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Natural products as lead structures:
chemical transformations to create
lead-like libraries

Mauro Pascolutti and Ronald J. Quinn*, r.quinn@griffith.edu.au

In this review, we analyze and illustrate the variation of the two main lead-like descriptors [molecular

weight (MW) and the partition coefficient (logP)] in the generation of libraries in which a natural

product (NP) is used as the guiding structure. Despite the different approaches used to create NP-like

libraries, controlling these descriptors during the synthetic process is important to generate lead-like

libraries. From this analysis, we present a schematic approach to the generation of lead-like libraries that

can be applied to any starting NP.
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Since ancient times, NPs have been a significant

source for the treatment of diseases and ill-

nesses. Analysis of NPs over the past 30 years

revealed that approximately 40% of the devel-

oped therapeutics drugs approved by the US

Food and Drug Administration (FDA) were NPs,

NP derivatives, or synthetic mimetics related to

NPs [1]. Investigation of structural differences

between NPs, drug substances and other che-

micals, found that NPs interrogate a different

and wider chemical space compared with syn-

thetic derivatives [2–5]. Furthermore, it has been

showed that 83% of core ring scaffolds present

in NPs were absent from commercially available

molecules and screening libraries [6]. It was

concluded that including molecules with a
1359-6446/06 � 2013 The Authors. Published by Elsevier Ltd. Open acce
NP-like scaffold into the screening library would

increase hit rates [6].

With their highly and sophisticated biological

and chemical diversity, NPs and their derivatives

have been used to explore biologically relevant

space [7,8]. The significant impact of NPs on the

discovery of therapeutic agents is based on their

embedded biosynthetic molecular recognition

[9]. Despite the pivotal role of NPs in drug

discovery [10–12], their use over the past two

decades has decreased in the pharmaceutical

industry [1]. This unfortunate downturn is mainly

attributed to the availability of the materials, and

the time and cost of isolating and identifying

active NPs from extracts [10,11,13]. However,

these limitations inspired the design of NP-like

libraries based on small molecules with

improved stability and bioavailability.

To capture NP-like characteristics, the gen-

eration of a library can be planned following four

main approaches: (i) target-oriented synthesis

(TOS) [14,15]; (ii) diversity-oriented synthesis

(DOS) [14,16]; (iii) biology-oriented synthesis
http://dx.doi.org/10.1016ss under CC BY-NC-ND license.
(BIOS) [17,18]; and (iv) functional-oriented

synthesis (FOS) [19]. Although in-depth discussion

of these strategies is beyond the scope of this

review, two points are worth noting: (i) a library

collection that is diverse in chemical space is

generally used to explore a wide spectrum of

biological targets; and vice versa (ii) a less che-

mically diverse or focused library is mostly used to

explore a smaller biological target area.

Analysis of libraries using concepts of

lead-likeness

In 1997, Lipinsky proposed a set of four simple

physicochemical properties (rule of five, Ro5)

that were common to 90% of more than 2000

drugs and candidate drugs at or beyond phase II

clinical trials [20]. In essence, to be drug-like, a

candidate molecule should have less than five

hydrogen bond donors (HBD � 5), less than ten

hydrogen bond acceptors (HBA � 10), a

MW � 500 Da and a logP � 5 [20]. All these

parameters help to identify potential bioavail-

ability issues if two or more violations occur [20].
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TABLE 1

Selected examples of natural product-like libraries

Leading NP NP-like library Leading NP NP-like library

Library 1 [37] Library 2a [38]

Library 3 [39] Library 4 [40]

Library 5 [41] Library 6 [42]

Library 7 [43] Library 8 [44]

Library 9 [45] Library 10 [46]

Library 11b [47] Library 12 [48]

Library 13b [49] Library 14 [50]

Library 15 [51] Library 16 [52]
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TABLE 1 (Continued )

Leading NP NP-like library Leading NP NP-like library

Library 17c [53] Library 18 [54]

Library 19 [55] Library 20 [56]

Library 21 [57] Library 22 [58]

Library 23 [59] Library 24b [60]

a A privileged scaffold is represented instead of the leading NP.
b Listed are the most representative NPs used in the library design.
c Although the library was generated focusing on the macroline family, the guiding natural product is reported here.
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Hopkins and co-workers recently proposed a

measure of drug-likeness based on the concept

of desirability called the ‘quantitative estimate of

drug-likeness’ (QED) [21]. This new concept was

introduced because they observed that Lipins-

ky’s rule could sometimes be misleading [21]. For

example, undesirable compounds can satisfy the

Ro5 and, therefore, pass the drug-likeness cri-

teria, whereas more appropriate compounds can

fail because of the violation of one or more cut-

offs. QED is an integrated function of eight

desirability functions calculated for each physi-

cochemical properties: MW, logP, HBD, HBA, polar

surface area, rotatable bonds (RTB), aromatic ring

count (RNG) and number of alerts. Moreover, each

molecular descriptor is weighted by its relative

significance in the contribution to drug-likeness.

As Leeson pointed out [22], QED is not the final

word in understanding the features of drug-like-

ness, but provides a richer and more balanced

view on this concept compared to Ro5. Therefore,

this new parameter could be used in the lead

optimization process or potentially for the gen-

eration of libraries with lead-like properties.

Contrary to drug-like properties, which are still

mostly represented by Ro5, lead-like properties

are more restricted. This is because the identi-

fication of lead compounds is the starting point

for further development in drug design [23]. A
lead is a less complex compound with defined

physicochemical properties, suitable for further

manipulation and optimization to generate a

drug-like compound. Lead-likeness was first

introduced by Opera in 1999, who suggested

that lead-like compounds should have the fol-

lowing requirements: MW � 350 Da and

logP � 3 [24]. This concept was then further

elaborated by taking into consideration other

physical properties, such as HBA, HBD, RTB, RNG

and its aqueous solubility (LogS). More impor-

tantly, the range of MW was extended to 460 Da

and the logP values to between �4 and 4.2

[25,26]. Meanwhile, an analysis by Leeson and

Davis [27] of 864 drugs approved before 1983

compared with 329 drugs approved between

1983 and 2002 showed that the logP values

remained consistent over time, with minor

changes compared with the other physico-

chemical properties. Since the first guidelines of

lead-likeness were established, several publica-

tions over the past decade have reported var-

iations of this concept, either introducing new

physicochemical properties or slightly modifying

the existing range values [28–33].

In this review, we analyze and illustrate the

variation of the two main lead-like descriptors (MW

and logP) in the generation of NP-like libraries in

which a NP is used as the guiding structure. For
each library, an analysis of four physicochemical

properties (HBD, HBA, RTB and RNG) is presented.

To provide a more comprehensive analysis, 24

libraries (Table 1) were selected based on dif-

ferent features. (i) Origin of the library. Two

major categories of library were selected: NP-

derived and NP-inspired libraries. Molecules in

which the scaffold is identical to the scaffold of a

leading NP belong to the first category, whereas

compounds in which the scaffold is closely

related to the guiding NP fall into the second

category. In this collection, most libraries are

based on one NP representative. However, in a

few examples, more than one NP was taken as

the guiding structure. Library 8 was created

considering four NPs that were based on the

same quinone moiety. Library 19 was based on

two sesquiterpenes, artemisinin and anthecu-

larin, bearing a peroxide bridge and a diene,

respectively. In our selection, we also included

NP-like libraries based on a common structural

motif. In this category, we included library 2,

which was generated around the privileged

scaffold 2,2-dimethyl-2H-benzopyran, and

libraries 11, 13 and 24 based on spiroketal,

diaza-bridge and macrolactone scaffolds,

respectively; (ii) MW: a wide range in MW of the

representative NPs was chosen (from 130 Da to

940 Da); (iii) Library size; small libraries of 10–15
www.drugdiscoverytoday.com 217
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FIGURE 1

Analysis of 24 natural product (NP)-like libraries based on two physicochemical properties: molecular weight (MW) in Dalton (x) and the partition coefficient (logP)

(y). In each chart, values are plotted of the guiding NP(s) in red and the library of the compound in black. aLibraries with >100 compounds were filtered to generate

smaller libraries with similar chemical diversity.
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FIGURE 2

Summary of calculated physicochemical properties for 24 libraries: (a) hydrogen bond donors (HBD); (b) hydrogen bond acceptors (HBA); (c) rotatable bonds (RTB);

and (d) ring count (RNG).
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entities to large libraries of >2000 entities were

analyzed.

The initial analysis of the 24 libraries was

carried out by generating scatterplots using MW

and logP as the two variables. From the data sets

summarized in Fig. 1, three major distribution

trends were identified, as discussed below.

Rising libraries
Rising libraries contained compound collections

with higher MWs than the guiding NP. In most

cases, logP values rose in direct proportion to

MW (libraries 1, 3, 7, 10, 12 and 17). In two cases

(libraries 1 and 10), the distribution values were

not as compact as in the other examples and

different linearity sets can be observed within

the same library. However, an increase of MW did

not always lead to a rise in logP, as shown for

libraries 15, 16 and 22. In these three plots, the

logP vales of the libraries are both below and

above the guiding NP.

Falling libraries

This second trend of distribution is characterized

by libraries with a MW lower than the guiding NP.

By decreasing the MW, two different sets were

identified: libraries with LogP values lower than

the guiding NP, in which the logP decreased
directly proportional to the MW (libraries 4 and

8); and libraries with logP values predominantly

above the guiding NP (libraries 6, 9, 14 and 18). In

this trend, we also included libraries 11, 13 and

24. As expected, because these three libraries

were generated using the common structural

motif approach, a decrease in MW compared

with the guiding NPs was detected. In the first

two examples, a linear decrease of logP values

was observed, whereas library 24 showed a more

scattered distribution of values.

Uncorrelated libraries

This class was characterized by libraries having

both lower and higher MW compounds com-

pared with the guiding NP. In two examples

(libraries 5 and 23), most compounds in the

library had logP values above the guiding NP.

However, the opposite distribution, in which a

predominant part of the library entities have

logP values below the guiding NP (libraries 19,

20 and 21), was also observed. Given that

library 2 was generated using a privileged

scaffold approach, only selected examples of

benzopyran-containing NP were plotted. In

this case, we observed a library built with

similar physicochemical properties as the

guiding NPs.
As mentioned above, a more complete ana-

lysis of lead-likeness should include additional

physicochemical properties, such as HBD, HBA,

RNG and RTB. The analysis of individual prop-

erties is summarized in Fig. 2 expressed as

percentages. The histogram of the HBDs (Fig. 2a)

shows a predominant distribution that peaks at

1–3, and values >5 are rarely reached. In a few

examples (libraries 4, 6, 9 and 14), there was a

lack of HBD distribution, showing predominately

just one value of HBD within the library. The

histogram in Fig. 2b, which indicates HBA dis-

tribution, shows values for most of the libraries,

with a maximum at 4–7 HBA. Despite the first

two distributions, in which we were able to

define a range of maximum values for HBD and

HBA, the histogram representing the number of

RTB (Fig. 2c) showed more scattered values.

However, approximately 75% of the libraries fell

into the lead-likeness cut-off value (RTB � 9).

Furthermore, RNG was calculated and the

values for each library are summarized in

Fig. 2d. For this property, a major distribution

is observed, with peak values of between 3 and

5 RNG.

Although the 24 selected libraries were cre-

ated using different synthetic strategies and not

necessary with the ultimate goal to generate a
www.drugdiscoverytoday.com 219
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FIGURE 3

Schematic approaches (a and b) to the generation of lead-like libraries. Representation of the lead-like region (green) of four libraries selected from Fig. 1 (c).

Abbreviations: logP: partition coefficient; MW: molecular weight.
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lead compound, we wanted to illustrate with our

analysis the impact of chemical transformations

on physiochemical properties in the generation

of libraries using NPs as a guiding structure.

Chemical transformations to create lead-

like libraries

From this analysis, we present a schematic

approach to the generation of lead-like libraries

that can be applied to any starting NP. Given that,

during the lead-optimization process, an

increase in MW and logP is generally observed

[24,34], we believe that the optimum property

cut-off values to identify NP lead-like libraries

should be as follows: MW � 350 Da and

�1 � logP � 3. The initial step to generate

potential leads is to define the guiding NP with

relevant biological activity. Next, the NP-like

library can be created following three different

approaches, as simplified in Fig. 3: (i) if the

guiding NP has a MW � 350 Da, it is necessary to

reduce the structural complexity. This can be

achieved through the identification of scaffolds.

The synthetic process to produce attractive

scaffolds should take in consideration the

insertion of several functional groups, which

could then be elaborated [35,36]. This is a crucial

point in the generation of potential leads

because functionalization of these molecules

should provide a library with appropriate logP
220 www.drugdiscoverytoday.com
values (�1 � logP � 3) and, at the same time,

with chemical diversity. As we observed in our

previous analysis in Fig. 1, a reduction in struc-

tural complexity can lead to a library with

optimal logP values, as in library 4, and to a

library with logP values in the non-lead-like

region, as in library 6 (Fig. 3). Therefore, the

challenge will be to create small molecule

libraries within the lead-like region starting from

NP scaffolds in which the main features of the

guiding NP are retained; (ii) if the guiding NP has

a MW � 350 and logP � 3, is it necessary to

reduce lipophilicity. Library 21 (Fig. 3) is a typical

example of this situation. Moreover, to provide

chemical diversity within the library, the pre-

sence of several functional groups is necessary;

and (iii) if the guiding NP falls in the lead-like

region, as in library 20 (Fig. 3), this can be used as

a starting point for the preparation of a library

with skeletal and stereochemical variations with

the condition to generate molecules in the lead-

like region.

Concluding remarks

In conclusion, despite the different approaches

used to create NP-like libraries, we believe that

controlling the two main descriptors (MW and

logP) during the synthetic process would facil-

itate the generation of lead-like libraries.

Therefore, the use of in silico analysis in scaffold
identification and elaboration will avoid the

generation of unwanted entities with resulting

improvement in the quality of the library.
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