:

T 0 = identity; T af(x) = Txf(a) and �Ta = Ta�: (27)

For more details about this generalized translation operation we refer to [7,8]. We can now state the
-rst central result of this paper.

Theorem 2. Let f∈E and a∈R. Then for any n = 0; 1; 2; : : : ; we have the following generalized
Taylor formula with integral remainder:

Taf(x) =
n∑

p=0

bp(x)�pf(a) +
∫ |x|

−|x|
Wn(x; y)Ta�n+1f(y)A(y) dy; (28)

where

Wn(x; y) = un(x; y) + vn(x; y): (29)

In order to simplify the proof of Theorem 2, we -rst establish the following technical lemma.

Lemma 6. Let f be a function of class Cp+1 on R; p= 1; 2; 3; : : : . Then∫ |x|

−|x|
Wp(x; y)�p+1f(y)A(y) dy =

∫ |x|

−|x|
Wp−1(x; y)�pf(y)A(y) dy − bp(x)�pf(0)

Proof. First,∫ |x|

−|x|
up(x; y)�p+1f(y)A(y) dy=2

∫ |x|

0
up(x; y)(�p+1f)e(y)A(y) dy

=2
∫ |x|

0
up(x; y)

d
dy

[A(y)(�pf)o(y)] dy: (30)

Observe that by Lemma 2, the function y → A(y)up(x; y) is bounded in a neighborhood of the
origin. Further, the classical Taylor formula implies that (�pf)o(y)= cy+o(y) as y → 0, for some
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constant c. Therefore, integrating (30) by parts and applying (8) we obtain∫ |x|

−|x|
up(x; y)�p+1f(y)A(y) dy=−2

∫ |x|

0
�yup(x; y)(�pf)o(y)A(y) dy

=
∫ |x|

−|x|
vp−1(x; y)�pf(y)A(y) dy: (31)

Moreover,∫ |x|

−|x|
vp(x; y)�p+1f(y)A(y) dy=2

∫ |x|

0
vp(x; y)(�p+1f)o(y)A(y) dy

=2
∫ |x|

0
vp(x; y)

d
dy

(�pf)e(y)A(y) dy: (32)

As by (7) and (16), limy→0+2A(y)vp(x; y) = bp(x); an integration by parts in (32), as well as (9)
yield ∫ |x|

−|x|
vp(x; y)�p+1f(y)A(y) dy=−2

∫ |x|

0
�yvp(x; y)(�pf)e(y)A(y) dy − bp(x)�pf(0)

=
∫ |x|

−|x|
up−1(x; y)�pf(y)A(y) dy − bp(x)�pf(0): (33)

The result follows now by combining (31) and (33).

Proof of Theorem 2. Because of (27) it is su4cient to consider the case where a = 0. By (6) we
have ∫ |x|

−|x|
u0(x; y)�f(y)A(y) =

sgn(x)
A(x)

∫ |x|

0

d
dy

[A(y)fo(y)] dy = fo(x);

∫ |x|

−|x|
v0(x; y)�f(y)A(y) dy =

∫ |x|

0
f′
e(y) dy = fe(x)− f(0):

This yields the statement for n = 0. For n = 1; 2; 3; : : : ; we get identity (28) inductively by use of
Lemma 6.

Remark 5. If p is a polynomial of degree k (k=1; 2; 3; : : :), then (3) implies that D�p is a polynomial
of degree k − 1. Therefore in the Dunkl operator case, the integral remainder in (28) will vanish
whenever f is a polynomial of degree n.

Our next purpose is to determine su4cient conditions under which a function f in E may be
expanded as a generalized Taylor series in the vicinity of an arbitrary point a∈R. This will be
achieved with some additional assumptions on the di$erential-di$erence operator �. For �¿− 1

2 , it
was pointed out in [8] that the translation operators Ta; a∈R, may be represented as

Taf(x) =
∫
R
f(y) d(a;x(y); f∈E; (34)



M.A. Mourou / Journal of Computational and Applied Mathematics 153 (2003) 343–354 351

where for each a; x∈R; (a;x is a distribution on R with support in [ − |a| − |x|;−‖a| − |x‖] ∪
[‖a|− |x‖; |a|+ |x|]. From now on we assume that the distributions (a;x are uniformly norm-bounded
measures, i.e, there is a constant C¿ 0 such that

‖(a;x‖6C for all a; x∈R: (35)

With this additional assumption we readily check that

|Taf(x)|6C sup
‖y|−|a‖6|x|

|f(y)| for all a; x∈R and all f∈E: (36)

Such an estimation will be the key tool in the proof of the next theorem.

Theorem 3. Let f∈E and a∈R. Suppose that there are M; *¿ 0 such that

sup
‖x|−|a‖6*

|�nf(x)|6Mn+1n! (37)

for all n= 0; 1; 2; : : : . Then there exists an r ¿ 0 such that

Taf(x) =
∞∑
p=0

bp(x)�pf(a) (38)

for |x|6 r. Furthermore, the series in (38) converges uniformly for |x|6 r.

The following estimates for the functions bp; p=0; 1; 2; : : : ; sharpen those given by (18) and (19),
and may be useful in the proof of Theorem 3.

Proposition 5. For any p= 0; 1; 2; : : : ; and x¿ 0,

06 b2p(x)6
1

(�+ 1)pp!

(
x2!(x)

4

)p
;

06 b2p+1(x)6
1

(�+ 1)p+1p!

(x
2

)2p+1
(!(x))p+1:

Proof. Let {ũ p} denote the family {up} corresponding to the Dunkl operator. By (6),

|u0(x; y)|= 1
2A(x)

6
1

2�(x)|x|2�+1 =
|ũ 0(x; y)|
�(x)

:

Further, by (6) and (7),

06 u1(x; y) =
∫ |x|

|y|
dz

2A(z)
6

1
�(x)

∫ |x|

|y|
dz

2z2�+1 =
ũ 1(x; y)
�(x)

:

An induction argument shows that for all p= 0; 1; 2; : : : ;

|up(x; y)|6 (!(x))[p=2]

�(x)
|ũ p(x; y)|; (39)

where [p=2] is the integer part of p=2. The proposition follows now by combining (16), (39) and
Remark 4.
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Proof of Theorem 3. Set Rn(a; x) =
∫ |x|
−|x|Wn(x; y)Ta�n+1f(y)A(y) dy: By (36) and (37) it follows

that |Rn(a; x)|6CMn+2(n + 1)!
∫ |x|
−|x| |Wn(x; y)|A(y) dy for 0¡ |x|6 *. As by (29), |Wn(x; y)|6

|un(x; y)|+ |vn(x; y)|= un(|x|; y) + vn(|x|; |y|); we deduce from (7) and (16) that∫ |x|

−|x|
|Wn(x; y)|A(y) dy6 bn+1(|x|) + |x|bn(|x|): (40)

Therefore, |Rn(a; x)|6C Mn+2(n+1)! (bn+1(|x|)+ |x|bn(|x|)) for 0¡ |x|6 *. Now using Proposition
5 we get

|R2n(a; x)|6CM 2|x|(!(x) + 2(�+ n+ 1))(M 2x2!(x))n
(2n+ 1)!

22n+1 (�+ 1)n+1n!
and

|R2n+1(a; x)|6CM (M 2x2!(x))n+1 (2n+ 3)!
22n+2 (�+ 1)n+1(n+ 1)!

;

for 0¡ |x|6 *. Applying Stirling’s formula, we -nd

|R2n(a; x)|= (M 2x2!(x))nO(n−�−1=2) and |R2n+1(a; x)|= (M 2x2!(x))n+1O(n−�+1=2); (41)

for 0¡ |x|6 * and n → ∞. Choose an r ∈ ]0; *[ such that 0¡M 2r2!(r)¡ 1: As the function ! is
increasing on [0;∞[, we see by (41) that limn→∞Rn(a; x) = 0 uniformly for 0¡ |x|6 r. This ends
the proof by virtue of Theorem 2.

Remark 6. (i) According to ROosler [10], assumption (35) is satis-ed in the Dunkl operator case,
with C = 4.

(ii) Delsarte and Lions [3] have introduced in Ee translation operators Sa; a∈R, tied to the
di$erential operator L. It was indicated in [7] that Saf(x) = [Taf(x) + Taf(−x)]=2 for all f∈Ee.
Accordingly, by taking f even in Theorems 2 and 3, we easily regain the corresponding results
proved in [12] for the operator L.

2. Analyticity criterion

As already indicated in Remark 4, the generalized Taylor series (38) are power series only in the
Dunkl operator case. Hence it may be useful to provide a criterion of analyticity on R involving
the di$erential-di$erence operator �. Throughout this section we assume that the function B given
by (2) is analytic on R. TrimKeche [12] has obtained the following analyticity criterion for even
functions on R involving the di$erential operator L.

Theorem 4. Let f be a function in Ee. Then f is analytic if and only if for any *¿ 0 there is
an M*¿ 0 such that

sup
06x6*

|Lnf(x)|6 (M*)n+1(2n)! for all n= 0; 1; 2; : : : :

The purpose of this section is to establish an analogue of Theorem 4 for the di$erential-di$erence
operator �. Namely, we claim the following result.
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Theorem 5. In order that a function f in E be analytic it is necessary and su<cient that for any
*¿ 0 there be an M*¿ 0 such that

sup
|x|6*

|�nf(x)|6 (M*)n+1n! for all n= 0; 1; 2; : : : : (42)

Proof. Let f be an analytic function. By induction we check that for any n= 0; 1; 2; : : : ;

�2nf = Ln(fe) +
d
dx

LnI(fo) �2n+1f = Ln+1I(fo) +
d
dx

Ln(fe); (43)

where I denotes the map de-ned on E by Ig(x) =
∫ x
0 g(t) dt, x∈R: These relations when combined

with Theorem 4, together with the identity (d=dx)g(x)=1=A(x)
∫ x
0 Lg(t)A(t) dt which is valid for any

g∈Ee, show that condition (42) is necessary. Conversely, suppose that an f∈E satisfy condition
(42). Introduce the function F(x; y) =

∑∞
n=0(i)

n(yn=n!)�nf(x): By hypothesis (42) and Lemma 4,
we can -nd an 2¿ 0 such that F(x; y) be of class C∞ in the strip R × ]− 2; 2[. Moreover F(x; y)
satis-es for x∈R and |y|¡2 the di$erential-di$erence equation

�2
xF(x; y) +

@2

@y2 F(x; y) = 0: (44)

Write F=p+q with p(x; y)=(F(x; y)+F(−x; y))=2 and q(x; y)=(F(x; y)−F(−x; y))=2: According
to (44), the functions p and q satisfy on R× ]− 2; 2[ the homogeneous di$erential equations

5(xp(x; y)) +
(
x
A′(x)
A(x)

− 2
)
@p
@x

(x; y) = 0; (45)

5(x2q(x; y)) +
(
x2
A′(x)
A(x)

− 4x
)
@q
@x

(x; y) +
(
x2

(
A′(x)
A(x)

)′
− 2

)
q(x; y) = 0; (46)

where 5 = @2=@x2 + @2=@y2 is the Laplacian on R2. As by (2) the functions xA′(x)=A(x) and
x2(A′(x)=A(x))′ are analytic in R2, we deduce from [1, Corollary 1.2] that both the left-hand sides
of (45) and (46) are hypo-analytic operators on R2. Therefore p and q are analytic in the strip
R× ]− 2; 2[, and so is F . To conclude the proof observe that f(x) = F(x; 0) for all x∈R.

Remark 7. (i) According to identities (43), Theorem 5 immediately implies Theorem 4.
(ii) From (20) and Theorem 5 it follows that the bn; n= 0; 1; 2; : : : ; are analytic functions on R.

Corollary 1. Taf is analytic whenever f is analytic and a∈R.

Proof. Let f be analytic and a∈R. By (27) and (36) we have for any *¿ 0 and n= 0; 1; 2; : : : ;

sup
|x|6*

|�nTaf(x)|= sup
|x|6*

|Ta�nf(x)|6 sup
‖x|−|a‖6*

|�nf(x)|6 sup
|x|6|a|+*

|�nf(x)|:

From this and Theorem 5 we deduce that the function Taf is analytic on R.

Remark 8. A combination of Theorems 3, 5 and Corollary 1 shows that any analytic function on
R may be expanded in a generalized Taylor series in a neighborhood of an arbitrary point a∈R.
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