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Abstract

Anti-reflective boundary conditions have been studied in connection with fast deblurring algorithms,
in the case of d-dimensional objects (signals for d = 1, images for d = 2). Here we study how, under the
assumption of strong symmetry of the point spread functions and under mild degree conditions, the associated
matrices depend on a symbol and define an algebra homomorphism. Furthermore, the eigenvalues can be
exhaustively described in terms of samplings of the symbol and other related functions, and appropriate
O(nd log(n)) arithmetic operations algorithms can be derived for the related computations. These results,
in connection with the use of the anti-reflective transform, are of interest when employing filtering type
procedures for the reconstruction of noisy and blurred objects.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

We consider the deblurring problem of blurred and noisy d-dimensional objects with space
invariant point spread functions (PSFs) (see e.g. [1]) and with anti-reflective (AR) boundary
conditions (BCs), see [2] for the original proposal. More in detail, the discrete blurring and
noising model in d dimensions is formulated by the following set of equations:

gi =
∑
j∈Zd

fjhi−j + νi, i ∈ Zd . (1)
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In the above relations, for s ∈ Zd , the tensor h = (hs) represents the (discrete) blurring oper-
ator (the discrete PSF), � = (νs) is the noise contribution, g = (gs) is the blurred and noisy
observed object, and f = (fs) represents the true object to be reconstructed. Given h and some
statistical knowledge of �, the problem is to recover the unknown “true” object f , in a fixed
field of view (FOV) described by s ∈ {1, . . . , n}d , from the knowledge of g in the same FOV.
Assuming that the support of h is a d-dimensional cube of volume qd > 1, it follows that system
(1) is under-determined, because we have to solve nd equations and (n + q − 1)d unknowns
are involved. In order to cope with this problem while maintaining the quality of the restored
object, very recently AR-BCs have been proposed [2]. Indeed for d = 2 the AR-BCs preserve
at the boundary both the continuity of the image and the continuity of its normal derivative
(C1 continuity when dealing with signals). Therefore typical artifacts called ringing effects are
negligible with respect to the other BCs [2,3], at least for piece-wise smooth images: on the other
hand, when fine textures appear close to the boundary, then we should be aware that none of
these extrapolation based BCs provide a good model for the values outside the scene. Further-
more, unlike periodization and reflection, the anti-reflection model does not guarantee that the
obtained values fall inside the natural range (typically {0, . . . , 255}). In practice the latter does
not represent a problem since these outlying values appear in general only outside the scene
i.e. outside the FOV, and therefore are simply ignored. More recently, in [4], we extended the
proposal and the analysis to an arbitrary number d > 1 of dimensions: from the viewpoint of
the modeler the quality of the proposal is similar to that of the 2-dimensional case and, from an
algebraic/computational point of view, the resulting matrix structure is d-level Toeplitz + Han-
kel plus a d-level structured low rank matrix. Despite the apparent involved expression of the
resulting matrix, the matrix–vector product is again possible by d-level fast Fourier transforms
(FFTs) by using embedding arguments (refer to Section 3 of [5] for the explicit treatment of
the case d = 2), while the solution of a linear system can be obtained in O(nd log(n)) opera-
tions (ops) by j -level fast sine transforms (FSTs), j � d, if the PSF is strongly symmetric and
the associated symbol satisfies a mild degree condition [4]. We define a d-dimensional PSF h
to be strongly symmetric if it is symmetric with respect to each index i.e. if hs = h|s|, ∀s ∈
Zd , with s = (s1, . . . , sd) being a d-index and |s| = (|s1|, . . . , |sd |), see [1]. Moreover, given a
PSF h represented by a d-dimensional tensor or mask, we associate the symbol h(y) defined
as

h(y) =
∑
j∈Zd

hj exp(i〈j, y〉), 〈j, y〉 =
d∑

i=1

yiji, i2 = −1 (2)

for all y ∈ Rd . For mild degree condition we mean that ji � n − 2 for some i ∈ {1, . . . , d}
necessarily implies hj = 0. Moreover, in real applications, a PSF is usually normalized, i.e.,∑m

s1,...,sd=−m hs = 1. In the rest of the paper, when it is not differently specified, we suppose
that the PSF h is strongly symmetric, normalized, and satisfies the above mild degree condi-
tion.

We recall that many concrete applications satisfy by nature the above hypotheses (Gaussian
blur, some out of focus etc., see e.g. [1]).

The main focus of this paper concerns the spectral properties of the AR-BC matrices,
in connection with the symbol h in (2) and in analogy with the well-studied (multilevel)
Toeplitz/circulant case (see [6] and references therein). More in detail, we prove an algebra
homomorphism between the space of multivariate cosine polynomials, associated with strongly
symmetric PSFs, and the d-level AR-BC algebra: to be precise, the set of d-variate cosine
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polynomials is not viewed as an infinite dimensional ring, but as a finite dimensional algebra
of dimension not exceeding that of the d-level AR-BC algebra, by considering a special defi-
nition of the polynomial product/inversion based on interpolation (see (22) and the discussion
in Section 3.1, just before Theorem 5). In that case we are able to indicate an algorithm of
O(nd log(n)) complexity, based on FFTs or suitable FSTs, for the determination of all the
eigenvalues of any AR-BC matrix: in addition those eigenvalues can be described analyti-
cally in terms of some special symbols associated with the main symbol h. The study of the
corresponding eigenvectors or, in other words, the definition of the anti-reflective transform,
and the design of related fast procedures deserve a specific attention and are fully treated in
[7].

The paper is organized as follows: in Section 2 we review the matrix structures arising from
d-dimensional AR-BCs, we show that they define a matrix algebra such that the resolution of
a linear system and the matrix–vector product reduce to the computation of few j -dimensional
discrete sine transforms of type I (DST-I), with j � d and with a total cost of O(nd log(n)) ops.
In Section 3, we discuss the spectral features of the involved matrices and their relations with the
symbol induced from the PSF mask. Finally, in Section 4 we briefly mention the applicability of
the previous computational proposals in connection with filtering techniques and the AR transform
introduced in [7].

2. The algebra of matrices induced by AR-BCs

In Section 2.1, for d � 1, we first introduce the τ (d) class, related to the multilevel DST-I
matrices [8]. In a second step, we define the classes of matrices S(d), which are inherently related
to the algebras τ (d). In particular we recall the structure of algebra of the space S(d), which is
related to AR-BC matrices. Moreover, it is known [4] that any operation in S(d) such as matrix–
vector product, matrix-matrix product, eigenvalue computation, and linear system solution can
be carried out within O(nd log(n)) ops. Section 2.2 is devoted to briefly describe the AR-BCs in
the case of d-dimensional objects, providing the structure of the matrix A which represents the
corresponding blurring operator: the nice fact is that all matrices arising from the imposition of
d-level AR-BCs in our hypothesis (PSF strongly symmetric, normalized and satisfying a mild
degree condition) are elements of S(d). In particular, it will be shown in Section 3 that they form
a commutative subalgebra of S(d).

2.1. The S(d) algebras and their computational features

Let Q be the DST-I matrix of order n with entries [Q]i,j =
√

2
n+1 sin(

ijπ
n+1 ), i, j = 1, . . . , n

(see [8]). It is known that the Q is orthogonal and symmetric (Q−1 = QT = Q). For any v ∈ Rn,
the matrix–vector product Qv can be computed in O(n log(n)) ops by using the FST. In the
multidimensional case, setting Q(d) = Q ⊗ · · · ⊗ Q (d times, ⊗ being the Kronecker product)
and for v ∈ Rnd

, Q(d)v can be computed in O(nd log(n)) ops by the FST of level d. Let τ (d) =
{Q(d)DQ(d) : D = diag(λ1, . . . , λnd ), λi ∈ R}. Let X ∈ τ (d), then Q(d)Xe1 = DQ(d)e1, with

ej denoting the j th vector of the canonical basis of Rnd
, that is, the eigenvalues λi of X are

given by λi = [Q(d)(Xe1)]i
[Q(d)e1]i , i = 1, . . . , nd . Hence for all X ∈ τ (d) its eigenvalues can be obtained

by means of one d-level DST-I of its first column and X is uniquely determined by its first
column.
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Moreover, the eigenvalues of a τ (1) matrix are given by the cosine function

v(y) =
∑

|j |�n−1

vj exp(ijy), (3)

sampled at

y ∈ G(1)
n ≡

{
kπ

n + 1
, k = 1, . . . , n

}
, (4)

where vs = v|s| for |s| � n − 1 (i.e., λk = v( kπ
n+1 ), k = 1, . . . , n). In such case the τ (1) matrix is

denoted by τ (1)(v) and is called the τ (1) matrix generated by the function or symbol v(y), while
v = (v0, . . . , vn−1)

T ∈ Rn denotes the coefficient mask of the function v as expressed in (3).
For d > 1, as in the one-dimensional case, a spectral characterization of the matrices in τ (d) is
possible. The key information is contained in a d-dimensional mask. Indeed, let us consider a d-
dimensional strongly symmetric tensor v = (vs), where vs = v|s|, |s| � (n − 1)e with e being the
vector of all ones. The related matrix has eigenvalues described by the d-variate cosine function

v(y) =
∑

|j |�(n−1)e

vj exp(i〈j, y〉) (5)

sampled at

y ∈ G(d)
n ≡

{(
j1π

n + 1
, . . . ,

jdπ

n + 1

)
, jk = 1, . . . , n, k = 1, . . . , d

}
, (6)

and is denoted by τ (d)(v). The class τ (d) will be indicated explicitly by τ
(d)
k when the corresponding

matrix size kd is not clear from the context.
The mask v of the Fourier coefficients of the function v in (5) defines not only the spectrum

of τ (d)(v) but also its entries. Such characterization of the τ (d) class is important for analyzing
the structure of the AR-BC matrices. We start with the case of d = 1. Let us define the shift of
any vector x = (x0, . . . , xn−1)

T as σ(x) = (x1, x2, . . . , xn−1, 0)T. We define T (x) as the n-by-n
symmetric Toeplitz matrix whose first column is x and H(x, y) as the n-by-n Hankel matrix
whose first and last column are x and y, respectively. Then

τ (1)(v) = T (v) − H(σ 2(v), Jσ 2(v)) (7)

where J is the flip matrix, i.e., Js,t = 1 if s + t = n + 1 and zero otherwise. This means that
scalar τ (1) structures are special instances of Toeplitz plus Hankel matrices. Now for d > 1, the
description of τ (d) can be given recursively. Briefly, every τ (d) matrix is represented as (7), where
vj is the τ (d−1) matrix associated with the (d − 1)-dimensional mask v(j,s2,...,sd ) and where the
matrix J is replaced by J ⊗ Ind−1 .

The algebra τ (d) of proper dimension represents a building block for defining the algebra
S(d). More specifically, for d � 1, we define the classes of nd × nd matrices S(d) as follows.
For d = 1, M ∈ S(1) if

M =
⎛
⎝α

v M̂ w
β

⎞
⎠ , (8)

with α, β ∈ R, v, w ∈ Rn−2, and M̂ ∈ τ
(1)
n−2. For d > 1, M ∈ S(d) if

M =
⎛
⎝α

v M∗ w
β

⎞
⎠ , (9)
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with α, β ∈ S(d−1), v, w ∈ R(n−2)nd−1×nd−1
, v = (vj )

n−2
j=1, w = (wj )

n−2
j=1, vj , wj ∈ S(d−1) and

M∗ = (M∗
i,j )

n−2
i,j=1 having an external τ

(1)
n−2 structure, with M∗

i,j ∈ S(d−1). Blanks in (8) and (9)

denote null blocks. As for the τ (d) algebra, the class S(d) will be indicated explicitly by S
(d)
k

when the corresponding matrix size kd is not clear from the context (for more details on links and
relation between classes S(d) and τ (d) see [4]).

In the rest of this subsection we recall some relevant computational findings, whose derivations
and details can be found in [4]. Let M ∈ S(d) and f, g ∈ Rnd

, then the following computations
can be carried out with O(nd log(n)) ops:

(1) solve the system Mf = g with det(M) /= 0;
(2) compute the matrix–vector product g = Mf ;
(3) compute the eigenvalues of M .

Furthermore, the space S(d) is an algebra of dimension (3n − 4)d .
As an application of the above results consider the linear system arising from the Tikhonov

regularization with reblurring strategy proposed in [9,5]. Such a linear system has coefficient
matrix M2 + μT2 or M2 + μZ, where T, Z are any even-order differential-like operators
with AR-BCs, M is an AR-BC matrix, and μ is a positive Tikhonov-like regularization param-
eter. Therefore, by the algebra structure of the class S(d), we deduce that M2 + μT2, M2 +
μZ ∈ S(d) so that the recursive procedure contained in the proof of the previous item (1)
can be employed [4]. Furthermore, it is worth mentioning that a direct (non-recursive) pro-
cedure for the 1D, 2D, and 3D case is described in [3,4]: it shows an interesting geomet-
ric interpretation in terms of lower dimensional faces of the unit d-dimensional cube, d �
3, and the same geometric-combinatorial flavor will appear again in the spectral results of
Section 3.

2.2. The d-dimensional AR-BCs and the related matrices

The AR-BCs impose a global symmetry around the boundary points: for d = 1 the latter
choice corresponds to a central symmetry around the considered boundary point while for d � 2
we have a symmetry around each (d − 1)-dimensional affine space (straight line for d = 2)
supporting the considered (d − 1)-dimensional face (segment for d = 2) of the boundaries. More
specifically, in the one-dimensional case, if f1 is the left boundary point and the fn is the right
one, then the external points f1−j and fn+j , j � 1, are computed as function of the internal points
according to the rules f1−j − f1 = −(fj+1 − f1) and fn+j − fn = −(fn−j − fn). Therefore,
if the support of the centered blurring function is q = 2m + 1 � n, we have f1−j = 2f1 − fj+1
and fn+j = 2fn − fn−j , for j = 1, . . . , m. Following the analysis given in [2], the structure of
the 1D AR-BC matrix A is

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

z1 + a0 0T 0
... am

zm + am−1 Â zm + am−1

am

...

0 0T z1 + a0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (10)
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where aj = hj , zj = 2
∑m

k=j hk , hence A1,1 = An,n = z1 + a0 = 1 thanks to the normalization

condition, and Â ∈ R(n−2)×(n−2) is

Â = T (u) − H(σ 2(u), Jσ 2(u)), (11)

with u = (h0, h1, . . . , hm, 0, . . . , 0)T ∈ Rn−2. According to the brief discussion of Section 2.1,
relation (11) implies that Â = τ

(1)
n−2(h). Therefore the AR-BC matrix A is a special case of (8),

i.e., A ∈ S(1), with α = β = 1, vj = wn−1−j = hj + 2
∑m

k=j+1 hk , and with M̂ = Â ∈ τ
(1)
n−2.

For introducing the AR-BCs in a d-dimensional setting, it is enough to apply anti-reflection
with respect to every axis, separately [4,3]. The resulting matrix is described as follows.

Theorem 1 [4]. Let h be the d-dimensional PSF, then the nd × nd blurring matrix A, with n � 3
and AR-BCs, has the form

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

z1 + a0 0 0
... am

zm + am−1 A∗ zm + am−1

am

...

0 0 z1 + a0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (12)

where zeros denote null matrices of proper order and especially:

• aj ∈ Rnd−1×nd−1
is the AR-BC matrix related to the (d − 1)-dimensional PSF h(d)

(d−1,{1},j) =
(hj,k)

m
k1,...,kd−1=−m and zj = 2

∑m
k=j ak,

• A ∈ S(d).

Clearly, from the previous Theorem 1, it follows that z1 + a0 in (12) is the AR-BC matrix related
to the mask h(d)

(d−1,{1}) = ∑m
j=−m h(d)

(d−1,{1},j) which is normalized and strongly symmetric.

In conclusion, from Theorem 1 the AR-BC matrices belong to S(d) and more specifically, in
the next section, we will see that the set of AR-BC matrices constitute a commutative subalgebra
of S(d). As a final tool for the theoretical analysis of Section 3 we report the following corollary,
which is also important for an efficient implementation of the truncated SVD as in [1]: its impor-
tance concerns the case of separable symbols, for which a natural Kronecker decomposition of
the associated matrices can be observed.

Corollary 2 [4]. Let h be such that hs = bs1c(s2,...,sd ), then:

• b = (bs1)
m
s1=−m and c = (c(s2,...,sd ))

m,...,m
s2=−m,...,sd=−m can be chosen as strongly symmetric and

normalized PSFs of dimensions 1 and d − 1, respectively,
• the nd × nd blurring matrix A with AR-BCs has the form A = B ⊗ C where B and C are the

AR-BC matrices associated with b and c, respectively.

3. Structural and spectral analysis of AR-BC matrices by symbol

We study how the AR-BC matrix associated with a mask h depends on the symbol h defined in
(2). We will consider structural properties and spectral properties by discussing both the general
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case and, in more detail, the case where h is a multivariate cosine polynomial that satisfies the
mild degree condition.

3.1. The ARn(·) operators

We define C
(d)
l the set of d-variate real-valued cosine polynomials of degree at most l in

every variable (the degree l will be omitted when not necessary). Let h ∈ C
(1)
l , then its Fourier

coefficients are such that hi = h−i ∈ R with hj = 0 if |j | > l, and we can define the one-level
ARn(·) operator

ARn(h(y)) =
⎛
⎝ h(0)

vn−2(h) τ
(1)
n−2(h) v′

n−2(h)

h(0)

⎞
⎠ , (13)

where for x ∈ Rn we define x′ = Jx and

vn−2(h) = τ
(1)
n−2(φ(h))e1, (14)

(φ(h))(y) = h(y) − h(0)

2(cos(y) − 1)
. (15)

It is interesting to observe that h(y) − h(0) has a zero of order at least 2 at zero, hence φ(h) ∈ C
(1)
l−1

and (φ(h))(0) = −h′′(0)/2, in other words the function is well defined at zero (note that 0 /∈ G
(1)
n

for any n).
The multidimensional case is simply treated by tensor products. If h(y) ∈ C(d), then its Fourier

coefficients form a real d-dimensional tensor which is strongly symmetric. In addition, h(y), with
y ∈ Rd , can be written as a linear combination of terms of the form

m(y) =
d∏

j=1

cos(αjyj ) (16)

where αj ∈ N+. Therefore, for n ∈ Nd we define

ARn(m) ≡ ARn(m(y)) = ARn1(cos(α1y1)) ⊗ · · · ⊗ ARnd
(cos(αdyd)), (17)

and we force

ARn(αh1(y) + βh2(y)) = αARn(h1(y)) + βARn(h2(y)) (18)

∀α, β ∈ R and ∀h1, h2 ∈ C(d). The interesting fact is that the given operator describes in a func-
tional way the AR-BC matrices introduced in Theorem 1. For showing the latter statement, which
is fully contained in the subsequent Theorem 4, we need a simple lemma.

Lemma 3. Let k ∈ N and x ∈ R. Then

k

2
+

k−1∑
j=1

(k − j) cos(jx) = 1

2

cos(kx) − 1

cos(x) − 1
= (φ(cos(k·)) (x),

extending by continuity when x
2π

∈ Z.
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Proof. The proof consists in a direct check: denoting by ᾱ the complex conjugate of α,

k

2
+

k−1∑
j=1

(k − j) cos(jx) = 1

2

(
zk(x) + zk(x) − k

)
, (19)

where

zk(x) =
k−1∑
j=0

(k − j)eijx =
k−1∑
j=0

j∑
q=0

eiqx

=
k−1∑
j=0

ei(j+1)x − 1

eix − 1
= eix eikx−1

eix−1
− k

eix − 1

= ei(1+k)x − (k + 1)eix + k

(eix − 1)2
=

∑k
j=1 eijx − k

eix − 1

=
(∑k

j=1 eijx − k
)

(e−ix − 1)

(eix − 1)(e−ix − 1)
= −eikx − keix + k + 1

2 − 2 cos(x)
.

Therefore

zk(x) + zk(x) = − cos(kx) − k cos(x) + k + 1

1 − cos(x)
= cos(kx) − 1

cos(x) − 1
+ k

and, by replacing this expression in (19), the statement is proven since, by (15), the latter coincides
with (φ(cos(k·))(x). �

In the following, for the sake of notational simplicity, we set Am(cos(ky)) = Am[k] with A
being any of the symbols τ (1), AR and v introduced in (14). This because by linearity several
properties on h(y) ∈ C

(1)
m can be proved in a simpler fashion on the basis cos(ky) of C(1)

m for
k = 0, . . . , m.

Theorem 4. Let h be the d-dimensional PSF and let h be the related symbol as in (2). Then the
nd × nd blurring matrix A, with n � 3 and AR-BCs, in (12) is such that A = ARn(h).

Proof. For d = 1, the matrix A in (10) is linearly depending on the function h generated by the
PSF h, since it is linearly depending on the Fourier coefficients hi , i ∈ Z. By the degree condition,
h ∈ C

(1)
n−3 and in particular

h(y) = h0 + 2
m∑

k=1

hk cos(ky), m � n − 3.

Therefore the identity A = ARn(h) follows from the same identity on the polynomial basis
cos(ky), i.e., it is enough to study the case of h(y) = cos(ky), for k = 1, . . . , n − 3 (the case
k = 0 is trivial). The Fourier coefficients of cos(ky) can be described by hs = 1

2δk,|s|, s ∈ Z,
where δk,|s| is the Kronecker delta centered at k, for k = 1, . . . , n − 3. Hence, by the Toeplitz-
minus-Hankel representation in (7), the 1-level AR-BC matrix A in (10) associated with cos(ky)

can be written as
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0 →
1 →
...

k − 1 →
k →

k + 1 →
...
...

n − 2 →
n − 1 →

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0

1 − 1
2 0 1

2
...

. . .
. . .

1 − 1
2

. . .
1
2 0 1

2
1
2 0 1

2
. . . − 1

2 1
. . .

. . .
...

1
2 0 − 1

2 1

0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
⎛
⎝ 1

vn−2,k τ
(1)
n−2[k] v′

n−2,k

1

⎞
⎠

with

vm,k = [
1, . . . , 1, 1

2︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
m−k

]T
.

We notice that vm,0 = 0 while for negative k it is evident that vm,k ≡ vm,|k|. Therefore, since
cos(ky) evaluated at zero is equal to 1, by (13) it follows that the above expression of the AR-BC
matrix A coincides with ARn[k] if we prove that vn−2,k = vn−2[k] ≡ τ

(1)
n−2((φ(cos(k·)))(y))e1.

A direct algebraic check based again upon (7) clearly shows that the latter is true: in fact, by
the Fourier expansion in Lemma 3, the nonzero Fourier coefficients of ϕk(y) ≡ (φ(cos(k·)))(y)

are ai = (k − i)/2, i = 0, . . . , k − 1. Hence the first column of τ
(1)
n−2(ϕk) is exactly vn−2,k for

k � n − 3, since, by the Toeplitz-Hankel representation in (7), such a first column vector can be
expressed as the first column of the Toeplitz part [a0, . . . , ak−1, 0, . . . , 0]T ∈ Rn, minus the first
column of the Hankel part [a2, . . . , ak−1, 0, . . . , 0]T ∈ Rn. In conclusion we can state that

A = ARn[k] ≡ ARn(cos(ky)) for |k| � n − 3. (20)

For d > 1, the claimed thesis follows from the tensor definition of the linear operator ARn(·)
in (13), (16)–(18), and from the analogous tensor decomposition of the AR-BC matrix A, which
is contained in Corollary 2. �

For the sake of completeness we have to observe that ARn(h), for h violating the degree
condition, is not the AR-BC matrix A as defined in Section 2.2. Indeed, in such a case, the PSF
has infinite support and the central block of size n − 2 (and entries of size nd−1) in A may fail to
have a block τ (1) structure. This should be not surprising since the same trouble is observed, with
slightly different degree conditions, also when dealing with periodic and reflective BCs. From the
viewpoint of the modeler, the problem is not substantial at all, since the degree condition does
not hold only for Fourier coefficients of the PSF which are infinitesimal (since at least one index
ij is of the order of nj and because of the normalization condition). Therefore, we can state that
the extension represented by the ARn(·) operator, as defined in (13), (16)–(18) is canonical in
the sense that it does not differ so much from the real AR-BC matrix and at the same time, as we
will see in the next Theorem 5, it preserves important theoretical features also when the degree
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condition is violated. More specifically, ARn(·) can be viewed as an algebra homomorphism
between C

(d)
n−2 and S(d) that is

ARn(h1 � h2) = ARn(h1) � ARn(h2), � ∈ {+, ·}, (21)

In this respect, we should observe that the addition + is the standard addition both for matrices
and polynomials, while the product · in the right hand-side is the usual matrix-matrix product and
the product in the left hand-side is a special internal product in the space C

(d)
n−2. More precisely,

for d = 1 and h1, h2 ∈ C
(d)
n−2 the product h1 · h2 is the unique polynomial h ∈ C

(d)
n−2 that satisfies

the following interpolation condition

h(y) = zy, zy ≡ h1(y)h2(y), ∀y ∈ G
(1)
n−2. (22)

Notice that if the degree of h1 plus the degree of h2 does not exceed n − 2, then, by the unique-
ness of the interpolation, the polynomial h coincides with the product in the usual sense of the
standard ring of polynomials: in other words, the coefficients of h are obtained by convolution
among those of h1 and those of h2. The very same idea applies when considering the inversion.
Moreover, in the multidimensional case, i.e., d � 2, the definition is formally identical. There
exists only a delicate issue since, in general, the interpolation problem in many dimensions is not
necessarily associated with an invertible Vandermonde matrix. In fact, the pairwise distinction
of the nodes is not sufficient for guaranteeing such an invertibility. However, in our setting this
is not a problem since the grid G

(d)
n−2 is in tensor form and therefore it is simple to check the

unique solvability of the corresponding interpolation problem in C
(d)
n−2. In conclusion, with this

careful definition of the product/inversion and with the standard definition of the addition, C(d)
n−2

has become an algebra of vector-space dimension equal to (n − 2)d < (3n − 4)d = dim(S(d))

with n � 3.
Similar canonical extensions can be defined for completing the periodic and reflective BC

matrices, when the related degree condition of the PSF is not fulfilled.

Theorem 5. With the above definition of the operator ARn(·) we have

(1) αARn(h1) + βARn(h2) = ARn(αh1 + βh2),

(2) ARn(h1)ARn(h2) = ARn(h1h2),

for α, β ∈ R and for h1, h2 ∈ C
(d)
n−2.

Proof. We start giving a proof of statement (1). The linearity follows directly from the line-
arity of all the involved operators and, in particular, of the Fourier coefficients with respect
to the symbol. Therefore h(0) = αh1(0) + βh2(0), [vn−2(h)]j = α[vn−2(h1)]j + β[vn−2(h2)]j ,

j = 1, . . . , n − 2 and τ
(1)
n−2(h) = ατ

(1)
n−2(h1) + βτ

(1)
n−2(h2). This shows the desired property for

d = 1. The case of d > 1 follows from this and the very definition of the ARn(·) operator in the
multilevel case, where just in (18), the linearity is forced.

Statement (2) is a bit more difficult to prove: it suffices to treat the case d = 1, since by (17)
and (18), the d-level case follows from this. By defining h ≡ h1h2, we find

ARn(h1(y))ARn(h2(y)) =
⎛
⎝h1(0)h2(0)

v τ
(1)
n−2((h1h2)(y)) w

h1(0)h2(0)

⎞
⎠ ,
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with

v = h1(0)vn−2(h2) + τ
(1)
n−2(h1)vn−2(h2),

w = τ
(1)
n−2(h1)Jn−2vn−2(h2) + h2(0)Jn−2vn−2(h1).

Since τ
(1)
n−2(h1h2) = τ

(1)
n−2(h), h1(0)h2(0) = h(0), and τ

(1)
n−2(g)Jn−2 = Jn−2τ

(1)
n−2(g) ∀g ∈ C

(d)
n−2

(every τ (d) is centro-symmetric), all we have to prove is that

vn−2(h) = h2(0)vn−2(h1) + τ
(1)
n−2(h1)vn−2(h2), (23)

since w = Jn−2v ≡ v′. Of course, by linearity, it is enough to consider the case of the product with
symbols h1(y) = cos(sy) and h2(y) = cos(ty) for s, t ∈ N+: this more specific case is easier to
handle thanks to the sparsity of their Fourier expansion. Therefore, for proving (23), it is enough
to show that, for the product ARn[s]ARn[t], it holds

vn−2(cos(sy) cos(ty)) = vn−2[s] + τ
(1)
n−2[s]vn−2[t]. (24)

From the identity cos(sy) cos(ty) = 1
2 [cos((s + t)y) + cos((s − t)x)], we infer ARn(cos(sy)

cos(ty)) = 1
2 (ARn[s + t] + ARn[s − t]) and then

vn−2(cos(sy) cos(ty)) = 1

2
(vn−2[s + t] + vn−2[s − t]). (25)

Therefore, for proving ARn[s]ARn[t] = ARn(cos(sy) cos(ty)), from (24) and (25) we are re-
duced to show that

vn−2[s] + τ
(1)
n−2[s]vn−2[t] = 1

2
(vn−2[s + t] + vn−2[s − t]). (26)

Recalling that vn−2[k] = τn−2(ϕk)e1, ϕk(y) ≡ (φ(cos(k·)))(y), by the definition of vn−2(·) in
(14), the (26) is reduced to an identity between τ

(1)
n−2 matrices. Finally, from (15), it is clear that

(26) follows from the trigonometric identity

cos(sy) − 1

2(cos(y) − 1)
+ cos(sy)

cos(ty) − 1

2(cos(y) − 1)
= 1

2

(
cos((s + t)y) − 1

2(cos(y) − 1)
+ cos((s − t)y) − 1

2(cos(y) − 1)

)

that is equal to cos(sy) cos(ty) = 1
2 (cos((s + t)y) + cos(s − t)y) which is known to be true. �

Remark 6. It is interesting to observe that, as a consequence of the above Theorem 5, the ARn(·)
operator restricted to symbols related to strongly symmetric normalized PSFs behaves as a group
homomorphism with respect to the product. Indeed if h1 and h2 are d-dimensional strongly
symmetric normalized PSFs, then the convolution h = h1 ∗ h2 is clearly still a d-dimensional
strongly symmetric normalized PSF. In terms of symbols, this means that h ∈ C(d) having non-
negative Fourier coefficients, is such that h(0) = 1 (analogously to hj , j = 1, 2), and furthermore
ARn(h) = ARn(h1)ARn(h2) since h coincides with h1h2.

Remark 7. Theorems 4 and 5 implicitly state that the matrices ARn(h), where h ∈ C(d), form a
commutative subalgebra ofS(d). Consequently, if there exists some matrix ARn(h) with pairwise
distinct eigenvalues (such an example is easy to construct) then all the matrices in the subalge-
bra are diagonalizable by the same similarity, which means the existence of an anti-reflective
transform. This issue is studied in [7].
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Remark 8 (Practical use of our functional characterization). The results shown in this section so
far, especially Theorem 4 and Theorem 5, are of practical relevance in the Tikhonov regularization
with reblurring (see the end of Section 2.1). In fact let M = ARn(h) be the AR-BC blurring
matrix, let Z = ARn(z) be an even-order AR-BC differential-like operator (the regularizing
operator), and let μ > 0 be the Tikhonov-like regularization parameter: then we have to solve
linear systems with coefficient matrix B = M2 + μZ. With the algorithm proposed in [4], we
work in the algebra S

(d)
n for dealing with the matrix B. Conversely, thanks to our new functional

characterization we know that B = ARn(h
2 + μz) and therefore we just work on the PSFs by

making simple convolutions, with a subsequent great saving of computational cost especially
when h and z have local Fourier support. Analogous considerations can be repeated verbatim for
any regularizing procedure which employs the reblurring idea.

In this last part of the section we show that the general algebras S(d) are not as nice as their
subalgebras induced by the ARn(·) operators. Precise statements are contained in the following
proposition.

Proposition 9. For every algebra S
(d)
n with d � 1 and n � 3,

(1) ∃M ∈ S
(d)
n such that M is non-diagonalizable;

(2) ∃M, N ∈ S
(d)
n such that MN /= NM.

Proof. Both the claims can be easily proved for d = 1, n � 3: the general case follows from this.
For the first claim we consider the matrix M ∈ S

(1)
n in (8) where β /= α, α belongs to the

spectrum of M̂ , and v is a vector not belonging to the space spanned by the columns of M̂ − αIn−2,
n � 3. We impose Mx = αx and we show that the geometric multiplicity of α is different from
the algebraic one, which in turn implies that M does not possess a basis of eigenvectors. Let us
write x ∈ Rn as x = (x1, x̃T, xn)

T. Then Mx = αx if and only if

αx1 = αx1, x1v + M̂ x̃ + xnw = αx̃, βxn = αxn

and, by the assumptions, we deduce xn = x1 = 0 and M̂ x̃ = αx̃. Consequently, if ν is the alge-
braic and the geometric multiplicity of α as eigenvalue of M̂ ∈ τ

(1)
n−2, then ν + 1 is the algebraic

multiplicity of α as eigenvalue of M , while its geometric multiplicity is still ν.
For the proof of the second claim is enough to choose M, N ∈ S

(1)
n , n � 3,

M =
⎛
⎝α

v M̂ w
β

⎞
⎠ , N =

⎛
⎝α(1)

v(1) M̂(1) w(1)

β(1)

⎞
⎠ ,

such that α(1)v + M̂v(1) /= αv(1) + M̂(1)v: the latter clearly implies that MN /= NM even if MN

and NM are both S
(1)
n matrices. �

We now motivate our practical interest in the algebras S(d)
n . The first point comes from [4],

where the algorithms for eigenvalue computation, matrix–vector multiplication, and linear system
solution of AR-BC matrices were described in the larger S(d)

n framework. The second is more
technical and, at the same time, more substantial: when dealing with a multigrid procedure as
e.g. the V-cycle, we have observed that, starting at the highest level with a matrix ARn(h) in the
commutative subalgebra with d = 1, the structure at the lower levels is maintained only in a weak
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sense. More precisely, the first projected matrix Ak is of size k with n = 2k − 1 and it cannot
be viewed in general as ARk(hnew) for some symbol hnew, but it still belongs to S

(1)
k . More

generally, if at size n the original coefficient matrix lies in S
(1)
n , then all the projected matrices

at the different levels i and size ni will continue to belong to S
(1)
ni

, i = 1, . . . , L, L = O(log n).
The reasoning plainly extends to the case of a general d � 1.

3.2. The eigenvalues of the AR-BC matrices

The spectral structure of any d-dimensional matrix ARn(h) is concisely described in the
following results, whose proof is heavily based upon Theorem 1 and upon the following remark.

Remark 10. As already observed in [4], if we exchange the first and the t-th variable, t =
2, . . . , d, both in the ordering of the equations and of the unknowns, then the structure in (12) is
exactly the same, but the partial PSFs will change and, in particular, aj is the (d − 1)-dimensional

AR-BC matrix related to the PSF h(d)
(d−1,{t},j) and a0 + z1 is the (d − 1)-dimensional AR-BC

matrix related to the PSF h(d)
(d−1,{t}) = ∑m

j=−m h(d)
(d−1,{t},j). For giving a precise definition of the

above PSFs, we observe that the FOV {1, . . . , n}d can be seen as multiindices of a uniform
gridding in the unit cube Cd = [0, 1]d and we describe the various partial PSFs in terms of Cd

and of its faces. We say that X is a k-dimensional face (indeed a k-dimensional unit cube) of
Cd , 0 � k � d, if X = ∂Cd ∩ V with V being a k-dimensional affine space of Rd . We want to
define a k-dimensional PSF starting from a given d-dimensional strongly symmetric PSF with
0 � k � d. There will be a unique set of parallel k-dimensional faces uniquely determined by
d − k directions to which these faces are orthogonal. For instance, h(2)

(1,{2}) represents the PSF of

the two 1-dimensional faces orthogonal to the second axis x2; analogously h(d)
(d−1,{t}) is the PSF

of the two (d − 1)-dimensional faces orthogonal to the axis xt . Now we generalize this idea. Let
d � 1, 0 � k � d, let F ⊂ {1, . . . , d} with #F = d − k, and let z = (zj )j∈F. We define

h(d)
(k,F,z) = (hs) sj =−m,...,m,j /∈F

sj =zj ,j∈F

(27)

and

h(d)
(k,F) =

∑
j∈F

m∑
zj =−m

h(d)
(k,F,z). (28)

As already anticipated h(d)
(k,F) is the k-dimensional PSF (still strongly symmetric and normalized

if h is) associated with the set of parallel k-dimensional faces orthogonal to every axis xj with

j ∈ F. It is clear that for k = 0, F = {1, . . . , d} and h(d)
(k,F) ≡ 1, owing to the normalization

condition, while, for k = d , F = ∅ and h(d)
(k,F) ≡ h.

More in detail, we first consider the simplest case of permutationally symmetric PSFs. We
define a PSF h to be permutationally symmetric if hs = h|sσ |, sσ = (sσ(1), . . . , sσ(d)), ∀s ∈
Zd , for every permutation σ(·) of {1, . . . , d}. Of course the strong symmetry follows from
the permutational symmetry. Moreover, in such case, since the specific variables do not have
any specific importance, from (27) and (28), we deduce that h(d)

(k,F,z) = h(d)

(k,F′,z) ≡ h(d)
(k,z), z ∈

{−m, . . . , m}d−k and h(d)
(k,F) = h(d)

(k,F′) = h(d)
(k) , whenever #F = #F′ = d − k.
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Theorem 11. Let the d-dimensional PSF h be permutationally symmetric. Let α
(d)
k , 0 � k � d,

be the cardinality of k-dimensional faces of the unit d-dimensional cube Cd. Then the eigenvalues
of A = ARn(h) are given by

d⋃
k=0

{h(d)
(k) (y)|

y∈G
(k)
n−2

}α(d)
k , (29)

where α
(d)
k counts the multiplicity (algebraic and geometric) of the eigenvalues listed in the related

set, the functions h
(d)
(k) are the symbols associated with h(d)

(k) , where the notation h
(d)
(k) (y)|

y∈G
(k)
n−2

indicates the set of numbers obtained as a sampling of h
(d)
(k) (y) for y ∈ G

(k)
n−2 defined in (6), and

where for k = 0 the set G
(k)
n−2 is empty and we set {h(d)

(0) (y)|
y∈G

(0)
n−2

} = {1}.

Proof. We provide a nice combinatorial interpretation of (29) which is useful to better understand
the proof. First, through a proper bijection, we identify the FOV {1, . . . , n}d with a uniform grid
Dd of the unit cube Cd = [0, 1]d ; Dd is a discrete d-dimensional cube, which has its own faces
and facets (defined as intersection of Dd with the faces and facets of Cd ). As example, Dd

has 2d vertices described by s, with si ∈ {1, n}, i = 1, . . . , d, and 2d facets. We observe that

α
(d)
k =

(
d

k

)
2d−k: indeed, for any fixed set I of d − k directions, there is a well-identified set of

slices of Dd which have dimension k and are orthogonal to the directions in I ; these slices are
nd−k since they have d − k fixed parameters and each parameter can be chosen in {1, . . . , n}, but
a face is obtained only if each parameter belongs to {1, n}.

The combinatorial interpretation is the following: if we consider the algorithm proposed in
Section 2.2.1 of [4], we see that it is possible to compute all the unknowns if we solve first the
unknowns which belong to the lowest affine dimension faces of Dd , and in particular the solution
of the (remaining) unknowns which belong to a common face of Dd , which has dimension k,
is done at once by solving a τ (k) system. It follows that there exists a common permutation of
unknowns and equations such that the matrix A is block upper-triangular, and the diagonal blocks
are the τ (k) matrices which are solved in the cited algorithm of [4], and this means that we have
α

(d)
k matrices in τ (k), for all k = 0, . . . , d. The last statement is the thesis of the present theorem.

A formal proof of what above stated can be given by recursion on d. It is an exercise to prove
that there exists a common permutation of unknowns and equations such that the matrix A is
block upper-triangular and it has several τ (k) blocks on the diagonal (generated by h

(d)
(k) ); here the

difficult point is to clarify how many blocks of what size appear on the diagonal of Â, so this will
be done by recursion. We state the property P(d) as: “there exists a permutation matrix P such
that PAP T is block upper triangular and the diagonal blocks are τ (k)(h

(d)
(k) ) (with multiplicity

α
(d)
k ) for k = 0, . . . , d”. It follows from P(d) that the eigenvalues of A are those in (29). P(1) is

straightforward since we have twice the block 1, which is 1-by-1, and once the block τ
(1)
n−2(h

(1)
(1)).

For the inductive step we use (9) and P̂ (d) =
(

In−2
1

1

)
⊗ Ind−1 to prove

P̂ (d)A(P̂ (d))T =
⎛
⎝M∗ × ×

α

β

⎞
⎠ . (30)
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Now, by induction, the eigenvalues in the second and third diagonal block are

d−1⋃
k=0

{
h

(d)
(k) (y)|

y∈G
(k)
n−2

}2α
(d−1)
k

, (31)

since in (30) both α and β are the (d − 1)-level AR-BC matrix ARn(h
(d)
d−1). The first diagonal block

M∗ has external τ (1) structure and internal (d − 1)-level entries which belong toS(d), soP(d − 1)

can still be applied to its internal blocks of M∗. It follows that, if we permute the indices (in M∗
only) according to (1, 2, . . . , n) → (2, . . . , n, 1), we get a structure which is external (d − 1)-
level S(d−1) and internal τ (1): by the property P(d − 1) applied to the external d − 1 levels of
the block we obtain that there exists a permutation matrix P such that PM∗P T is block upper
triangular and the diagonal blocks are τ (k)(h

(d)
(k) ) (with multiplicity α

(d)
k ) for k = 0, . . . , d − 1 and

such blocks have inner τ (1) structure. The eigenvalues are

d−1⋃
k=0

{
h

(d)
(k+1)(y)|

y∈G
(k+1)
n−2

}α
(d−1)
k =

d⋃
k=1

{
h

(d)
(k) (y)|

y∈G
(k)
n−2

}α
(d−1)
k−1

. (32)

To complete the proof, we just have to observe that (29) is the union of (31) and (32). Indeed
α

(d)
0 = 2α

(d−1)
0 , and α

(d)
k = 2α

(d−1)
k + α

(d−1)
k−1 for k = 1, . . . , d − 1, and α

(d)
d = 1 = α

(d−1)
d−1 . �

We can now deal with the more general case, when the PSF is strongly symmetric but not
necessarily permutationally symmetric.

Theorem 12. Let the d-dimensional PSF h, the eigenvalues of ARn(h), n � 3, are given by

d⋃
k=0

d⋃
F⊂{1,...,d},

#F=d−k

{
h

(d)
(k,F)(y)|

y∈G
(k)
n−2

}β(d)(F)

, (33)

where the relevant notations are taken from Theorem 11, except for β(d)(F) ∈ N+ which repre-
sents the number of k-dimensional faces orthogonal to the set of axes associated with the variables
in F (notice that for k = d we have #F = 0, i.e., F = ∅ and therefore β(d)(F) = 1, since the
only d-dimensional face of Cd is the whole cube Cd itself).

Proof. We use induction on the number of levels d . For d = 1, the basis is the same as in Theorem
11 because the sets in (29) and (33) coincide. On the other hand, for d > 1 the structure of the
reasoning is identical. The notation is a bit different and more involved, since it is no longer true
that the blocks τ (k) share a common generator: now the generators of the τ (k) blocks are h

(d)
(k,F),

for all F ⊆ {1, . . . , n} such that #F = d − k, and each τ (k)(h
(d)
(k,F)) is repeated β

(d)
k (F) = 2d−k

times). Therefore we will not repeat the details here. �

It is clear that, under the assumptions of Theorem 12, the eigenvalues of any AR-BC matrix
A are the values that several cosine polynomials take at the grid points of j -dimensional uni-
form meshes for 0 � j � d . Therefore computing the spectrum can be carried out by means of∑d

j=0 α
(d)
j = 3d FFTs with a total cost of O

(∑d
j=0 α

(d)
j (n − 2)j log(n − 2)

)
= O(nd log(n))

ops. Observe also that the eigenvalues of A are those of suitable τ
(j)

n−2 matrices, for 0 � j �
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d, explicitly described in Theorem 1 and Remark 10, which can be computed by means of
j -dimensional DSTs, 0 � j � d , at the same asymptotic cost.

3.2.1. The computation of the eigenvalues: a fast spectral algorithm
Theorems 11 and 12 suggest a fast way to compute the eigenvalues of AR-BC matrices, which

we describe in the case of permutationally symmetric PSF.
Define � = ∅. Then for k = d down to 0 do:

(1) compute h(d)
(k) : nothing to do if k = d since h(d)

(d) = h, else if k < d use h(d)
(k) =∑

(k+1)�th index h(d)
(k+1) where the sum is done point-wise with respect to the last index, i.e.,

all the k-dimensional slices of h(d)
(k+1) which are orthogonal to the index k + 1 are summed;

(2) compute the first column a(k) of τ (k)(h
(d)
(k) ) by use of h(d)

(k) ;

(3) diagonalize τ (k)(h
(d)
(k) ) by k-dimensional DST-I of size (n − 2)k on a(k), and define �(k) the

set of the computed eigenvalues;

(4) compute α
(d)
k =

(
d

k

)
2d−k;

(5) update � :=� ∪ (�(k))α
(d)
k .

We remark that the eigenvalues in � can be rearranged in a one-to-one correspondence with
the FOV: the α

(d)
0 = 2d eigenvalues which are computed at the step k = 0 of the algorithm are all

equal to 1, and correspond to the 2d vertices of the FOV; all the eigenvalues which are computed at
step k > 0 (they are (n − 2)k with multiplicity α

(d)
k ) are associated with the inner part of the α

(d)
k

k-dimensional faces of the FOV. In particular, the eigenvalues computed at step k = d are (n − 2)d

(repeated just once) and correspond to the subset {2, . . . , n − 1}d of the FOV. We also remark
that for h ∈ C

(d)
m , the cost of computing all the h(d)

(k) is
∑d

k=1(2m)(2m + 1)d−k = (2m + 1)d − 1,

which is less than O(nd log(n)) ops under the mild degree condition, and the cost of computing
a(k) is comparable with the one of h(d)

(k) .
The algorithm is a bit more involved in the case of strongly (but not permutationally) symmetric

PSF, because the α
(d)
k matrices in τ (k) do not have a common generator: for any k there are

(potentially up to)
(

d

k

)
different matrices τ (k)(h

(d)
(k,F)), each one with multiplicity 2d−k . The extra

task of the algorithm is that all the h(d)
(k,F), F ⊆ {1, . . . , d}, #F = d − k have to be computed,

but the cost of determining all such h(d)
(k,F), as well as the first columns a(k)

F of τ (k)(h
(d)
(k,F)), is still

comparable with (2m + 1)d − 1.

3.3. The spectrum of AR-BC matrices with general PSFs

When the strongly symmetry condition considered so far is violated and when considering no
assumptions on the support of the PSF, the AR-BC matrices can become arbitrarily non-normal
and hence their spectral behavior becomes less regular: take in consideration a motion blur, where
the zero Dirichlet matrix is εI + (1 − ε)J with J Jordan block and small ε > 0; in that case the
zero Dirichlet, the reflective, and the anti-reflective matrices are severely non-normal, while the
periodic matrix still is. However, if Tikhonov-like techniques are applied, then it is of interest
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to understand the spectral features of ATA and of A′A, X �→ X′ being the correlation operation
according to the reblurring strategy [5], X being a square blurring matrix with some imposed BCs.
In both cases, formulae in close form (as those in Theorems 11 and 12) do not exist in general,
but we can furnish asymptotical distribution results in the sense of [10] and localization, extremal
results on the singular values of A and A′.

3.3.1. Distribution results for sequences of AR-BC matrices
When dealing with ATA and by using proper tools [11,10], it is easily verified that the sequences

{ATA} and {Tn(|h|2)} are equally distributed, if the complex-valued function h, having arbitrary
support, is smooth enough. In our case, thanks to the normalization condition and to the nonneg-
ativity of the Fourier coefficients, the symbol h belongs to the Wiener algebra [12] and therefore
h is at least continuous. As a consequence, the eigenvalues of ATA behave asymptotically (that
is for n large enough) as a uniform sampling of |h|2 over G

(d)
n . This follows from standard tools:

in fact, if {An} and {Bn} are equally distributed and {Bn} is distributed as a function f , then the
same is true for {An}, see [10]. In our setting, we know that {ATA} and {Tn(|h|2)} are equally
distributed since the involved Hankel matrix sequences are distributed as the zero function (see
[11]); furthermore, by Szegö (see [10] and references therein), {Tn(f )} is distributed as f over
[−π, π ]d so that the symbol |h|2 is the distribution function for {ATA} too.

The case of {A′A} is a bit more involved and requires more recent tools, essentially because A′A
may fail to be symmetric. However, under the hypothesis that h is smooth enough (e.g. h ∈ C2), it
is plain to prove that {A′A} is uniformly bounded in spectral norm (maximal singular value, [13])
and the trace norm (sum of all singular values, [13]) of A′A − ATA divided by nd , is infinitesimal
as n tends to infinity. A recent perturbation result (see [14, Theorem 3.4]) implies that {A′A}
shows the same spectral distribution as {ATA}. In our case the sequence {ATA} is distributed as
|h|2 over [0, π ]d and hence the same is true for {A′A}, even if the related eigenvalues may have
(generally infinitesimal) nonzero imaginary part. Since the symbol |h|2 is nonnegative, it follows
that A′A, for n large enough, can be regarded as a perturbation of a positive definite matrix. The
latter statement leads naturally to the question if this is sufficient for applying safely a conjugate
gradient algorithm. Of course this and related issues will be the subject of future researches.

3.3.2. Localization and extremal spectral results for AR-BC matrices
Here we are interested in giving uniform bounds and asymptotics on the extreme singular

values and eigenvalues of AR-BC matrices. Since σmin � |λ| � σmax for every square matrix
A, for every λ eigenvalue of A, and with σmin, σmax denoting the extreme singular values of A,
we focus our attention on localization and asymptotic behavior of the extreme singular values.
The main tool is general: in fact it applies to any choice of boundary conditions based on affine
relationships between internal and external values. Therefore this invites us to derive results valid
for every BCs and to briefly discuss the possible differences.

We follow the very clean presentation of this type of boundary conditions given in Section 2
of [15] (see also Section 2 of [2] for the case of AR-BCs). Given any x vector of size nd , and
given ABC, BC∈ {Dirichlet, Periodic, Reflective, Anti�Reflective}, there exists a unique d-level
rectangular Toeplitz matrix T of size nd × (n + m)d , with symbol h(y) and independent of the
chosen BCs, and there exists a unique vector xBC of proper size (n + m)d , depending on the
support of the PSF and such that its internal part of size nd is x, for which

ABCx = T xBC, xTx < xT
BCxBC < cBCxTx. (34)



674 A. Aricò et al. / Linear Algebra and its Applications 428 (2008) 657–675

Here cBC = 1 for Dirichlet BCs and cBC = 2d for the remaining BCs with m < n. Therefore,
taking into account (34), we find

σ 2
min(ABC) = min

x∈Rnd

xTAT
BCABCx

xTx
> min

x∈Rnd

xT
BCT TT xBC

xT
BCxBC

� σ 2
min(T );

σ 2
max(ABC) = max

x∈Rnd

xTAT
BCABCx

xTx
> cBC max

x∈Rnd

xT
BCT TT xBC

xT
BCxBC

� cBCσ 2
max(T ).

By standard theory on Toeplitz matrices (specific work by Szegö, Widom; see [6] and references
there reported), it is well known that

σmin(T ) � c(h) and σmax(T ) � ‖h‖∞,

where by the normalization condition and by the nonnegativity of the Fourier coefficients, it holds
‖h‖∞ = h(0) = 1. Furthermore here c(h) denotes the distance of convex hull of the range of h

from the complex zero in the complex plane. As a first conclusion, independently of the considered
BCs, we have

σmin(ABC) � c(h) and σmax(ABC) � ‖h‖∞cBC = cBC. (35)

Moreover, by the distributional results in Section 3.3.1 and by standard Lebesgue measure argu-
ments, it follows that

lim sup
n→∞

σmin(ABC) � min
y∈Rd

|h(y)| and lim inf
n→∞ σmax(ABC) � ‖h‖∞ = 1. (36)

Therefore, putting together the second parts of (35) and (36), we deduce that the maximal singular
value of ABC has limit and this limit is ‖h‖∞ = 1, when cBC = 1, i.e., for Dirichlet BCs. On the
other hand, we have miny∈Rd |h(y)| � c(h) � 0 (notice that |h(y)| has minimum thanks to the
continuity of h and to its 2π -periodicity) and the limit of the minimal singular value of ABC exists
and is equal to miny∈Rd |h(y)| at least for the periodic BCs, and for the reflective BCs with a
strongly symmetric PSF.

A similar analysis can be conducted with the very same arguments when dealing with the
extreme singular values of the reblurring matrix RBC = A′

BCABC: in that case, the only novelty
concerns the symbol of A′

BC which is easily identified as h̄(y), with h(y) being the symbol of
ABC. By recalling that h(y) and h̄(y) have the same modulus, it follows that

σmin(RBC) � c2(h) and σmax(RBC) � ‖h‖2∞c2
BC = c2

BC, (37)

lim sup
n→∞

σmin(RBC) � min
y∈Rd

|h(y)|2 and lim inf
n→∞ σmax(RBC) > ‖h‖2∞ = 1, (38)

with limn→∞ σmin(RBC) = miny∈Rd |h(y)|2 at least for the periodic BCs, and for the reflective
BCs with a strongly symmetric PSF.

4. Concluding remarks

In this note we have analyzed the commutative algebra of the AR-BC matrices and its spec-
tral structure, when strongly symmetric PSFs are involved. Every AR-BC matrix is associated
with a proper d-variate cosine polynomial (like the sine or cosine algebras) and the eigenvalues
are collectively uniform samplings of size (n − 2)j , 0 � j � d, of such polynomial and other
related partial polynomials. Therefore their computation can be done in a fast way, via the use of
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suitable FFT/FST-based procedures within O(nd log(n)) ops. Furthermore, any sum or product
in the algebra, as required e.g. by the Tikhonov procedure with reblurring, can be performed in a
straightforward and cheap way, by directly working on the involved symbols.

The definition of the AR-BC transform as studied in [7], joint with the results of this paper,
is the basis for the definition of a new class of filtering-type methods for the regularization of
the inverse problems arising in image/object reconstruction. In fact, by employing Tikhonov-
like techniques and re-blurring [7], two computational tools are important: a fast algorithm for
implementing the transform and a fast eigenvalue solver for the diagonalization. While the first
is discussed in detail in [7], the second is provided in this note.

Finally, a further contribution of this note relies in the spectral analysis of the AR-BC matrices
also in the case of general PSFs: of course, a full understanding of these properties could be of
interest in the choice of the solution/regularization method in the nonsymmetric setting.
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