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The Harmonic Balance Method provides a heuristic approach for
finding truncated Fourier series as an approximation to the peri-
odic solutions of ordinary differential equations. Another natural
way for obtaining these types of approximations consists in apply-
ing numerical methods. In this paper we recover the pioneering re-
sults of Stokes and Urabe that provide a theoretical basis for prov-
ing that near these truncated series, whatever is the way they have
been obtained, there are actual periodic solutions of the equation.
We will restrict our attention to one-dimensional non-autonomous
ordinary differential equations, and we apply the obtained results
to a concrete example coming from a rigid cubic system.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction and main results

Consider the real non-autonomous differential equation

x′ = X(x, t), (1)

where the prime denotes the derivative with respect to t , X : Ω × [0,2π ] → R is a C2-function,
2π -periodic in t , and Ω ⊂R is a given open interval.

There are several methods for finding approximations to the periodic solutions of (1). For instance,
the Harmonic Balance Method (HBM), recalled in Section 2.1, or simply the numerical approximations
of the solutions of the differential equations. In any case, from all the methods we can get a truncated
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Fourier series, namely a trigonometric polynomial, that “approximates” an actual periodic solution of
the equation. The aim of this work is to recover some old results of Stokes and Urabe that allow
the use of these approximations to prove that near them there are actual periodic solutions and also
provide explicit bounds, in the infinity norm, of the distance between both functions. To the best of
our knowledge these results are rarely used in the papers dealing with HBM.

When the methods are applied to concrete examples one has to manage the coefficients of the
truncated Fourier series that are rational numbers which renders the subsequent computations more
difficult. See the example of Section 4. At this point we introduce in this setting a classical tool that as
far as we know has never been used in this type of problems: we approximate all the coefficients of
the truncated Fourier series by suitable convergents of their respective expansions in continuous frac-
tions. This is done in such a way that by using these new coefficients we obtain a new approximate
solution that is essentially at the same distance to the actual solution as the starting approximation.
With this method we obtain trigonometric polynomials with nice rational coefficients that approxi-
mate the periodic solutions.

Before stating our main result, and following [4,5], we introduce some concepts. Let x̄(t) be a
2π -periodic C1-function; we will say that x̄(t) is noncritical with respect to (1) if

2π∫
0

∂

∂x
X
(
x̄(t), t

)
dt �= 0. (2)

Notice that if x̄(t) is a periodic solution of (1) then the concept of noncritical is equivalent to the one
of being hyperbolic; see [2].

As we will see in Lemma 2.1, if x̄(t) is noncritical w.r.t. Eq. (1), the linear periodic system

y′ = ∂

∂x
X
(
x̄(t), t

)
y + b(t)

has a unique periodic solution yb(t) for each smooth 2π -periodic function b(t). Moreover, once X
and x̄ are fixed, there exists a constant M such that

‖yb‖∞ � M‖b‖2, (3)

where as usual, for a continuous 2π -periodic function f ,

‖ f ‖2 =

√√√√√ 1

2π

2π∫
0

f 2(t)dt, ‖ f ‖∞ = max
x∈R

∣∣ f (x)
∣∣ and ‖ f ‖2 � ‖ f ‖∞.

Any constant satisfying (3) will be called a deformation constant associated to x̄ and X . Finally, consider

s(t) := x̄′(t) − X
(
x̄(t), t

)
. (4)

We will say that x̄(t) is an approximate solution of (1) with accuracy S = ‖s‖2. For simplicity, if S̃ > S ,
we also will say that x̄(t) has accuracy S̃ . Notice that actual periodic solutions of (1) have accuracy 0;
in this sense, the function s(t) measures how far is x̄(t) from being an actual periodic solution of (1).

The next theorem improves some of the results of Stokes [4] and Urabe [5] in the one-dimensional
setting. More concretely, in those papers they prove the existence and uniqueness of the periodic orbit
when 4M2 K S < 1. We present a similar proof with the small improvement 2M2 K S < 1. Moreover our
result gives, under an additional condition, the hyperbolicity of the periodic orbit.
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Theorem 1.1. Let x̄(t) be a 2π -periodic C1-function such that

– it is noncritical w.r.t. Eq. (1) and has M as a deformation constant,
– it has accuracy S w.r.t. Eq. (1).

Given I := [min{t∈R} x̄(t) − 2M S,max{t∈R} x̄(t) + 2M S] ⊂ Ω , let K < ∞ be a constant such that

max
(x,t)∈I×[0,2π ]

∣∣∣∣ ∂2

∂x2
X(x, t)

∣∣∣∣ � K .

Therefore, if

2M2 K S < 1,

there exists a 2π -periodic solution x∗(t) of (1) satisfying

∥∥x∗ − x̄
∥∥∞ � 2M S,

and it is the unique periodic solution of the equation entirely contained in this strip. If in addition

∣∣∣∣∣
2π∫
0

∂

∂x
X
(
x̄(t), t

)
dt

∣∣∣∣∣ >
2π

M
,

then the periodic orbit x∗(t) is hyperbolic, and its stability is given by the sign of this integral.

Once some approximate solution is guessed, for applying Theorem 1.1 we need to compute the
three constants appearing in its statement. In general, K and S can be easily obtained. Recall for
instance that ‖s‖2, when s is a trigonometric polynomial, can be computed from Parseval’s theorem.
On the other hand, M is much more difficult to estimate. In Lemma 2.3 we give a result useful for
computing it in concrete cases, that is different from the approach used in [4–6].

Assuming that a non-autonomous differential equation has a hyperbolic periodic orbit, the results
of [5] also guarantee that, if given a suitable trigonometric polynomial r̄(t) of a sufficiently high
degree, we can apply the first part of Theorem 1.1. Intuitively, while the value of the accuracy S goes
to zero when we increase the degree of the trigonometric polynomial, the values M and K remain
bounded. Thus, at some moment, it holds that 2M2 K S < 1.

In Section 4 we apply Theorem 1.1 to study and localize the limit cycles of the rigid cubic system

ẋ = −y + x

10

(
1 − x − 10x2),

ẏ = x + y

10

(
1 − x − 10x2).

In polar coordinates it is written as ṙ = r/10 − cos(θ)r2/10 − cos2(θ)r3, θ̇ = 1, or equivalently,

r′ = dr

dt
= 1

10
r − 1

10
cos(t)r2 − cos2(t)r3, (5)

and it has a unique positive periodic orbit; see also [1]. Notice that we have renamed θ as t. We
prove the following:
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Proposition 1.2. Consider the periodic function

r̄(t) = 4

9
− 1

693
cos(t) − 1

51
sin(t) − 1

653
cos(2t) − 1

45
sin(2t) − 1

780
cos(3t).

The differential equation (5) then has a periodic solution r∗(t) such that

∥∥r̄ − r∗∥∥∞ � 0.042,

which is hyperbolic and stable, and it is the only periodic solution of (5) contained in this strip.

As we will see, in this example we will find computational difficulties to obtain the third approx-
imation given by the HBM. Therefore we will get it first by numerically approaching the periodic
solution, then by numerically computing the first terms of its Fourier series and finally by using the
continuous fractions approach to simplify the values appearing in our computations. We also will see
that the same approach works for other concrete rigid systems.

Similar examples for second-order differential equations have also been studied in [6].

2. Preliminary results

This section contains some technical lemmas that are useful for proving Theorem 1.1 and for ob-
taining in concrete examples the constants appearing in its statement. We also include a very short
overview of the HBM adapted to our interests. See [3] for a more general point of view on the HBM.

As usual, given A ⊂ R, 1A : R → R denotes the characteristic function of A: the function takes the
value 1 when x ∈ A, and the value is 0 otherwise.

Lemma 2.1. Let a(t) and b(t) be continuous real 2π -periodic functions. Consider the non-autonomous linear
ordinary differential equation

x′ = a(t)x + b(t). (6)

If A(2π) �= 0, where A(t) := ∫ t
0 a(s)ds, then for each b(t) Eq. (6) has a unique 2π -periodic solution xb(t) :=∫ 2π

0 H(t, s)b(s)ds, where the kernel H(t, s) is given by the piecewise function

H(t, s) = e A(t)

1 − e A(2π)

[
e−A(s)1[0,t](s) + e A(2π)−A(s)1[t,2π ](s)

]
. (7)

Moreover ‖xb‖∞ � 2π maxt∈[0,2π ] ‖H(t, ·)‖2‖b‖2 .

Proof. Since (6) is linear, its general solution is

x(t) = e A(t)

(
x0 +

t∫
0

b(s)e−A(s) ds

)
. (8)

If we impose that the solution is 2π -periodic, i.e. x(0) = x(2π), we get

x0 = e A(2π)

1 − e A(2π)

2π∫
b(s)e−A(s) ds, (9)
0
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then (8) becomes

xb(t) = e A(t)

1 − e A(2π)

[
e A(2π)

2π∫
0

b(s)e−A(s) ds + (
1 − e A(2π)

) t∫
0

b(s)e−A(s) ds

]

= e A(t)

1 − e A(2π)

[
e A(2π)

2π∫
t

b(s)e−A(s) ds +
t∫

0

b(s)e−A(s) ds

]

=
2π∫
0

H(t, s)b(s)ds.

Therefore, the first assertion follows. On the other hand, by the Cauchy–Schwarz inequality,

∣∣xb(t)
∣∣ �

√√√√√
2π∫
0

H2(t, s)ds

√√√√√
2π∫
0

b2(s)ds.

Hence,

‖xb‖∞ � 2π max
t∈[0,2π ]

∥∥H(t, ·)∥∥2‖b‖2.

This completes the proof. �
Corollary 2.2. A deformation constant M associated with x̄ and X is

M := 2π max
t∈[0,2π ]

∥∥H(t, ·)∥∥2,

where H is given in (7) with A(t) = ∫ t
0

∂
∂x X(x̄(t), t)dt.

Now we prove a technical result that will allow us to compute in practice deformation constants. In
fact we will find an upper bound of M that will avoid the integration step needed in the computation
of the norm ‖ · ‖2. First, we introduce some notations.

Given a function A : [0,2π ] → R, a positive number �, and a partition ti = ih with i = 0,1, . . . , N,

of the interval [0,2π ], where h = 2π/N , we consider the function L : [0,2π ] → R given by the con-
tinuous linear piecewise function joining the points (ti, A(ti) − �). Notice that L(t) = ∑N−1

i=0 Li(t)1Ii ,
where Ii = [ti, ti+1] and

Li(t) = A(ti+1) − A(ti)

h
(t − ti) + f (ti) := −1

2
(αit + βi).

We will say that L is an adequate lower bound of A if it holds that L(t) < A(t) for all t ∈ [0,2π ].
Clearly, smooth functions always have adequate functions that approach them.

For each m = 0,1, . . . , N we define the function

Ψm(t) :=
m−1∑

J i + λ2
N−1∑

J i + (
1 − λ2)eβm

αm

(
eαmt − eαmtm

)
, (10)
i=0 i=m−1
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where λ = e A(2π) , and

J i :=
ti+1∫
ti

e−2L(s) ds =
ti+1∫
ti

e−2Li(s) ds = eβi

αi

(
eαi ti+1 − eαi ti

)
.

Lemma 2.3. Let L be an adequate lower bound of A, where A is the function given in Lemma 2.1. Consider the
functions Ψm(t), with m = 0,1, . . . , N − 1. Therefore, also following the notation introduced in that lemma, it
holds that ‖xb‖∞ � N‖b‖2 , where

N =
√

2π

|1 − λ| max
t∈[0,2π ] e A(t)

√√√√N−1∑
m=0

Ψm(t)1Im (t).

Proof. Recall that from Lemma 2.1, ‖xb‖∞ � M‖b‖2, where

M := 2π max
t∈[0,2π ]

∥∥H(t, ·)∥∥2.

Thus, we will find an upper bound of M. Since

H(t, s) = e A(t)

1 − e A(2π)

[
e−A(s)1[0,t](s) + e A(2π)−A(s)1[t,2π ](s)

]
,

it holds that

∥∥H(t, ·)∥∥2 = 1√
2π

e A(t)

|1 − λ|
√

G(t)

where

G(t) :=
t∫

0

e−2A(s) ds + λ2

2π∫
t

e−2A(s) ds <

t∫
0

e−2L(s) ds + λ2

2π∫
t

e−2L(s) ds,

because L(t) < A(t) for all t ∈ [0,2π ].
Assume that t ∈ Im . Thus,

t∫
0

e−2L(s) ds =
m−1∑
i=0

J i +
t∫

tm

e−2Lm(s) ds,

2π∫
t

e−2L(s) ds =
N−1∑
i=m

Ji +
tm+1∫
t

e−2Lm(s) ds =
N−1∑

i=m−1

J i −
t∫

tm

e−2Lm(s) ds.

Therefore, for t ∈ Im ,

G(t) <

m−1∑
i=0

J i + λ2
N−1∑

i=m−1

J i + (
1 − λ2) t∫

t

eαms+βm ds = Ψm(t).
m
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As a consequence, for t ∈ [0,2π ],

G(t) <

N−1∑
m=0

Ψm(t)1Im (t),

and the result follows. �
Remark 2.4. Notice that the above lemma provides a way for computing a deformation constant
where there is no need of computing integrals. This will be very useful in concrete application, where
the primitive of e−2A(t) is not computable, and so Corollary 2.2 is difficult to apply for obtaining M.

In the next result, which introduces the constant K appearing in Theorem 1.1, D◦ denotes the
topological interior of D.

Lemma 2.5. Consider X as in (1). Let D be a closed interval, and let x̄(t) be a 2π -periodic C1-function such
that {x̄(t): t ∈R} ⊂ D◦ . Define

R(z, t) := X
(
x̄(t) + z, t

) − X
(
x̄(t), t

) − ∂

∂x
X
(
x̄(t), t

)
z (11)

for all z such that {x̄(t) + z: t ∈ R} ⊂ D. Then

(i) |R(z, t)| � K
2 |z|2 ,

(ii) |R(z, t) − R(z̄, t)| � K max(|z|, |z̄|)|z − z̄|,

where

K := max
(x,t)∈D×[0,2π ]

∣∣∣∣ ∂2

∂x2
X(x, t)

∣∣∣∣.
Proof. (i) By using Taylor’s formula, for each t it holds that

X
(
x̄(t) + z, t

) = X
(
x̄(t), t

) + ∂

∂x
X
(
x̄(t), t

)
z + 1

2

∂2

∂x2
X
(
ξ(t), t

)
z2

for some ξ(t) ∈ 〈x̄(t), x̄(t) + z〉. Therefore

∣∣R(z, t)
∣∣ =

∣∣∣∣1

2

∂2

∂x2
X
(
ξ(t), t

)∣∣∣∣|z|2 � K

2
|z|2,

as we wanted to prove.
(ii) From Rolle’s theorem, for each fixed t it follows that there exists η(t) ∈ 〈z, z̄〉 such that

∣∣R(z, t) − R(z̄, t)
∣∣ � ∣∣∣∣ ∂

∂z
R
(
η(t), t

)∣∣∣∣|z − z̄|.

Applying again this theorem, but now to ∂
∂z R , and by noticing that ∂

∂z R(z, t)|z=0 = 0, we obtain

∣∣∣∣ ∂

∂z
R
(
η(t), t

)∣∣∣∣ �
∣∣∣∣ ∂2

∂z2
R
(
ω(t), t

)∣∣∣∣∣∣η(t)
∣∣ =

∣∣∣∣ ∂2

∂x2
X
(
ω(t), t

)∣∣∣∣∣∣η(t)
∣∣ � K

∣∣η(t)
∣∣,
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where ω(t) ∈ 〈0, η(t)〉. Note also that

∣∣η(t)
∣∣ � max

(|z|, |z̄|).
Hence, the result follows combining the three inequalities. �
2.1. The Harmonic Balance Method

In this subsection we recall the HBM adapted to the setting of one-dimensional 2π -periodic non-
autonomous differential equations.

We are interested in finding periodic solutions of the 2π -periodic differential equation (1), or
equivalently, periodic functions which satisfy the following functional equation

F
(
x(t)

) := x′(t) − X
(
x(t), t

) = 0. (12)

Recall that any smooth 2π -periodic function x(t) can be written as its Fourier series

x(t) = a0

2
+

∞∑
m=1

(
am cos(mt) + bm sin(mt)

)
,

where

am = 1

π

2π∫
0

x(t) cos(mt)dt, and bm = 1

π

2π∫
0

x(t) sin(mt)dt,

for all m � 0. Hence, it is natural to try to approximate the periodic solutions of the functional equa-
tion (12) by using truncated Fourier series, i.e. trigonometric polynomials.

Let us describe the HBM of order N . Consider a trigonometric polynomial

yN(t) = r0

2
+

N∑
m=1

(
rm cos(mt) + sm sin(mt)

)

with unknowns rm = rm(N), sm = sm(N) for all m � N . Compute then the 2π -periodic function
F(yN(t)). It has also an associated Fourier series

F
(

yN(t)
) = A0

2
+

∞∑
m=1

(
Am cos(mt) + Bm sin(mt)

)
,

where Am = Am(r, s) and Bm = Bm(r, s), m � 0, with r = (r0, r1, . . . , rN) and s = (s1, . . . , sN ). The
HBM consists of finding values r and s such that

Am(r, s) = 0 and Bm(r, s) = 0 for 0 � m � N. (13)

The above set of equations is usually a very difficult nonlinear system of equations, and for this reason
in various works including [3] and the references therein, only small values of N are considered. We
also remark that in general the coefficients of yN(t) and yN+1(t) do not coincide at all.
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Notice that Eq. (13) is equivalent to

2π∫
0

F
(

yN(t)
)

cos(mt)dt = 0 and

2π∫
0

F
(

yN(t)
)

sin(mt)dt = 0,

for 0 � m � N.

The hope of the method is that the trigonometric polynomials found using this approach are “near”
actual periodic solutions of the differential equation (1). In any case, as far as we know, the HBM for
small N is only a heuristic method that sometimes works quite well.

To end this subsection, we want to comment on a main difference between the non-autonomous
case treated here and the autonomous one. In this second situation the periods of the searched peri-
odic orbits, or equivalently their frequencies, are also treated as unknowns. The method then works
similarly; see again [3].

3. Proof of the main result

Proof of Theorem 1.1. As a first step we prove the following result: consider the nonlinear differential
equation

z′ = X
(
z + x̄(t), t

) − X
(
x̄(t), t

) − s(t), (14)

where s(t) is given in (4). A 2π -periodic function z(t) is then a solution of (14) if and only if z(t)+ x̄(t)
is a 2π -periodic solution of (1).

This is a consequence of the following equalities:

(
z(t) + x̄(t)

)′ = [
X
(
z(t) + x̄(t), t

) − X
(
x̄(t), t

) − s(t)
] + [

X
(
x̄(t), t

) + s(t)
]

= X
(
z(t) + x̄(t), t

)
.

By using the function

R(z, t) = X
(
z + x̄(t), t

) − X
(
x̄(t), t

) − ∂

∂x
X
(
x̄(t), t

)
z,

introduced in Lemma 2.5, Eq. (14) can be written as

z′ = ∂

∂x
X
(
x̄(t), t

)
z + R(z, t) − s(t). (15)

Let P be the space of 2π -periodic C0-functions. To prove the first part of the theorem it suffices
to see that Eq. (15) has a unique C1, 2π -periodic solution z∗(t), which belongs to the set

N = {
z ∈ P: ‖z‖∞ � 2M S

}
.

To prove this last assertion, we will construct a contractive map T : N → N . Because N is a
complete space with the ‖ · ‖∞ norm, its fixed point will be a continuous function in N that will
satisfy an integral equation, equivalent to (15). Finally we will see that this fixed point is in fact a C1

function, and it satisfies Eq. (15).
Let us define T . If z ∈ N , then T (z) is defined as the unique 2π -periodic solution of the linear

differential equation
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y′ = ∂

∂x
X
(
x̄(t), t

)
y + R

(
z(t), t

) − s(t).

Notice that this map is well-defined, by Lemma 2.1, because x̄(t) is noncritical w.r.t. Eq. (1). Thus,
z1 satisfies

z′
1 = ∂

∂x
X
(
x̄(t), t

)
z1 + R

(
z(t), t

) − s(t).

Let us prove that T maps N into N and that it is a contraction. By Lemmas 2.1 and 2.5 and the
hypotheses of the theorem

∥∥T (z)
∥∥∞ = ‖z1‖∞ � M

∥∥R
(
z(·), ·) − s(·)∥∥2 � M

(∥∥R
(
z(·), ·)∥∥2 + S

)
� M

(∥∥R
(
z(·), ·)∥∥∞ + S

)
� M

(
K

2
‖z‖2∞ + S

)

� M
(
2K M2 S2 + S

)
< 2M S,

where we have used in the last inequality that 2M2 K S < 1.
To show that T is a contraction on N , take z, z̄ ∈N and denote by z1 = T (z), z̄1 = T (z̄). Then

z′
1 = ∂

∂x
X
(
x̄(t), t

)
z1 + R

(
z(t), t

) − s(t),

z̄′
1 = ∂

∂x
X
(
x̄(t), t

)
z̄1 + R

(
z̄(t), t

) − s(t).

Therefore,

(z1 − z̄1)
′ = ∂

∂x
X
(
x̄(t), t

)
(z1 − z̄1) + R

(
z(t), t

) − R
(
z̄(t), t

)
.

Again by Lemmas 2.1 and 2.5 and the hypotheses of the theorem,

∥∥T (z) − T (z̄)
∥∥∞ = ‖z1 − z̄1‖∞ � M

∥∥R
(
z(·), ·) − R

(
z̄(·), ·)∥∥∞

� M K max
(‖z‖∞,‖z̄‖∞

)‖z − z̄‖∞ � 2M2 K S‖z − z̄‖∞,

as we wanted to prove, because recall that 2M2 K S < 1.
Thus, the sequence of functions {zn(t)} defined as

z′
n+1(t) = ∂

∂x
X
(
x̄(t), t

)
zn+1(t) + R

(
zn(t), t

) − s(t),

with any z0(t) ∈ N , and zn+1(t) chosen to be periodic, converges uniformly to some function
x∗(t) ∈N . In fact we also have that

zn+1(t) = zn+1(0) +
t∫ (

∂

∂x
X
(
x̄(w), w

)
zn+1(w) + R

(
zn(w), w

) − s(w)

)
dw.
0
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Therefore,

x∗(t) = x∗(0) +
t∫

0

(
∂

∂x
X
(
x̄(w), w

)
x∗(w) + R

(
x∗(w), w

) − s(w)

)
dw.

We know that x∗(t) is a continuous function, but from the above expression we obtain that it is
indeed of class C1. Therefore x∗(t) is a periodic solution of (15) and is the only one in N , as we
wanted to see.

To prove the hyperbolicity of x∗(t), it suffices to show that

2π∫
0

∂

∂x
X
(
x∗(t), t

)
dt �= 0,

and study its sign; see [2]. We have that, fixed t ,

∂

∂x
X
(
x∗(t), t

) = ∂

∂x
X
(
x̄(t), t

) + ∂2

∂x2
X
(
ξ(t), t

)(
x∗(t) − x̄(t)

)
,

for some ξ(t) ∈ 〈x∗(t), x̄(t)〉. Therefore, since we have already proved that |x∗(t) − x̄(t)| < 2M S ,

∣∣∣∣ ∂

∂x
X
(
x̄(t), t

) − ∂

∂x
X
(
x∗(t), t

)∣∣∣∣ � 2K M S.

Then

∣∣∣∣∣
2π∫
0

∂

∂x
X
(
x̄(t), t

)
dt −

2π∫
0

∂

∂x
X
(
x∗(t), t

)
dt

∣∣∣∣∣� 4π K M S <
2π

M
,

and the result follows because by hypothesis the first integral is, in absolute value, bigger than
2π/M. �
4. Applications

In this section we apply Theorem 1.1 for proving the existence and uniqueness of hyperbolic limit
cycles, in a suitable region, of some planar rigid systems, which after some transformations can be
converted into differential equation of the form (1). More precisely, we study some concrete cases of
the family of rigid cubic systems

ẋ = −y − x
(
a + bx + x2), ẏ = x − y

(
a + bx + x2), (16)

already considered in [1]. In that paper it is proved that (16) has at most one limit cycle, and when
it exists, it is hyperbolic.

With our point of view we will find an explicit approximation of the limit cycle; see Proposi-
tion 1.2. In order to simplify the computations we first consider the case a = −b = 1/10, which in
polar coordinates is written as (5):

r′ = dr = 1
r − 1

cos(t)r2 − cos2(t)r3.

dt 10 10
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We want to find an approximation of the periodic solution of (5), which we will use for applying
Theorem 1.1.

First attempt: the HBM. Following it, and according to Section 2.1, consider the equation

F
(
r(t)

) = r′(t) − 1

10
r + 1

10
cos(t)r2 + cos2(t)r3 = 0, (17)

which is clearly equivalent to (5).
Searching for a solution of the form r(t) = r0 and imposing that the first harmonic of

1

2
r3

0 − 1

10
r0 + 1

10
cos(t)r2

0 + 1

2
cos(2t)r3

0

vanishes, we obtain

1

2
r0

(
r2

0 − 1

5

)
= 0.

Hence r0 = √
5/5 ≈ 0.4472135954 is the first-order solution given by the HBM. We obtain that the

positive approximate solution is r = √
5/5. For applying the second-order HBM we search for an

approximation of the form

r(t) = r0 + r1 cos(t) + s1 sin(t).

The vanishing of the coefficients of 1, cos(t) and sin(t) in F(r(t)), provides the nonlinear system

f (r0, r1, s1) := 1

2
r2

0 + 9

8
r2

1 − 1

10
+ 3

8
s2

1 + 1

10
r1 = 0,

g(r0, r1, s1) := 9

4
r2

0r1 − 5

8
r3

1 + 3

8
r1s2

1 + 1

10
r2

0 + 3

40
r2

1 + 1

40
s2

1 − 1

10
r1 + s1 = 0,

h(r0, r1, s1) := 3

4
r2

0s1 + 3

8
r2

1s1 + 1

8
s3

1 + 1

20
r1s1 − 1

10
s1 − r1 = 0.

Doing the resultants Res( f , g, r0) and Res( f ,h, r0) we obtain respectively

1775r1
3 + 525r1s1

2 + 240r1
2 + 20s1

2 − 132r1 − 400s1 − 8 = 0,

105r1
2s1 + 35s1

3 + 8r1s1 + 80r1 − 4s1 = 0.

Repeating the resultant between these last two equations with respect to r1 we have

17 150 000s1
9 + 36 970 500s1

7 − 35 280 000s1
6 − 454 252 160s1

5 − 9 881 600s1
4

− 558 027 056s1
3 + 264 179 200s1

2 + 3 704 089 600s1 + 72 704 000 = 0.

The approximate real solution of this equation is s̃1 = −0.0196567414, and then we have the respec-
tive approximate solutions r̃0 = 0.4471066159, r̃1 = −0.0009814101.

For our purposes we can consider simpler rational approximations of r̃0, r̃1 and s̃1, with maintain-
ing a similar accuracy. For finding these rational approximations, we seek them by performing the
continued fraction expansion of these values. For instance,
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r̃0 = [0,2,4,4,2,2,2,4,2,1,1],

giving the convergents 1/2, 4/9, 17/38, 38/85, . . . . Similarly r̃1 gives −1/1018, −1/1019, . . . and s̃1
gives −1/50, −1/51, . . . . At this point we have the following new candidate to be an approximation
of the periodic solution

r̄(t) = 1

2
− 1

1018
cos(t) − 1

50
sin(t).

Its accuracy w.r.t. Eq. (5) is

S =
∥∥∥∥r̄′(t) − 1

10
r̄(t) + 1

10
cos(t)r̄(t)2 + cos2(t)r̄(t)3

∥∥∥∥
2
≈ 0.046.

Doing all the computations needed to apply Theorem 1.1 we get that we are not under its hy-
potheses. Therefore we need to continue with the third-order HBM.

Performing the third-order approach we obtain five algebraic polynomial equations that we omit
for the sake of simplicity. Unfortunately, neither using the resultant method as in the previous case,
nor using the more sophisticated tool of Gröbner basis, our computers are able to obtain an approxi-
mate solution to start our theoretical analysis.

A numerical approach. First, we search for a numerical solution of (5) by using the Taylor series
method. From this approximation we compute, again numerically, its first Fourier terms obtaining

r̃(t) =
3∑

k=0

rk cos(kt) + sk sin(kt),

where

r0 = 0.4483561517, r1 = −0.0024133439, s1 = −0.0193837572,

r2 = −0.0037463296, s2 = −0.0220176517,

r3 = −0.0012390886, s3 = 0.0003784656.

The accuracy of r̃(t) is 0.00289. If we take a new simpler approximation, using again some conver-
gents of rk and sk , we obtain

r̄(t) = 4

9
− 1

693
cos(t) − 1

51
sin(t) − 1

653
cos(2t) − 1

45
sin(2t) − 1

780
cos(3t), (18)

with accuracy 0.00298, quite similar to the one of r̃(t). Note that (18) is precisely the approximation
of the periodic solution of (5) stated in Proposition 1.2.

Proof of Proposition 1.2. We already know that the accuracy of r̄(t) is S := 0.003. To apply Theo-
rem 1.1 we will compute M and K .

First we calculate A(t) = ∫ t
0

∂
∂r X(r̄(t), t).

A(t) = 2 891 685 439

72 733 752 000
− 347 888 350 813 299 559

1 778 094 556 332 494 400
t − 561 179

36 756 720
cos(t) − 685 338 551

8 000 712 720
sin(t)

− 757 058 717
cos(2t) − 40 221 206 418 131

sin(2t) − 2 923 231
cos(3t)
48 004 276 320 273 447 836 421 760 576 974 475
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+ 37 724 429

36 003 207 240
sin(3t) − 353 400 139

96 008 552 640
cos(4t) + 17 671 001 708 653 999

42 674 269 351 979 865 600
sin(4t)

+ 5 358 811

300 026 727 000
cos(5t) + 4 708 003

20 001 781 800
sin(5t) + 1537

207 810 720
cos(6t)

+ 43 551 971 479

1 438 264 594 166 400
sin(6t) + 1

327 600
cos(7t) − 1

4 753 840
sin(7t)

− 1

12 979 200
sin(8t).

Now, by using Lemma 2.3, we find a deformation constant M . In this case we use as a lower
bound for A the piecewise function L formed by 7 straight lines and � = 1/18. We obtain that we can
take M = 7. Therefore 2M S ≈ 0.042. Since it can be seen that 0.4 � r̄(t) � 0.47 we can consider the
interval I = [0.358,0.512] in Theorem 1.1. In addition,

max
I×[0,2π ]

∣∣∣∣ ∂2

∂r2
X(r, t)

∣∣∣∣ � 1

5
+ 6‖r̄‖∞ = 1

5
+ 6(0.512) = 3.272 =: K .

Finally, 2M2 K S ≈ 0.962 < 1, and the first part of Theorem 1.1 applies. Hence Eq. (5) has a periodic
solution r∗(t) satisfying

∥∥r̄ − r∗∥∥∞ � 0.042, (19)

which is the only one in this strip.
Moreover,

∣∣∣∣∣
2π∫
0

∂

∂r
X
(
r̄(t), t

)
dt

∣∣∣∣∣ > 1.2.

Since 2π/M ≈ 0.9, the hyperbolicity of r∗(t) follows by applying the second part of the theorem. �
Notice that the example of the system (16) that we have studied is a = λ and b = −λ with λ =

1/10. With the same techniques we see that the same function r̄(t) given in the statement of Propo-
sition 1.2 is an approximation of the unique periodic orbit of the system when |λ − 1/10| < 1/500,

which also satisfies (19).
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