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Glucocorticoids remain the frontline treatment for inflammatory disorders, yet represent a double-edged sword
with beneficial therapeutic actions alongside adverse effects,mainly inmetabolic regulation. Considerable efforts
were made to improve this balance by attempting to amplify therapeutic beneficial anti-inflammatory actions
and tominimize adversemetabolic actions. Most attention has focused on the development of novel compounds
favoring the transrepressing actions of the glucocorticoid receptor, assumed to be important for anti-
inflammatory actions, over the transactivating actions, assumed to underpin the undesirable actions. These
compounds are classified as selective glucocorticoid receptor agonists (SEGRAs) or selective glucocorticoid
receptor modulators (SEGRMs). The latter class is able to modulate the activity of a GR agonist and/or may not
classically bind the glucocorticoid receptor ligand-binding pocket. SEGRAs and SEGRMs are collectively
denominated SEGRAMs (selective glucocorticoid receptor agonists and modulators). Although this
transrepression vs transactivation concept proved to be too simplistic, the developed SEGRAMs were helpful in
elucidating various molecular actions of the glucocorticoid receptor, but have also raised many novel questions.
We discuss lessons learned from recent mechanistic studies of selective glucocorticoid receptor modulators. This
is approached by analyzing recent experimental insights in comparison with knowledge obtained using mutant
GR research, thus clarifying the current view on the SEGRAM field. These insights also contribute to our under-
standing of the processes controlling glucocorticoid-mediated side effects as well as glucocorticoid resistance.
Our perspective on non-steroidal SEGRAs and SEGRMs considers remaining opportunities to address research
gaps in order to harness the potential for more safe and effective glucocorticoid receptor therapies.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

1.1. Glucocorticoids

Glucocorticoids (GCs) are steroid hormones produced in the adrenal
cortex on a circadian rhythm. The production of these hormones is reg-
ulated by the hypothalamic-pituitary-adrenal axis. Neural, endocrine
and also cytokine signals converge at the hypothalamus periventricular
nucleus. These signals determine the secretion of corticotropin-
releasing hormone (CRH) from the hypothalamus into the portal system
of the pituitary gland. Successively, the CRH induces secretion of adreno-
corticotropic hormone (ACTH) from the anterior pituitary, which in turn
stimulates synthesis and secretion of the glucocorticoid cortisol (also
named hydrocortisone) from the zona fasciculata of the adrenal cortex.
Feedback mechanisms ensure a tight control on the cortisol production
and release (Fig. 1). Approximately 10% of the secreted cortisol is free
and thereby active; the other 90% is bound to systemic corticosteroid-
binding globulins (Chapman et al., 2013; Nicolaides et al., 2014).
GCs activate the glucocorticoid receptor (GR), a transcription factor
belonging to the nuclear receptor superfamily (see Section 2.1).

1.1.1. Therapeutic use of glucocorticoids
GCs arewidely used for the treatment of inflammatory, immune and

allergic disorders (e.g. rheumatoid arthritis, asthma), brain edema,
Fig. 1. Hypothalamic-pituitary-adrenal axis. The production of cortisol, the endogenous
GC, has a circadian rhythm and regulation, and starts at the level of the hypothalamus.
Here, neural endocrine and cytokine signals converge and instigate a secretion of CRH
into the portal system of the pituitary gland. Successively, the CRH induces secretion of
adrenocorticotropic hormone (ACTH) from the anterior lobe of the pituitary gland,
which in turn stimulates the synthesis and secretion of cortisol from the adrenal cortex.
Negative feedback mechanisms safeguard homeostasis of the system. indicates positive
regulation, indicates negative regulation.
shock and various blood cancers (e.g. multiple myeloma); they are
also used for preventing rejection after transplant, and for correcting ad-
renal cortical hormone insufficiency. The clinical success of exogenous
GCs (e.g. dexamethasone, prednisolone…) is largely due to their anti-
inflammatory characteristics. GCs suppress inflammation mainly via
transrepression of inflammatory and immune genes, such as genes cod-
ing for cytokines, chemokines, inflammatory enzymes and receptors,
and adhesion molecules that play a role in migration of cells towards
sites of inflammation (Belvisi, 2004; Ito et al., 2006b; McMaster & Ray,
2008; Barnes, 2011). Unfortunately, the use of GCs is often not recom-
mended, due to the wide range of side effects. These include diabetes,
muscle wasting and osteoporosis (Schacke et al., 2002).

The current challenge is to minimize as many as possible of these
side effects and optimize GR-associated beneficial effects. The idea of
resolving all the side effects associatedwith glucocorticoids is, however,
a utopia. It would therefore already be a great achievement to eliminate
the clinically most burdening ones. Recent research has intensely fo-
cused on a class of pharmacologic compounds, selective glucocorticoid
receptor agonists andmodulators (SEGRAMs), that display an improved
therapeutic index in vivo via a select skewing of the GR effector profile
(Rosen & Miner, 2005). The current SEGRAMs only (or mainly) work
via the transrepression pathway of glucocorticoid receptors (GRs),
thereby resulting in a more specific action radius of GR (McMaster &
Ray, 2008; De Bosscher, 2010; De Bosscher et al., 2010b).

1.2. Selective glucocorticoid receptor modulators

It is assumed that the anti-inflammatory effects of GCs are largely
due to GR transrepression mechanisms, while GR transactivation is ac-
countable for the greater part of GC treatment-associated side effects.
This statement has, however, turned out to be too simplistic. It has
indeed been shown that some side effects are predominantly mediated
via transactivation (e.g. hyperglycemia and muscle wasting), yet other
side effects arise from transrepression (e.g. hypothalamic-pituitary-
adrenal axis suppression), and still other side effects (e.g. osteoporosis)
are mediated by both transactivation and transrepression (Schacke
et al., 2002; Carballo-Jane et al., 2004). Nevertheless, examples of GR
ligands exist, which can selectively induce transrepression without
significant transactivation, and for which in the long run the risk of
systemic side effectsmay be reduced,while anti-inflammatory activities
are maintained.

Compounds that can activate specific GRmechanisms and thus alter
GR-mediated gene expression profiles are referred to as dissociated
compounds, selective glucocorticoid receptor agonists (SEGRAs) or
modulators (SEGRMs) (Rosen & Miner, 2005; Beck et al., 2009)
(Fig. 2). The term SEGRA was the first term used, as the compounds
historically were derived from a steroidal scaffold (e.g. RU 24858) and
they often still exhibited a partial agonistic effect on the transactivation
mechanism of GR (Belvisi et al., 2001). The use of the term ‘SEGRM’was
initiated to distance the newer, non-steroidal compounds from the
older ones.

One of the first SEGRMs to be characterized was Compound A
(CpdA) (De Bosscher et al., 2005) (Fig. 3). This non-steroidal compound
showed an atypical competition binding curve in ligand-binding assays
using labeled dexamethasone, a synthetic GC (De Bosscher et al., 2005;
Ronacher et al., 2009). This result hinted to the fact that CpdA may use
different contact points in the ligand-binding domain (LBD) of GR or
may change GR’s conformation in a different way. The latter hypothesis
has been supported by experimental data (De Bosscher et al., 2005). As
a fully detailed mechanistic characterization of many of these second-
generation compounds is still anticipated, we will refer to them in this
review as SEGRMs. In recent years, research on SEGRMs boomed and
the amount of molecules reported explosively grew. One of the more
extensively researched SEGRMs is CpdA. This molecule, widely studied
in vitro as well as in vivo, has proven to favor transrepression
over transactivation and therefore supports the recently challenged



Fig. 2. Principle of a selective GRmodulator (SEGRM). Glucocorticoids enter the cell and bind to the glucocorticoid receptor (GR). Successively, activated GR influences gene transcription
via variousmechanisms, including transactivation, i.e. stimulating the expression of certain genes via direct DNAbinding, and transrepression, i.e. inhibiting the expression of certain genes
via indirect DNA binding, also called a tetheringmechanism. Selective GRmodulators (SEGRMs) differ fromGCs in theway that upon binding to GR they trigger transrepression, but donot
initiate transactivation.
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assumption that an anti-inflammatory therapy with less side effects
remains a feasible goal (De Bosscher et al., 2005, 2010a, 2014; Zhang
et al., 2009b; Reber et al., 2012; Thiele et al., 2012; Beck et al., 2013;
Rauner et al., 2013; Saksida et al., 2014). However, CpdA’s lability
(Wust et al., 2009), in combination with a narrow therapeutic range,
causes this SEGRM to be inappropriate for therapy, yet excellent as a
tool compound for research purposes.

The SEGRMs discussed here have showed to exhibit anti-
inflammatory effect in vitro as well as in vivo in various studies. These
studies established various SEGRMs’ abilities to repress inflammatory
mediators in vitro (Supplementary Table 1). Some SEGRMs were tested
in human tissues, but also in mice and rat models. With regards to the
latter, the anti-inflammatory effects of the test SEGRMs were assessed
using inflammatory diseasemodels in vivo, such as allergic conjunctivitis
(Baiula et al., 2014), (rheumatoid) arthritis (Miner et al., 2007; Dewint
et al., 2008; López et al., 2008; Thiele et al., 2012; Rauner et al., 2013;
Carson et al., 2014), neuro-inflammation (Zhang et al., 2009a; van Loo
et al., 2010), asthma (Reber et al., 2012) and colitis (Reuter et al.,
2012a,b). Yet, it needs to be said that, although it has been proven that
all SEGRMs discussed here (except PF-802) can bind to GR (Coghlan
et al., 2003; Schacke et al., 2004, 2009; De Bosscher et al., 2005;
Chivers et al., 2006; Miner et al., 2007; Zhang et al., 2009b; van Lierop
et al., 2012; Brandish et al., 2014; Carson et al., 2014), only CpdA and
ZK 216346 are shown to elicit a partial or full nuclear translocation of
GR (De Bosscher et al., 2005; Dewint et al., 2008; Yemelyanov et al.,
2008; Robertson et al., 2010; Reuter et al., 2012b; Presman et al., 2014;
Drebert et al., 2015) (also see 2.1 Structure of Glucocorticoid receptors).
Therefore, it cannot be completely excluded that their observed in vitro
and in vivo anti-inflammatory effect is perhaps (partially) mediated by
GR-independent action mechanisms.

In the following chapters, we will discuss the paradigms of GR
signaling with a critical focus on reported effects of the selective gluco-
corticoid receptor modulator CpdA and other SEGRMs on several
aspects of GR signaling and remaining voids, in comparisonwith reported
effects of the GR effector profile-skewing mutants. Such a GR mutant
compromised in its dimerization functions is the GRdimmutant.

2. Review: Glucocorticoid- vs SEGRAM-mediated GR signaling

2.1. Structure of Glucocorticoid receptors

As a result of their lipophilic character, GCs can easily diffuse
across the cell membrane of target cells (Smith & Cidlowski, 2010).
Subsequently, GCs can bind to intracellular glucocorticoid receptors
(GRs), also known as NR3C1 (nuclear receptor 3, group C, member 1),
which are present in almost all human cells. These GRs are members
of the steroid hormone receptor family of proteins (Rhen & Cidlowski,
2005; Kino et al., 2011).

The GR is a nuclear hormone receptor acting as a ligand-activated
transcription factor and consisting of an N-terminal transactivation
domain (NTD), a DNA binding domain (DBD), a hinge region and a
C-terminal LBD (Fig. 4A). The gene coding for human GR contains 9
exons and is located on chromosome 5q31-32. Alternative splicing can
result in different isoforms: GRα, GRβ, GRγ, GR-A and GR-P. The pre-
dominant, and most extensively researched isoform is full-length
GRα. Both GRα and GRγ isoforms can bind hormone and regulate
gene expression. In contrast, the GRβ isoform is incapable of binding
hormone and exerts dominant-negative effects on GRα. Glucocorticoids
cannot bind GR-A and GR-P isoforms as a result of their truncated LBD
(Oakley & Cidlowski, 2011).

AL-438 (Ki 2.5 nM) and ORG 214007-0 (Ki 2.2 nM) show a high
binding affinity for GR, comparable to prednisolone (Ki 2.4 nM)
(Fig. 3) (Coghlan et al., 2003; van Lierop et al., 2012). Furthermore,
also Mapracorat (alternatively known as ZK 245186 and BOL-
303242X) (Schacke et al., 2009; Zhang et al., 2009a) and LGD-5552
(Ki 2.4 nM) (Miner et al., 2007) (Fig. 3) show a high affinity and selec-
tivity towards GR (Table 1). Their direct interaction with GR was dem-
onstrated via competitive ligand binding assays (Miner et al., 2007;
Schacke et al., 2009). As for CpdA, research has proven that this
SEGRM can compete with dexamethasone for binding to endogenous
GR (De Bosscher et al., 2005). The binding affinity varies between cell
lines, which could depend on the levels of GR in these cells (De
Bosscher et al., 2005; Ronacher et al., 2009; Robertson et al., 2013b).
An alternative explanation may reside in different ligand-dependent
GR-associated cofactor equilibria, which were shown before to be able
to modulate the properties of agonist and antagonist complexes of GR
(Wang et al., 2004; Simons et al., 2014).

CpdA induces a different, currently unclarified, conformational
change of GR (De Bosscher et al., 2005). Although in silico modeling
mapped CpdA to fit the ligand-binding pocket of GR (Yemelyanov
et al., 2008), other modes of binding cannot be excluded, because we
still await the first elucidated crystal structure of this particular
SEGRM binding to the GR-LBD. The elucidation of GR’s structure, when
activated by non-steroidal indazole amides, of which some show
skewing towards a higher level of transrepression over transactivation,
has been very informative. In this research, combined crystallography



Fig. 3. Structures of selected synthetic GCs and SEGRAMs.
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andmodelling revealed a second binding site within the ligand-binding
pocket of GR (Biggadike et al., 2009). Also the crystal structure of
GR-LBD bound with compound 10, which retains full transrepression
with a partial transactivation ability, shows a new bindingmode, clearly
different from the classic GC binding model (Carson et al., 2014). The
potential binding of SEGRMs to other transcriptional isoforms besides
the classical GRα remains an uncharted area.

Although the structure of most other SEGRM-bound GRs is not
completely elucidated, we would assume that the ultimate conforma-
tion would differ from a classic GC-bound GR, exposing other cofactor
binding surfaces and leading to an alternate cofactor-binding profile.
This hypothesis is confirmed for CpdA-bound GR (Ronacher et al.,
2009).

Additional GR isoforms with progressively shorter N-terminal
transactivation domains are also produced due to 8 alternative transla-
tion initiation sites (e.g. GRα-A, GRα-B, GRα-C1, GRα-C2, GRα-C3,
GRα-D1, GRα-D2 and GRα-D3) with distinct gene expression profiles
(Oakley & Cidlowski, 2011; Wu et al., 2013). Given this complexity of
transcriptional and translational isoforms, understandably, the propor-
tion of different GR isoforms in a cell modulates the final effects of a
presented GC or SEGRM (Gronemeyer et al., 2004; Rhen & Cidlowski,
2005; De Bosscher et al., 2010a; Kino et al., 2011; Wu et al., 2013).



Fig. 4. GR structure. A. Structure of the human GRα-A, consisting of an N-terminal
transactivation domain (NTD), a DNA binding domain (DBD), a hinge region (HR) and a
C-terminal ligand binding domain (LBD). (AF, activation function). B. Post-translational
modifications of human GRα-A. (Ac, acetylation; K, lysine; P, phosphorylation; S, serine;
SUMO, sumoylation; Ub, ubiquitinylation).
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Furthermore, it has been found that a rise in the ratio of GRβ/GRα levels
appears to be a mechanism involved in the development of glucocorti-
coid resistance in multiple organs (Lewis-Tuffin & Cidlowski, 2006).
Whether and how selective GR modulators can impact the cell-specific
levels and ratios of these transcriptional and translational isoforms is
not yet known.

2.2. Glucocorticoid receptor-mediated mechanisms of action

Activation of GR results both in direct gene activation and gene
repression and a range of non-genomic effects indirectly influencing
gene transcription, thereby all causing a decrease in inflammatory
proteins and an increase in anti-inflammatory proteins.

In the absence of a ligand, a native GR resides predominantly in the
cytoplasm as part of a large multiprotein complex including a heat
shock protein (HSP) 90 dimer, various chaperone proteins and
immunophilins. However, a continuous shuttling between the nucleus
Table 1
SEGRAM-mediated binding to GR.

SEGRAM GR origin

RU24858 A549, h
Org214007-0 Recombinant hGR
AL-438 SF-9 moth cells infected with recombinant baculovirus ex

COS-1, s, TT hGR
Compound A L929sA, m

BWTG3, m
COS-1, s, TT hGR

Compound 10 HEK293, h, TT hGR
LGD-5552 SF-9 moth cells infected with recombinant baculovirus ex

MK-5932 insect cell-expressed hGR
C108297 Recombinant hGR
ZK 216348 Recombinant hGR
Mapracorat SF-9 moth cells infected with recombinant baculovirus ex
PF-802

Abbreviations:
CF, Competition factor CF; defined as IC50 of test compound/IC50 of reference compound DEX.
CI, confidence interval; h, human; m, murine; s, simian; TT, transiently transfected.
IC50, concentration at which compound inhibited 50% of specific binding of labeled dexametha
Ref, References.
[a] (Chivers et al., 2006), [b] (van Lierop et al., 2012), [c] (Coghlan et al., 2003), [d] (Ronacher et
[h] (Miner et al., 2007), [i] (López et al., 2008), [j] (Brandish et al., 2014), [k] (R. D. Clark et al.,
and the cytoplasm of both activated and non-activated GR takes place
(Hache et al., 1999; Vandevyver et al., 2012a). After binding to its steroi-
dal ligand, GR undergoes a conformational change, replaces the
immunophilin FKBP51 with FKBP52 in its chaperoning complex and is
guided by HSP90 and FKBP52 to the nucleus (Vandevyver et al.,
2012a). Subsequently, activated nuclear GR can modulate the expres-
sion of GC-responsive genes either by binding to a GR-binding sequence
in glucocorticoid-responsive elements (GREs) in the promoter region of
specific target genes or through physical interaction with other
transcription factors (Kino et al., 2011) (see Sections 2.2.1 and 2.2.2).
Furthermore, also a multimodal non-genomic pathway via which GR
can influence various cellular signaling cascades and events has
been elucidated (Smith & Cidlowski, 2010) (see Section 2.2.4). The
extent and duration of all these processes and mechanisms are
co-determined by various factors, such as the identity of the ligand
bound, the involved GR isoform, the available cofactors, other activated
cross-talking transcription factors, other cellular protein-modifying
factors and the targeted gene sequences themselves (Oakley &
Cidlowski, 2011).

HSP70, one of the chaperone molecules of GR, has an anti-
inflammatory effect via its capability to repress nuclear factor-κB
(NF-κB) (Malhotra & Wong, 2002; Weiss et al., 2007). It has been
shown that heat shock, as well as the SEGRM CpdA induce gene expres-
sion of HSP70. However, they both do this in a different manner. Heat
shock induces HSP70 expression in a heat shock factor protein 1
(HSF1)-dependent and GR-independent manner, whereas CpdA
induces the expression in a HSF1-independent and GR-dependent
manner. Even more intriguing is the fact that following CpdA a clear
HSP70 gene expression activation is observed in absence of a concomi-
tant rise in (additional) HSP70 protein, in L929sA and A549 cell lines
(Beck et al., 2013). Although the SEGRMs CpdA and ZK 216346 have
shown to be able to translocate GR into the nucleus, the extent of
their impact on GR's nuclear accumulation is less pronounced than
achieved with classic GCs and appears to differ depending on the cell
type (De Bosscher et al., 2005; Dewint et al., 2008; Yemelyanov et al.,
2008; Robertson et al., 2010; Reuter et al., 2012b; Presman et al.,
2014; Drebert et al., 2015). The decreased nuclear import of CpdA-
bound GR was suggested to be caused by its monomeric status
(Robertson et al., 2013a). Studies investigating the effect of SEGRMs
on GR association with their chaperoning complex, and more in depth
studies on SEGRM-mediated effects on GR’s intracellular localization
and GR mobility still need to be performed.
GR binding Ref

Ki = 110.0 ± 24.0 nM [a]
Ki = 2.2 ± 1.3 nM [b]

pressing hGR Ki = 2.5 nM [c]
IC50 = 61 ± 13 nM [d]
IC50 = 6.4 nM (CI 1.9-20.5 nM) [e]
Kd = 81.8 nM [f]
IC50 = 0.003 ± 0.004 nM [d]
Ki = 0.268 ± 0.026 nM [g]

pressing hGR Ki = 2.4 ± 0.6 nM
Kd = 2 nM

[h]
[i]

Ki = 3.7 nM [j]
Ki = 0.9 nM [k]
IC50 = 20.3 ± 2.6nM [l]

pressing hGR CF = 1.9 ± 0.5 [m]
Not published

sone.

al., 2009), [e] (De Bosscher et al., 2005), [f] (Robertson et al., 2010), [g] (Carson et al., 2014),
2008), [l] (Schacke et al., 2004), [m] (Schacke et al., 2009).
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2.2.1. Stimulation of gene transcription
Gene expression can be stimulated via three main different mecha-

nisms (Fig. 5): (1) the GR forms a dimer and binds to an imperfect palin-
dromic GRE, thus activating the promoter (this is called transactivation),
(2) the (monomeric) GR binds to DNA together with a transcription
factor, in this way cooperatively enhancing gene expression (this is
called composite transactivation), and (3) the GR can also interact with
transcription factors without interacting with DNA itself (this is called
tethering). These three mechanisms stimulate, among others, the
expression of anti-inflammatory proteins and also of metabolic gene
products, which can give rise to side effects associated with GC therapy,
such as diabetes, glaucoma, hypertension, and muscle wasting (Beck
et al., 2009).

Since transactivation is the mechanism of action generally linked to
the side effects associated with GC-therapy, researchmainly focused on
the development of compounds not exerting enhanced expression of
GRE-regulated genes (Barnes, 2011).

Unlike GCs, CpdA does not cause GR dimerization, and does not
allow the binding of GR to a classic GRE. Hence, CpdA does not support
a transactivation mechanism (De Bosscher et al., 2005; Dewint et al.,
2008; Robertson et al., 2010, 2013b; Presman et al., 2014). As increasing
GR concentrations allow a ligand-independent GR dimerization, it is
striking that CpdA-bound GR, even under these conditions, maintains
its predominantmonomeric state (Robertson et al., 2013b). Also several
other SEGRMs, including AL-438 (Coghlan et al., 2003), Mapracorat
(Schacke et al., 2009), PF-802 (Hu et al., 2011), ZK 216348 (Schacke
et al., 2004, 2007), LGD-5552 (Miner et al., 2007; López et al., 2008),
and Org 214007-0 (van Lierop et al., 2012), have shown a reduced
transactivating potential in comparison to classic GCs (Supplementary
Table 1), however, without studying if and how these SEGRMs may
affect GR dimer formation. Yet, it should be noted that the simple idea
of ligand-induced GR dimerization translating into GR transactivation
is challenged (see 2.2.3 GRdim action mechanism). Further, the effect
of CpdA or other SEGRMs on gene expression enhancement via the
tethering and composite GREmechanisms still needs to be investigated.

2.2.2. Inhibition of gene transcription
On the other hand, GCs also repress gene transcription via a number

of different mechanisms (Fig. 5): (1) GR can interact with a transcrip-
tion factor, thereby inhibiting the transcription factor and repressing
transcription. This is the predominant transrepression mechanism and
is called tethering; it is the mechanism frequently used to inhibit the
pro-inflammatory transcription factors NF-κB (De Bosscher et al.,
2006; Beck et al., 2009) and activator protein 1 (AP-1). Sometimes
Fig. 5 GR mechanisms.Upon binding to GR, GCs induce non-genomic mechanisms and
genomic mechanisms. The genomic mechanisms can be divided into two groups, namely
stimulation of gene transcription (indicated in green) and inhibition of gene transcription
(indicated in red). Gene expression can be stimulated by three different mechanisms:
(1) the GR can interact with transcription factors without interacting with DNA itself (i.e.
tethering); (2) the GR forms a dimer and binds to a GRE (white box), thus activating the
promoter (i.e. transactivation); (3) the monomeric GR binds to DNA together with
another transcription factor, in thisway cooperatively enhancing gene expression (i.e. com-
posite transactivation). Gene transcription can be inhibited by a number of different mech-
anisms, including: (1) GR binding to a negative GRE (nGRE), resulting in transcription
repression; (2) in the tethering mechanism, GR can interact with a DNA-binding transcrip-
tion factor, thereby inhibiting the transcription factor and repressing transcription; (3) a GR
bound to its GRE can cross-talk with another transcription factor bound to its respective
transcription factor-responsive element (TFRE) (grey box) and form a composite GRE;
(4) a transcription factor-responsive element (TFRE) can overlapwith theGRE, and the sub-
sequent GR binding to the GRE blocks the transcription factor from binding to the response
element of the respective transcription factor, forming a competitive GRE. SEGRMs, specifi-
cally CpdA, differ from classic GCs in theway that they do induce the transrepressionmech-
anism, yet do not induce the transactivation mechanism. Other SEGRMs have a
compromised transactivation capacity. Although further studies are still required on other
competitive GRE-regulated genes, the SEGRM-mediated osteocalcin gene expression regu-
lation suggests a preliminary model of a SEGRM-bound monomeric GR disengaging the
competitive GRE and allowing the binding of the driving transcription factor (Coghlan
et al., 2003;Hu et al., 2011; Rauch et al., 2011). The effect of SEGRMson the four othermech-
anisms mentioned above has not yet been elucidated in detail.
this mechanism can also lead to sequestration of the transcription
factor. The “Number and Brightness” technology, amoment-based anal-
ysis of the average number of moving fluorescent molecules and their
brightness at every pixel, shows that GC-activated GR also remains in
a dimeric state around GR:NF-κB interactions, arguing against an exclu-
sive role for monomeric GR in GR transrepression (Presman et al.,
2014). Alternatively, (2) another transcription factor-responsive
element overlaps with the GRE, and the subsequent GR binding to the
GRE blocks the transcription factor from binding to the response ele-
ment of the respective transcription factor. This is called a competitive
GRE. (3)When a GR binds to its GRE and cross-talks with the transcrip-
tion factor bound to its designate transcription factor-responsive
element we consider this a composite GRE, and finally (4) there is
evidence of GR binding to a negative GRE (nGRE), resulting in transcrip-
tional repression. These mechanisms typically inhibit the transcription
of pro-inflammatory proteins (e.g. cytokines, enzymes and adhesion
molecules) (Stahn & Buttgereit, 2008; Beck et al., 2009). Hence,
the transrepression mechanism has since long been linked to the
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anti-inflammatory effects associated with GCs, and thus, in general, the
therapeutic effect. The combination of a transrepressive activity with
less or no transactivating activity is thought to lead to a compound
with an improved therapeutic index, meaning more on target, wanted
therapeutic effects and less side effects (van Lierop et al., 2012).

SEGRMs still exhibiting this transrepressive capability were there-
fore sought and found. CpdA (De Bosscher et al., 2005), Mapracorat
(Schacke et al., 2009; Cavet et al., 2013), PF-802 (Hu et al., 2011),
AL-438 (Coghlan et al., 2003), ZK 216348 (Schacke et al., 2004, 2007,
2009; Reuter et al., 2012b), LGD-5552 (Miner et al., 2007; López et al.,
2008), MK-5932 (Bungard et al., 2011) and Org 214007-0 (van Lierop
et al., 2012) and many others (Carson et al., 2014; Edman et al., 2014;
Razavi et al., 2014) have all proven to transrepress the expression of
inflammatory genes (Supplementary Table 1). The effect of these
compounds on the transcriptional inhibition via nGREs and composite
GREs is unresolved. For competitive GREs some initial work has been
done on the osteocalcin gene expression regulation (see Section 2.4),
but research with a wider view on this matter is still warranted.
Interestingly, although Mapracorat inhibits the expression of certain
pro-inflammatory genes via inhibition of the classical NF-κB pathway,
it also upregulates certain anti-inflammatory genes (such as RelB) via
the alternative NF-κB pathway (Spinelli et al., 2014).

While CpdA can initiate the tethering GR transrepression mecha-
nism, the compound, however, works transcription factor-specifically
in certain cell types. CpdA-bound GR, namely, represses NF-κB regulat-
ed gene transcription, yet sustains AP-1 regulated gene transcription, in
contrast to GC-bound GR, which represses both (De Bosscher et al.,
2014). Also AL-438 demonstrated a similar transcription factor specific-
ity in which NF-κB-driven reporter genes were found to be more
efficiently repressed than AP-1-driven reporter genes (Ronacher et al.,
2009).

Although the SEGRM CpdA suppresses inflammation, in vivo studies
indicate that stability issues, an alkylating potential, and hence a narrow
therapeutic range (causing high doses to be toxic) has as result that for
the same dose its anti-inflammatory effect is less efficient compared to
the classic GC dexamethasone, and that therefore its clinical potential is
severely limited (Rauner et al., 2013). Not all SEGRMs are unstable,
however, a studywhereMapracoratwas topically administered to guin-
ea pigs with induced allergic conjunctivitis, showed that Mapracorat
caused more eosinophil apoptosis than dexamethasone. This would
indicate that not all non-steroidal ligands suffer from reduced activity,
as this SEGRM has an even larger therapeutic effect than the classical
GCs (Baiula et al., 2014). Mapracorat has also been the study product
in a dose finding phase II clinical trial as an ointment for atopic derma-
titis (USNIH, 2014d,g,j). Also phase I, II and III clinical trials have been
performed, investigating the topical use ofMapracorat in an ophthalmic
suspension for the treatment of allergic conjunctivitis and for the treat-
ment of inflammation and pain following cataract surgery (USNIH,
2014b,h,i,o,p,q). Moreover, a first clinical trial phase II for systemic use
of the SEGRM Fosdagrocorat (also known as PF-04171327) in rheuma-
toid arthritis, has just been completed (USNIH, 2014l). At the moment,
no study results of these trials are available.

2.2.3. GRdim action mechanism
Over the past decade, the view that side effects are merely resulting

from transactivation and desired-GC effects can solely be attributed to
transrepression has turned out to be oversimplified. Furthermore,
recent studies even challenge the initial work from which the general
transrepression/transactivation hypothesis arose. This GR mechanism
hypothesis stems mostly from research performed with a mutant GR,
called ‘GRdim’, harbouring the GR A458T mutation in the DBD (Heck
et al., 1994; Reichardt et al., 1998). However, it was later shown that
the GR dimerizes not only via this DBD, but also via an LBD interface
(Bledsoe et al., 2002). Initial in vitro tests with this GRdim variant
indicated that this mutant receptor was incapable of forming dimers
and that it was impaired in its GR transactivation mechanism, by
using GRE model systems such as MMTV, yet still exhibited a clear
transrepression capability (Heck et al., 1994; Reichardt et al., 1998).
Subsequently, the hypothesis was formed that a dimerized GR can
only translate to the transactivation mechanism and that monomer
GR is restricted to the transrepression mechanism. Recent research
argues that there is no watertight relation between the monomer or
dimer state of the GR in solution and its capability to transrepress or
transactivate specific gene promoters, but that GR’s ability to induce
gene expression is co-dictated by the GR-binding sequence and its
context and cofactors (Meijsing et al., 2009; Jewell et al., 2012;
Watson et al., 2013; Presman et al., 2014). As expected, severely
impaired GR transactivation mechanisms were observed in GRdim
cells, compared towild typeGR cells. However, using immunoprecipita-
tion or the “Number and Brightness” technology, these GRdim variants
were recently shown to still support GR dimer formation in solution,
albeit slightly - yet significantly - less pronounced than wild type GR
(Jewell et al., 2012; Presman et al., 2014). Nevertheless, the GRdim
mutant does show a sequence-specific decreased GRE binding
(Presman et al., 2014), which corresponds with a gene expression
profiling study comparing livers of prednisolone-treated wild type
versus GRdim mice, in which the level of prednisolone-induced gene
expression was significantly reduced for GRdim, as compared to wild
type (Frijters et al., 2010). The observation of a small amount of residual
gene induction by prednisolone in GRdim mice tempts speculations on
the existence of alternate GR dimers involving NTD-LBD contacts,
conventional yet more unstable GR dimers, GR:MR (mineralocorticoid
receptor) heterodimers, GR multimeric complexes or combinations
hereof (Nixon et al., 2013). Interestingly, an attenuating effect of the
GRdimmutation was also retrieved for some genes that were downreg-
ulated by classic GCs (Surjit et al., 2011). This observation feeds the hy-
pothesis that genes, failing to be repressed by GCs in GRdim mice, may
either be regulated through GR binding to negative GRE elements
(nGREs) or may be subject to indirect regulation via other GR target
genes. However, further research into these suggested mechanisms is
still required. Taken together, the propensity of GRs to dimerize appears
to be of significance, but not sufficient for GR transactivation to take
place. Nevertheless, the earlier finding that the SEGRM CpdA actively
supports GR monomer formation (Dewint et al., 2008; Robertson
et al., 2010, 2013b), still stands, also in an analysis with themore recent
“Number and Brightness” technology (Presman et al., 2014).

Combined with the knowledge that GR-mediated promoter activa-
tion extends further than the classic GRE-mediated transactivation,
these findings indicate that dimerization is not the sole key player in
the activation mechanism. GR is more likely to be regulated in a more
complex manner involving co-factors and the cellular environment
(Presman et al., 2014). These findings also indicate that more research
is needed to conclude whether or not the GR-dimerization-inducing
capability of SEGRMs can be extrapolated to their transactivation capa-
bility. Importantly, it is now clear that results generated with GRdim
should be interpreted with caution and thus, one cannot extrapolate
GRdim experimental interpretations to mechanistic conclusions on
wild type GR. SEGRM-based research and their exerted effects on wild
type GR could help to pick apart the action mechanisms of wild type
GR. In that perspective, the work with the current transrepressing-
favoring selective GR modulators should ideally be complemented
with research into their counterparts, i.e. transactivation-favoring
selective GR modulators or agonists.

2.2.4. Non-genomic pathway
Besides above describedGR-mediated genomicmechanisms, several

rapid non-genomic pathways have also been reported. These pathways
can result in the induction of downstream signaling cascades, changes
in cytoplasmic calcium, sodium or potassium concentrations, an in-
crease inmitochondrial production of reactive oxygen species, ceramide
and hydrogen peroxide, and the lysosomal release of cathepsin B (Smith
& Cidlowski, 2010). For this non-genomic pathway, severalmechanisms
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have been postulated: (1) membrane-associated GRs, (2) direct
membrane effects of GCs, (3) classic GRs that target signaling proteins
associated or not with the plasma membrane and (4) classic GRs that
translocate into the mitochondria (Norman et al., 2004; Rhen &
Cidlowski, 2005; Stahn & Buttgereit, 2008; Kino et al., 2011).

The influence of most SEGRMs on this non-genomic pathway has not
yet been investigated. For the SEGRM CpdA it has been reported
that CpdA blocks all mitogen-activated protein kinases (MAPKs) in
human rheumatoid arthritis fibroblast-like synoviocytes, albeit in a GR-
independent manner (Gossye et al., 2009). Furthermore, CpdA enhances
thephosphorylation of c-JunN-terminal kinase JNKand thus its kinase ac-
tivity in L929sA cells, also in a GR-independent manner. This enhanced
phosphorylation occurs in absence of a CpdA-mediated upregulation of
the expression of the MAPK phosphatase DUSP1, which is in contrast to
a classical GC. Yet, the enhancement of AP-1-driven gene expression by
CpdA is GR-dependent, and tied to a lack of GR recruitment to these
promoters. Finally, in the same cells, CpdA blocks the phosphorylation
of extracellular regulated signaling kinase ERK but not of p38MAPK, illus-
trating not only a remarkably cell-type dependency concerning MAPK
regulation (De Bosscher et al., 2014), but also that it is wise not to regard
non-genomic and genomic pathways as separate entities.

2.3. Post-translational modifications of GR

The GR protein is modified by various processes. Several mecha-
nisms have been elucidated, such as phosphorylation, acetylation,
nitrosylation, sumoylation, and ubiquitination (Fig. 4B) (Gronemeyer
et al., 2004; Lu & Cidlowski, 2004; Beck et al., 2009; Vandevyver et al.,
2014).

The GR is subject to intense phosphoregulation, which affects
GR ligand- and DNA-binding affinity, subcellular localization, GR
interactions and half-life, culminating in altered transactivation and
transrepression capabilities of GR. Its basal phosphorylation is low, but
upon addition of an agonist, GR becomes hyperphosphorylated. It is
proposed that phosphorylation of the S211 residue is a hallmark in the
transactivation potential of GR (Blind & Garabedian, 2008; Chen et al.,
2008). However, also other phosphorylation sites have a profound im-
pact on GR function (Galliher-Beckley et al., 2011). It was observed
that the phosphorylation of residues S211 and S226 was ligand-
specific (Avenant et al., 2010). In contrast to classic GCs, CpdA does
not cause an increase in S211 and S226 phosphorylation (De Bosscher
et al., 2005; Avenant et al., 2010). This could correspond to a different
allosteric conformation upon binding of CpdA to GR (De Bosscher
et al., 2005). AL-438 led to less phosphorylation of S211 and S226, com-
pared to classical GCs. In general, a correlation between the efficacy and
potency of transactivation and ligand-induced phosphorylation status
of S211 and S226 was observed. This correlation showed, on the one
hand, that phosphorylation of S226 inhibited maximal efficacy for
transactivation and, on the other hand, that phosphorylation of S211
is required for maximal efficacy for transactivation. Furthermore, also
a correlation was seen with respect to the transrepressive capacity,
since phosphorylation of residues S211 and S226 slightly inhibited
the maximal efficacy for GC-activated GR-dependent transrepression
on an AP-1 and NF-κB promoter (Avenant et al., 2010). The ligand-
specific phosphorylation profiles could therefore play a role in deter-
mining the transrepression vs. transactivation potential of GR (De
Bosscher et al., 2005; Avenant et al., 2010).

Also acetylation has an effect on the activity of GR. It has been
suggested that acetylation limits the capability of GR to inhibit the
transcription factor NF-κB. Furthermore, the acetylation of GR by the
transcription factor Clock is shown to limit both the transactivation
and transrepression capabilities of GR, causing GC-insensitivity in
certain tissues (Ito et al., 2006b; Nader et al., 2009; Charmandari et al.,
2011; Oakley & Cidlowski, 2013). How SEGRMs influence the acetyla-
tion of GR is currently unknown. Facing the lack of in depth knowledge
on SEGRM effects on GR phosphorylation and acetylation, it is no
wonder that potential SEGRM effects on other posttranslational modifi-
cations of GR, such as SUMOylation, are still completely uncharted.

Potentially linked to differences in GR ubiquitination, SEGRMs
appear to differ to classic GCs with regard to their impact on GR protein
degradation. Although GCs evoke a clear, but timing-related cell type-
dependent, homologous downregulation of the GR via proteosomal
degradation subsequent to GR K419 ubiquitination (Deroo et al.,
2002), the SEGRMCpdAdoes not at all induceGR degradation in various
cell types (Avenant et al., 2010; Gossye et al., 2010; Drebert et al., 2015).
Unfortunately, GR exposure to CpdA is not sufficient to fend off
GC-evoked GR downregulation (Drebert et al., 2015). A GR mutant
with at least 3 Ser phosphorylation sites mutated to Ala (mGR S212,
S220, S234, the murine equivalents for the hGR S203, S211 and S226)
is not subject to GC-dependent downregulation (Webster et al., 1997).
Hence, ligand-induced hyperphosphorylation appears to be key to the
onset of the ubiquitination-mediated proteasomal degradation of GR.
This hypothesis further fits with the observation that CpdA does not
invoke GR S211 and S226 phosphorylation in different cell types
(De Bosscher et al., 2005; Avenant et al., 2010) and is also supported
by the observed inverse correlation between ligand-dependent GR
S211 phosphorylation and the GR half-life (Avenant et al., 2010).
However, further research is necessary to consolidate the mechanistic
basis for this compound-specific presence or absence of GR degradation.

2.4. Side effects

Major issues with the therapeutic use of GCs are the side effects
associated with long-term and/or high dose usage and the occurrence
of GC resistance (Beck et al., 2009; Van Bogaert et al., 2010; Dejager
et al., 2014). GC therapy has been associated with various side effects,
including skin and muscle atrophy, disturbed wound healing, growth
inhibition in children, osteoporosis, cataract, glaucoma, disturbances of
affect and behavior, hyperglycemia leading to diabetesmellitus, adrenal
insufficiency, peptic ulcers and gastrointestinal bleeding, hypertension,
and increased risk of infections (Ito et al., 2006a; McDonough et al.,
2008; Reichardt et al., 2014). The incidence and severity of these side
effects depends on the time, amount, dosing regimen, the specific GC
that is used and its mode of application (Ito et al., 2006a; McDonough
et al., 2008). Overall, prolonged use is a high-risk factor (Schacke et al.,
2002). It should be noted that these GC-induced “side effects” are
actually on-target GR-mediated effects and that therefore the term
‘side-effect’ is misleading (Beck et al., 2009; Clark & Belvisi, 2012).
Namely, many or all unwanted effects of synthetic GCs can be seen as
versions of normal physiological effects of the endogenous cortisol,
inappropriately intensified, prolonged or at the wrong point in time of
the circadian cycle initiated and continued (Clark & Belvisi, 2012).

In general, these side effects were believed to result frommainly GR
transactivation. Yet again, note that this is a simplified version of reality.
In fact, the onset and maintenance of side effects is a more complex
matter. Whereas a lot of side effects result predominantly from GR
transactivation (e.g. glaucoma, hypertension, diabetes…), there are also
side effects resulting from GR transrepression (e.g. repression of the
hypothalamic-pituitary-adrenocortical axis, susceptibility to infections).
Moreover, the mechanisms of some side effects have been attributed to
both transactivation and transrepression (e.g. osteoporosis) or else have
not been fully elucidated (Beck et al., 2009; Baschant et al., 2012).

Studies on the SEGRMs CpdA (De Bosscher et al., 2005), Mapracorat
(Schacke et al., 2009), PF-802 (Hu et al., 2011), AL-438 (Coghlan et al.,
2003), LGD-5552 (Miner et al., 2007), ZK 216348 (Schacke et al.,
2004) and ORG 214007-0 (van Lierop et al., 2012) all reported on
in vivo anti-inflammatory activities with an improved therapeutic
index, meaning more anti-inflammatory effects and less pronounced
side effects, which will be discussed in further detail below.

The molecular mechanisms mediating the GC-induced side
effects are well-known for osteoporosis, hyperglycemia and diabetes,
hypertension, and skin and muscle atrophy (Schacke et al., 2002).
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Osteoporosis results from a culminated decrease in osteoblast prolif-
eration and activity, and an increase in osteoclast activity. Osteoclast
activity is indirectly increaseddue to theGC-induced decrease in gastro-
intestinal Ca2+ absorption and the increase in urinary Ca2+ excretion.
The drop in serum Ca2+ level is counteracted by an increase in parathy-
roid hormone levels, resulting in increased osteoclastic bone resorption.
GCs can also stimulate osteoclast activity via transactivation of
osteoprotegerin-ligand (OPG-L, also known as receptor activator of
NF-κB ligand, RANKL), which enhances osteoclast differentiation and ac-
tivity, and inhibits osteoclast apoptosis. Besides this, GCs also transrepress
osteoprotegerin (OPG), which binds to OPG-L and prevents its activities.
As such, this enhancement in the OPG-L/OPG ratio favors bone resorp-
tion. A decrease in osteoblast activity, and as such a decrease in bone for-
mation, can result from different mechanisms, including a decrease in
adrenal steroidal hormones caused by a GC-induced suppression of the
adrenals, GC-induced osteoblast and osteocyte apoptosis, and GC-
mediated suppression of growth hormone, insulin-like growth factor-1
and transforming growth factor-β, which are bone homeostasis media-
tors. Next to the increase in osteoclast activity and the decrease in osteo-
blast activity, reduced synthesis of bone-forming extracellular matrix
proteins (e.g. osteocalcin and collagen type I) also contributes to osteopo-
rosis upon long-term GC-therapy (Schacke et al., 2002).

Studies on mice models with arthritis comparing CpdA to predniso-
lone or dexamethasone showed that CpdA, on the one hand, was less
potent in suppressing inflammation compared to the GCs, yet, on the
other hand, was able to maintain bone mineral density (Thiele et al.,
2012; Rauner et al., 2013) and did not inhibit osteoblast differentiation
(Rauch et al., 2011), in contrast to prednisolone. These findings indicate
that CpdA has a bone sparing effect compared to classical GCs (Rauch
et al., 2011; Thiele et al., 2012; Rauner et al., 2013). Of special interest,
the ability of CpdA to preserve osteoblast differentiation (Rauch et al.,
2011) is most probably linked to CpdA’s maintenance of AP-1 activity
(De Bosscher et al., 2014), a crucial regulatory factor for IL-11, in turn
indispensable for proper bone metabolism (Rauch et al., 2010).

Also the SEGRM AL-438 has shown promising in vivo results in rat
models with arthritis, namely no inhibition of osteoblast activity in
cancellous bone and less inhibition of bone formation in cortical bone
(Coghlan et al., 2003). Furthermore, AL-438 did not cause a reduction
in cell proliferation or proteoglycane synthesis in chondrocytes, in
contrast to dexamethasone and prednisolone, indicating that it has a
reduced side effect profile on chondrocytes compared to GCs (Owen
et al., 2007).

Treatmentwith LGD-5552 resulted in a smaller decrease in bone for-
mation compared to prednisolone in mice models (Miner et al., 2007).
As for ZK 216348, in vitro results indicate an inhibition of OPG, albeit
less pronounced than for dexamethasone or prednisolone (Humphrey
et al., 2006). No in vivo experiments have been reported regarding the
effect of ZK 216348 on bone metabolism.

In vitro effects of PF-802 (the pro-drug of Fosdagrocorat) on
osteocalcin, a component of the bone matrix typically inhibited by
GCs, indicated that this SEGRM did not suppress osteocalcin expression
to the same extent as prednisolone, concomitant with unaffected levels
of secreted osteocalcin protein (Hu et al., 2011). These results are in line
with the findings that also CpdA and AL-438 did not inhibit osteocalcin
production (Coghlan et al., 2003; Rauch et al., 2011). This can be
explained by the fact that classic GCs suppress the expression of
osteocalcin via GR binding to a GRE which overlaps with a TATA-box,
thus forming a competitive GRE, and not through direct interaction
with a transcription factor (Meyer et al., 1997). The absence of
SEGRM-mediated regulation of the competitive GRE of osteocalcin
suggests that SEGRM-bound GR is not able to inhibit binding of the
key fueling transcription factor in this case. Additional research into
other competitive GRE-regulated genes and the SEGRM-bound
GR-mediated mechanisms in this constellation are still required.

Furthermore, a clinical trial investigating Fosdagrocorat in healthy
human subjects, also showed that the compound had less impact on
osteocalcin (Stock et al., 2009). Research concerning the potential
effects of Org 214007-0 and Mapracorat on bone metabolism is yet to
be performed.

Furthermore, it has been shown that leptin plays a detrimental role
in the pathogenesis of osteoarthritis. And, although it is unclearwhat the
effect of classic GCs is on the progression of osteoarthritis, it has been
proven that they cause an increase in leptin and its receptor (Ob-R)
(Relic et al., 2009). Recent research, however, demonstrated that
CpdA, in contrast to glucocorticoids, does not cause an increase in the
expression of leptin or its receptor, thereby potentially indicating an
improved risk:benefit ratio (Malaise et al., 2014).

Long-term GC treatment can also cause muscle atrophy, via the
stimulation of protein degradation and inhibition of protein synthesis.
Stimulation of protein degradation can result from GR-mediated
transactivation of genes encoding components of the ubiquitin-
proteasome pathway. For example, MuRF1 and atrogin-1 andmembers
of the forkheadbox superfamily of transcription factors (e.g. FOXO3) are
believed to be important for the catabolic effect of GCs in muscle
(Hasselgren et al., 2010). Yet, GCs rather activate FOXO3 indirectly, i.e.
via the inhibition of PI3K/AKT signaling (Zheng et al., 2010). Also, the
induction of myostatin gene expression could possibly be a mechanism
via which GCs are able to evoke muscle atrophy (Ma et al., 2003). Skin
atrophy results from a GC-mediated reduction in keratinocyte and
dermal fibroblast proliferation and a decreased protein synthesis by
dermal fibroblasts. Collagen type I synthesis is decreased by GCs
through protein-protein interaction between GR and the transcription
factor Smad3, which is required for transcription of the COL1A2 gene,
coding for collagen type I. The regulation of other extracellular matrix
proteins is also involved in the development of skin atrophy. GCs e.g.
also decrease tenascin C gene expression (Schacke et al., 2002).

Mapracorat (Schacke et al., 2009) and ZK 216348 (Schacke et al.,
2004) have shown reduced skin atrophy compared to classical GCs
after long-term topical treatment, yet the pathways or exact targets
involved were not documented. Related, ZK 216348 and CpdA also do
not inhibit intestinal epithelial cell restitution in vitro (Reuter et al.,
2012b). In vivo studies of CpdA on mice indicated that CpdA did
not stimulate protein degradation and had an ameliorative effect on
intermediate markers of muscle dystrophy, compared to GCs (Huynh
et al., 2013). The effect of CpdA was also examined on a 12-O-
tetradecanoylphorbol-13-acetate (TPA)-induced model of skin inflam-
mation and hyperplasia in which it was shown that CpdA’s ability to
reverse this inductionwas less explicit compared to a classical GC. How-
ever, an increase in epidermal thickness and keratinocyte proliferation
was observed after CpdA-treatment in a dose-dependent manner
(Kowalczyk et al., 2013). It still needs to be investigated what the effect
is of other SEGRMs, such as AL-438, PF-802, Org-214007-0 and
LGD-5552 on muscle and skin metabolism.

Hyperglycemia and the concomitant increased risk of diabetes can
also be caused by long-term GC treatment. Both insulin resistance and
a decrease in β-cell insulin production are an unwanted effect of GC
excess. GCs increase glucose synthesis mainly via a GR transactivation-
stimulated expression of enzymes involved in the gluconeogenesis
pathway. The increased glucose synthesis is followed by increased
glycogen storage in the liver due to a GC-mediated activation of
glycogen synthase (Schacke et al., 2002).

SEGRMs that cannot induce GRE-regulated gene expression of phos-
phoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase,
such as CpdA, were expected not to induce hyperglycemia or
hyperinsulinemia (De Bosscher et al., 2005). This was confirmed by
in vivo studies in mice and rats where blood glucose levels -which re-
flect the risk of induction of diabetes- were increased after treatment
with GCs, but were not increased after CpdA treatment (Dewint et al.,
2008; Zhang et al., 2009b). Neither the collagen-induced arthritis
model, nor an experimental autoimmune encephalomyelitis model
showed CpdA-evoked hyperinsulinemia (Dewint et al., 2008; van Loo
et al., 2010). Moreover, recent studies even indicate that CpdA could
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protect against the development of immune-inflammatory diabetes in
mice (Saksida et al., 2014).

Also PF-802 showed a reduced induction of phosphoenolpyruvate
carboxykinase and tyrosine aminotransferase gene expression in
primary human hepatocytes, compared to prednisolone. The fact that
it still induces the expression of these genes, to some extent, indicates
that the compound would exhibit a reduced side effect profile
concerning the risk of diabetes, yet not a complete lack of effects on
glucosemetabolism (Hu et al., 2011). Furthermore, Pfizer just completed
a phase I clinical trial investigating the effect of the PF-802-related
compound Fosdagrocorat, when compared to prednisone on glucose
metabolism (USNIH, 2014f). Results of this trial have not yet been
posted.

In vivo studies in rats using AL-438, ZK 216348 or MK-5932 and in
mice using Org-214007-0 also supported that these compounds cannot
cause an increase in plasma glucose, in contrast to prednisolone
(Coghlan et al., 2003; Schacke et al., 2004; Bungard et al., 2011; van
Lierop et al., 2012; Brandish et al., 2014). Also contrary to prednisolone
therapy, Org-214007-0 did not shift the liver glucose/glycogen balance
(van Lierop et al., 2012). AL-438 was even able to prevent GC-induced
hyperglycemia (Coghlan et al., 2003). Research on the effect of
LGD-5552 on glucose housekeeping still needs to be performed
(Reeves et al., 2012).

GCs can induce hypertension by causing Na+ retention. Synthetic
GCs that bind to themineralocorticoid receptor can increase the activity
of the epithelial Na+ channels (ENaCs) via this receptor. Besides this,
GCs can elevate ENaC gene expression via GR transactivation (Boyd &
Naray-Fejes-Toth, 2007) and increase ENaC activity through enhanced
transcription of the serum- and GC-regulated kinase SGK, which
phosphoregulates ENaC (Schacke et al., 2002). Only the effect of LGD-
5552 on blood pressure has been previously investigated. Low doses
of LGD-5552 (1-3 mg/kg) did not induce a raise in arterial blood
pressure in rats, in contrast to treatment with prednisolone which did
induce a raise even at low dosages (López et al., 2008).

Although select researchers have investigated the effects of particu-
lar SEGRMs on hypertension (López et al., 2008), and fertility (Louw &
Swart, 1999), these particular domains and also research into effects
of SEGRMs on depression and memory in the long run, still warrant
additional research. Indicative, a recent report on C108297, a partial
GR agonist and antagonist, indicates the possibility to selectively target
and allow GR signaling in the brain (Zalachoras et al., 2013). Also, two
phase II clinical trials investigating the potential suppression of the
hypothalamic-pituitary-adrenal axis by a Mapracorat ointment in
adults with atopic dermatitis were performed, yet no results have
been posted (USNIH, 2014m,n).

Taken together, the currently developed SEGRMs have indeed a
better side effect profile in vitro and in vivo. However, a full side effect
profile of one particular SEGRM is lacking, even for the more intensely
examined CpdA.

2.5. Glucocorticoid resistance

A second major pitfall in the use of GC-therapy, besides the side
effects, is GC resistance. Such GC resistance can be innate, disease-
dependent, or can be acquired due to a prolonged GC treatment (Beck
et al., 2009; Van Bogaert et al., 2010; Dejager et al., 2014; Vandevyver
et al., 2014). Innate GC resistance is predominantly, but not necessarily,
caused by amutation of theGR itself, leading to abnormal GR concentra-
tions, ligand-binding affinity, GR stability, GC-induced nuclear translo-
cation, and/or interactions between GR and its cofactors (van Rossum
& Lamberts, 2006; Charmandari et al., 2008; Yang et al., 2012; Hakim
et al., 2013; Quax et al., 2013). Also several polymorphisms are known
to be associated with a genetic predisposition to GC resistance, such as
in the interleukin 4 promoter causing increased gene transcription (Ito
et al., 2006a) or in genes of enzymes regulating the bioavailability of
GR (Quax et al., 2013).
The mechanisms involved in the acquisition of GC resistance are
divergent and cell-type specific. GC resistance has been associated
with an altered level of expression of GR isoforms (e.g. increased
expression of the ‘dominant-negative’ GRβ isoform), a lack of GR auto-
induction, homologous down-regulation of GR, a decreased GR ligand-
binding affinity, impaired GC-induced GR nuclear translocation, re-
duced ability of GR tobindDNA, altered cofactor activity and expression,
alterations in GR phosphorylation, aberrant expression of the anti-
apoptotic B-cell lymphoma 2 (Bcl-2) protein, failure to induce Bim
expression and interactions between various kinase pathways and GR
signaling (Ito et al., 2006a; Beck et al., 2009; Smith & Cidlowski, 2010;
Mercado et al., 2012; Rossios et al., 2012; Hakim et al., 2013; Papi
et al., 2013; Quax et al., 2013). Reduction in GC responsiveness is also
associated with an increase in the levels of FK506 binding protein
51 (FKBP51), an element of the GR chaperone complex, and of
inflammation-associated transcription factors (e.g. AP-1), the latter of
which could compete with GR for DNA binding at specific gene pro-
moters. In addition, a multidrug resistance membrane transporter can
limit GC activity by extruding GCs out of the cell (Ito et al., 2006a;
Beck et al., 2009; Quax et al., 2013). Interestingly, an in vitro and
in vivo reported cholesterol-induced selective GC resistance, in which
only GR transactivation and not GR transrepression events are
impaired, occurs via a JNK-dependent mechanism (Papi et al., 2013;
Yang et al., 2014).

Asmentioned above (see 2.3 Post-translationalmodifications of GR),
studies in cell lines and an in vivo study in mice showed that CpdA did
not cause a homologous down-regulation of the GR-protein in contrast
to dexamethasone in a multitude of cells (Avenant et al., 2010; Gossye
et al., 2010; Drebert et al., 2015). In line with these observations, CpdA
is known to preserve its anti-inflammatory potential even in long-
term treatment (Gossye et al., 2010). Themolecular basis for thisfinding
has not yet been elucidated, but several mechanisms have been postu-
lated. First of all, it could result from a different CpdA-induced confor-
mational change of GR, causing it not to be marked for ubiquitination.
Secondly, the lack of GR phosphorylation CpdA failed to induce, as
discussed above, could circumvent homologous down-regulation as
phosphorylation is known to mark the GR for degradation. This would
mean a regulation of GR on a post-translational level. However, the
down-regulation of GR following dexamethasone treatment is already
apparent on anmRNA level, implying that post-translational regulation
cannot be the only level of regulation (Gossye et al., 2010). A third
mechanism by which CpdA could possibly maintain GR protein levels
is via its possible inability to form an NCoR1 repression complex. This
idea unfolded from the observation that agonist-bound GR binds to an
nGRE in exon 6 of the GR gene, followed by the formation of the
NCoR1 repression complex at the transcription initiation site of the GR
gene, leading to reduced transcription of GR (Ramamoorthy &
Cidlowski, 2013). Perhaps CpdA-bound GR cannot bind to this nGRE in
exon 6, and thus does not instigate this mechanism. The latter hypoth-
esis is supported by the observed lack of interaction between CpdA-
bound GR and NCoR in a mammalian two-hybrid assay (Ronacher
et al., 2009).

In vitro experiments showed that ZK 216348 also did not induce a
homologous downregulation of GR (Reuter et al., 2012a). Research on
the effect of the other SEGRMs on GR half-life and acquired glucocorti-
coid resistance still needs to be performed.

2.6. Critical perspectives

Although CpdA and the other SEGRMs, including the newest one in
clinical trial, i.e. Fosdagrocorat, provide new insights in the physiology
of GR, they can never be the holy grail with regard to all GR-related
side effects. As stated before, the situation is not just black and white;
the therapeutic effects are not all due to the transrepressivemechanism
of action and the side effects are not all due to the transactivatingmech-
anism of action (Beck et al., 2009; De Bosscher, 2010; De Bosscher et al.,
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2010b). For instance, research shows that an important part of the anti-
inflammatory effect of GR is mediated by an increased expression of
dual specificity phosphatase 1 (DUSP) and glucocorticoid induced
leucine zipper (GILZ) (Newton & Holden, 2007; Ayroldi & Riccardi,
2009; Beck et al., 2009; Ayroldi et al., 2014; Newton, 2014). For
DUSP1, it was recently shown that this phosphatase plays a transient
and partial role in the glucocorticoid-regulated transrepression (Shah
et al., 2014). Subsequently, an anti-inflammatory effect is induced via
inactivation of MAPKs by both proteins (Ayroldi & Riccardi, 2009;
Beck et al., 2009; Newton, 2014), suppression of Cox-2 by DUSP1
(Joanny et al., 2012), inhibition of NF-κB by GILZ and a negative effect
on the function of macrophages, T-cells and dendritic cells by GILZ
(Ayroldi & Riccardi, 2009; Beck et al., 2009; Newton, 2014).

Of certain SEGRMs it is known how they affect the expression
of these genes. Despite being defective at classic GRE-dependent
transactivation, the SEGRA RU24858 induced the expression of GILZ.
This puts forth the possibility of inducing GILZ expression, by another
mechanism than the classical GRE or could more likely, be explained
by an incomplete dissociating potential, depending on the target gene
and tissue (Chivers et al., 2006). Furthermore, also ORG 214007-0
behaves as a partial agonist, by inducing the expression of GILZ and
DUSP1 (van Lierop et al., 2012). Additionally, experiments investigating
two SEGRMs, the ZK 218348-related compound 1 and the LGD-5552-
related compound 2, showed that their anti-inflammatory effect was
directly proportional to their capability of inducing DUSP1 (Joanny
et al., 2012), indicating again a potentially incomplete dissociation
profile. Of note, also the dexamethasone-stimulated GRdim mutant is
capable of inducing the expression of DUSP1 in COS-7 cells and murine
bone marrow macrophages (Abraham et al., 2006; Tchen et al., 2010),
albeit not in prednisolone-treated GRdim murine livers (Frijters et al.,
2010) . In contrast to the aforementioned SEGRMs, CpdA is unable to
induce DUSP1 (Reber et al., 2012; De Bosscher et al., 2014) or GILZ
(Drebert et al., 2015; Malaise et al., 2015) expression in various cell
types. The effect of Mapracorat, PF-802, AL-348, LGD-5552 and ZK
216348 on DUSP and GILZ expression has not yet been investigated.
Considering the potential relevance of GILZ and DUSP1 steady state
levels, no knockdown or knockout experiments have been performed
to analyze the importance of pre-existing GILZ or DUSP1 to the anti-
inflammatory mechanism of completely dissociated SEGRM-bound
GRs.

These findings all together indicate that the simple, convenient idea
that transactivation is solely mediated by the classical GRE-based
mechanism is outdated. Rather, a more complex and diverse system of
GR-mediated gene expression is probably the reality. However, this
line of experiments also brought to light that, like for the GRdimmutant,
many of the SEGRMs display only a decrease in GR transactivation
events and so far only CpdA (De Bosscher et al., 2005) and PF-802 (Hu
et al., 2011) can still uphold the most strongly dissociated profile.

As a result of the increasing evidence for a role for GILZ and DUSP1,
the benefit of therapeutic strategies relying on the transrepression
hypothesis has recently come under pressure (Clark & Belvisi, 2012).
Another reason for this is that certain inflammatory mouse models
were found to depend on GR’s full activity, including transactivation,
to resolve the inflammation, e.g. contact allergy (Tuckermann et al.,
2007) and systemic TNF-induced lethal shock (Vandevyver et al.,
2012b). Moreover, and as mentioned earlier, the GRdim mouse model
inwhich theGR should be hampered in its dimerization and subsequent
DNA binding ability, appears still able to support some dimerization and
DNA binding (Jewell et al., 2012; Presman et al., 2014). Although this
observation casts a shadow over predictions and interpretations of the
past, the use and validity of findings with true dissociating ligands and
their impressive effects in inflammatory models are nice examples
that the baby needs not to be thrown out with the bathwater. Indeed,
based on the transrepression hypothesis, the pharmaceutical company
Pfizer performed a phase I clinical trial evaluating the safety of systemic
use of the dissociated GR modulator Fosdagrocorat, a phosphate ester
pro-drug of PF-802, which concluded that it had less impact on plasma
osteocalcin, a biomarker of adverse effects on bone, and similar effect on
biomarkers of GC activity (Stock et al., 2009).Moreover, Pfizer just com-
pleted further phase I (USNIH, 2014a,e,f,k) clinical trials and phase II
(USNIH, 2014c,l) clinical trials with the same compound. These phase
II clinical trials investigated Fosdagrocorat on a methotrexate back-
ground, destined for usage in rheumatoid arthritis. The results of all
these trials have not yet been posted.

Even though the to date observed side effects using SEGRMs are
fewer and/or less pronounced than those observed using GCs, problems
that may arise because of systemic administration are currently not
being tackled in the SEGRM research field. A number of research lines
have focused on topical skin and eye preparations (Schacke et al.,
2009; Zhang et al., 2009; Kowalczyk et al., 2013; Baiula et al., 2014;
Spinelli et al., 2014; USNIH, 2014d,g,h,j,o,p). Nevertheless, additional re-
search into tissue-specific delivery systems for these pharmacological
compoundswould aid in reducing the remaining side effects evenmore.

Although the anti-inflammatory potential of certain SEGRMs seems
to turn out less powerful than anticipated, the selective nature of its
pharmacological profile does entail a reduced count of side effects.
When more is known on how GR exactly works and how ligands influ-
ence the effects of GR, perhaps ligands with another kind of selectivity
and a more specific target, for example solely causing transactivation
of DUSP, can be developed for research purposes and/or to eventually
compile a select compendium of beneficial GR-mediated events.

3. Conclusions

The activated glucocorticoid receptor displays an intricately layered
mechanism of action, controlled by ligands, cofactors, post-translational
modifications and promoter-specific events. Picking these mechanisms
apart using selective GR modulators and agonists has yielded new
insights in GR biology. However, the flawed assumption that genetic
models using GR mutants should lead to similar conclusions as
approaches using small molecules targeting GR and the hitherto com-
parison of completely and incompletely dissociated SEGRAM effector
profiles, has created a great deal of controversy over the past years.
Furthermore, although the pharmacological endeavors of the past
decade have yielded a surge of new and more selective GR modulators,
their mechanism at heart still remains largely unresolved and warrants
further research.
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