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∂t u + ∂3
x u + ∂x∂

2
y u + u∂xu = 0,

that have compact support for two different times are identically
zero.
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1. Introduction

In this article we consider the Zakharov–Kuznetsov equation

∂t u + ∂3
x u + ∂x∂

2
y u + u∂xu = 0, (x, y) ∈ R2, t ∈ [0,1]. (1.1)

Eq. (1.1) is a bidimensional generalization of the Korteweg–de Vries (KdV) equation which is a math-
ematical model to describe the propagation of nonlinear ion-acoustic waves in magnetized plasma
(see [12]).

Our goal in this article is to prove that a sufficiently smooth solution u = u(x, y, t) of (1.1) which
has compact support at two different times must vanish identically. Results concerning local and
global well-posedness for the Cauchy problem associated to Eq. (1.1) can be found in the articles [5,1,
7,9,8].
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In [11], Saut and Scheurer proved a result concerning a general class of dispersive-dissipative equa-
tions, including the KdV equation, which affirms that if a sufficiently smooth solution u = u(x, t),
x ∈ Rn , t ∈ R, of this type of equation, vanishes in a nonempty open set of Rn × R, then it is identi-
cally zero.

Kenig, Ponce and Vega in [6] proved that if a sufficiently smooth solution u of the KdV equation is
such that for some B ∈ R, and two different times t = 0 and t = 1,

supp u(·,0), supp u(·,1) ⊂ (−∞, B], (1.2)

then u ≡ 0. First of all, they observed that with this condition on the support at time t = 0, the
solution presents exponential decay to the right (x > 0) for every t > 0, which enables the use of
a Carleman type estimate in order to show that the solution is zero in a half-strip [R,+∞) × [0,1].
In particular, u vanishes in a nonempty open set of R×[0,1], which permits to apply Saut–Scheurer’s
result to conclude that u ≡ 0.

Using refinements of the method in [6], unique continuation principles have been successively
improved for the KdV and Schrödinger equations (see for example [3] and [4]).

In [2], Bourgain introduced an approach, based on Complex Analysis methods, to prove that if suf-
ficiently smooth solutions of certain dispersive equations, including the KdV equation, are compactly
supported on a nontrivial time interval, then they are identically zero.

Although the result in [2] is weaker, in the KdV case, than that in [11], unlike Saut and Scheurer’s
result, Bourgain’s result can be obtained for the Zakharov–Kuznetsov equation. In fact, Panthee in [10]
proved the following result:

Theorem 1.1. Let u ∈ C([0,1]; H4(R2)) be a solution of Eq. (1.1) such that for some B > 0

supp u(t) ⊂ [−B, B] × [−B, B] ∀t ∈ [0,1]. (1.3)

Then u ≡ 0.

In our work we will only require condition (1.3) for two different times. More precisely, we prove
the following result.

Theorem 1.2. Let u ∈ C([0,1]; H4(R2)) ∩ C1([0,1]; L2(R2)) be a solution of (1.1) such that, for some B > 0,

supp u(0), supp u(1) ⊆ [−B, B] × [−B, B].

Then, u ≡ 0.

The proof of Theorem 1.2 follows the ideas of Kenig, Ponce and Vega in [6]. In first place, we ob-
serve that if the solutions of the Zakharov–Kuznetsov equation have exponential decay for x > 0 and
y ∈ R at time t = 0, and exponential decay for x < 0 and y ∈ R at time t = 1, then these solutions
have exponential decay as x2 + y2 goes to infinity at all times t ∈ [0,1]. This fact allows us to use a
Carleman estimate of L2 − L2 type, in order to establish that for the function u in Theorem 1.2 there
exists B > 0 such that supp u(t) ⊂ [−B, B] × [−B, B] for all t ∈ [0,1]. In this manner, by Theorem 1.1,
u ≡ 0.

From now on, we will say that f ∈ Hk(e2βx dx dy) if ∂α f ∈ L2(e2βx dx dy) for all multi-index α =
(α1,α2) with |α| � k. In a similar way we define Hk(e2βxe2β y dx dy).

The decay property of the solutions of the Zakharov–Kuznetsov equation, mentioned before, plays
a central role in this article and it is proved in the following theorem:
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Theorem 1.3. Let u ∈ C([0,1]; H4(R2)) ∩ C1([0,1]; L2(R2)) be a solution of (1.1).

(i) If for all β > 0, u(0) ∈ L2(e2βxe2β|y| dx dy), then u is a bounded function from [0,1] with values in
H3(e2βxe2β|y| dx dy) for all β > 0.

(ii) If for all β > 0, u(1) ∈ L2(e−2βxe2β|y| dx dy), then u is a bounded function from [0,1] with values in
H3(e−2βxe2β|y| dx dy) for all β > 0.

In particular, if the conditions for u(0) and u(1) given in (i) and (ii), respectively, are satisfied, then u is bounded
from [0,1] to H3(e2β|x|e2β|y| dx dy) for all β > 0.

The Carleman type estimates are proved in the following theorem:

Theorem 1.4. Let w ∈ C([0,1]; H3(R2)) ∩ C1([0,1]; L2(R2)), be a function such that for all β > 0:

(i) w is bounded from [0,1] with values in H3(e2β|x|e2β|y| dx dy), and
(ii) w ′ ∈ L1([0,1]; L2(e2β|x|e2β|y| dx dy)).

Then, for all λ �= 0,

∥∥eλx w
∥∥ �

∥∥eλx w(0)
∥∥

L2(R2)
+ ∥∥eλx w(1)

∥∥
L2(R2)

+ ∥∥eλx(w ′ + ∂3
x w + ∂x∂

2
y w

)∥∥, (1.4)

where ‖ · ‖ := ‖ · ‖L2(R2×[0,1]) .
A similar estimate also holds with y instead of x in the exponents.

Our proof of (1.4) relies only on the Fourier transform in the space variables and on the elementary
properties of absolutely continuous functions in the time variable.

The paper is organized as follows: in Section 2 we prove Theorem 1.3 and in Section 3 we prove
Theorem 1.4. Finally, in Section 4, using Theorems 1.3, 1.4 and 1.1, we establish Theorem 1.2.

Throughout this article the letter C will denote diverse positive constants which may change from
line to line and depend on parameters which are clearly established in each case.

2. A priori estimates (Proof of Theorem 1.3)

The proof of Theorem 1.3 is based on the following lemmas.
The first lemma is an interpolation result which can be proved using the Three-line Theorem:

Lemma 1. For s > 0 and β > 0 let f ∈ Hs(R2) ∩ L2(e2βx dx dy). Then, for θ ∈ [0,1]:
∥∥ J θ s(e(1−θ)βx f

)∥∥
L2 � C

∥∥ J s f
∥∥θ

L2

∥∥eβx f
∥∥1−θ

L2 , (2.5)

where [ J s f ]̂ (ξ) := (1 + |ξ |2)s/2 f̂ (ξ) and C = C(s, β).
(Here,̂ denotes the spatial Fourier transform in R2 , and ξ = (ξ1, ξ2), where (ξ1, ξ2) are the variables in the

frequency space corresponding to the space variables (x, y).)
Similarly, if f ∈ Hs(R2) ∩ L2(e2(βx+β y) dx dy). Then, for θ ∈ [0,1]:

∥∥ J θ s(e(1−θ)(βx+β y) f
)∥∥

L2 � C
∥∥ J s f

∥∥θ

L2

∥∥eβx+β y f
∥∥1−θ

L2 . (2.6)

The exponential decay in Theorem 1.3 is obtained in two steps. In the first step we establish the
boundedness of u(t) in the space H3(e2βx dx dy), and then, using this fact, we prove the bounded-
ness of u(t) in the space H3(e2βx+2β y dx dy). The conclusion of the proof follows from the symmetry
properties of the equation.
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Lemma 2. Let u ∈ C([0,1]; H4(R2))∩ C1([0,1]; L2(R2)) be a solution of (1.1) such that for all β > 0, u(0) ∈
L2(e2βx dx dy). Then u is a bounded function from [0,1] with values in H3(e2βx dx dy) for all β > 0.

Proof. We will first prove that t → u(t) is bounded from [0,1] with values in L2(e2βx dx dy). Let
ϕ ∈ C∞(R) be a decreasing function with ϕ(x) = 1 if x < 1 and ϕ(x) = 0 if x > 10. For n ∈ N we
define

φn(x) := e2βθn(x),

where θn(x) := ∫ x
0 ϕ( x′

n )dx′ .
It is easily seen that for every n, φn is an increasing function, φn(x) = e2βx if x � n, and φn(x) ≡

dn � e20βn if x > 10n. Also, φn � φn+1 for every n and∣∣φ( j)
n (x)

∣∣ � C j,βφn(x) ∀ j ∈ N, ∀x ∈ R.

Multiplying Eq. (1.1) by uφn and integrating by parts in R2
xy we obtain:

1

2

d

dt

∫
u2φn + 3

2

∫
(∂xu)2φ′

n − 1

2

∫
u2φ′′′

n + 1

2

∫
(∂yu)2φ′

n − 1

3

∫
u3φ′

n = 0.

Therefore, discarding positive terms and applying Sobolev embeddings,

1

2

d

dt

∫
u2φn � 1

2
C3,β

∫
u2φn + 1

3

∥∥u(t)
∥∥

L∞(R2)
C1,β

∫
u2φn

�
(
C3,β + C‖u‖C([0,1];H2)

) ∫
u2φn ≡ Cβ,u

∫
u2φn,

and applying Gronwall’s lemma and the Monotone Convergence Theorem with n → ∞ we conclude
that ∫

u(t)2e2βx dx dy � C

∫
u(0)2e2βx dx dy ∀t ∈ [0,1], (2.7)

which proves that t → u(t) is bounded from [0,1] with values in L2(e2βx dx dy).
Since this boundedness holds for each β > 0, and, on the other hand, u ∈ C([0,1]; H4), we can

apply the interpolation inequality (2.5) with s = 4, θ = 3
4 , to conclude that t → u(t) is bounded from

[0,1] with values in H3(e2βx dx dy), which completes the proof of Lemma 2. �
Proof of Theorem 1.3. Proof of (i). Our first step will be to prove that the u is bounded from [0,1] to
L2(e2βxe2β y dx dy).

Since u(0) ∈ L2(e2βxe2β|y| dx dy), then u(0) ∈ L2(e2βx dx dy), and in consequence, by Lemma 2, u is
bounded from [0,1] with values in H3(e2βx dx dy) for all β > 0.

Let w(t) := eβxu(t). Since u is a solution of (1.1), it follows that w satisfies the equation

eβxu′ − β3 w + 3β2∂x w − 3β∂2
x w + ∂3

x w − β∂2
y w + ∂x∂

2
y w − βuw + u∂x w = 0. (2.8)

Let us notice that, since u(t) ∈ H3(e2βx dx dy), and u satisfies Eq. (1.1), all terms in the former equation
belong to L2(R2).

For n ∈ N let us define φn(y) := e2βθn(y) , where the function θn is the same function defined in the
proof of Lemma 2.
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Multiplying Eq. (2.8) by wφn(y) and integrating by parts in R2
xy we obtain:

∫
eβxu′wφn − β3

∫
w2φn + 3β

∫
(∂x w)2φn + β

∫
(∂y w)2φn − 1

2
β

∫
w2φ′′

n

+
∫

(∂y w)(∂x w)φ′
n − β

∫
uw2φn − 1

2

∫
w2(∂xu)φn = 0. (2.9)

For the first term we will see that

t →
∫
R2

eβxu(t)w(t)φn(y)dx dy =
∫

w2φn

is absolutely continuous in [0,1] and that

1

2

d

dt

∫
w2φn =

∫
eβxu′wφn a.e. t ∈ [0,1]. (2.10)

In fact, since u ∈ C1([0,1]; L2(R2)) and for m ∈ N, φm(x)φn(y) ∈ L∞(R2)

d

dt

〈
u(t),φm(·x )φn(·y )u(t)

〉 = 2
∫

u′(t)φm(x)φn(y)u(t).

Thus the fundamental theorem of Integral Calculus implies that

∫
u(t)φm(x)φn(y)u(t) −

∫
u(0)φm(x)φn(y)u(0) = 2

t∫
0

[∫
u′(τ )φm(x)φn(y)u(τ )dx dy

]
dτ .

An easy application of Dominated Convergence Theorem in the former equality gives, when m goes
to ∞, that

∫
u(t)e2βxφn(y)u(t) −

∫
u(0)e2βxφn(y)u(0) = 2

t∫
0

[∫
u′(τ )e2βxφn(y)u(τ )dx dy

]
dτ ,

which implies (2.10).
Taking into account that |φ′

n(y)| = |2βϕ(
y
n )φn(y)| � 2βφn(y), from (2.9) and (2.10), it follows that

1

2

d

dt

∫
w2φn � β3

∫
w2φn − β

∫ (
(∂x w)2 − 2|∂x w||∂y w| + (∂y w)2)φn + 1

2
βC2,β

∫
w2φn

+ βC‖u‖C([0,1];H2(R2))

∫
w2φn + C‖∂xu‖C([0,1];H2(R2))

∫
w2φn

≡ Cβ,u

∫
w2φn − β

∫ (|∂x w| − |∂y w|)2
φn

� Cβ,u

∫
w2φn a.e. t ∈ [0,1], (2.11)
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which, as in Lemma 2, implies that u is bounded from [0,1] to L2(e2βxe2β y dx dy). This, together with
the fact that u ∈ C([0,1]; H4) and the interpolation inequality (2.6) with s = 4 and θ = 3

4 , shows that
u is bounded from [0,1] with values in H3(e2βxe2β y dx dy) for all β > 0.

Finally, if we define ũ(x, y, t) := u(x,−y, t), then ũ is also a solution of (1.1), with ũ(0) ∈
L2(e2βxe2β|y| dx dy) and therefore ũ is bounded from [0,1] with values in H3(e2βxe2β y dx dy) for all
β > 0, i.e. u is bounded from [0,1] with values in H3(e2βxe−2β y dx dy); which proves (i).

Proof of (ii). Property (ii) follows immediately from (i) by taking into account that the function
defined by

(x, y, t) → u(−x, y,1 − t)

is also a solution of Eq. (1.1) satisfying the hypothesis of (i). �
3. Estimates of the Carleman type (Proof of Theorem 1.4)

In the proof of Carleman’s estimate of Theorem 1.4 we will use the following lemma:

Lemma 3. Let w ∈ C1([0,1]; L2(R2)) be a function such that for all β > 0, w is bounded from [0,1] with
values in L2(e2β|x|e2β|y| dx dy) and w ′ ∈ L1([0,1]; L2(e2β|x|e2β|y| dx dy)). Then, for all λ ∈ R and all ξ =
(ξ1, ξ2) ∈ R2 , the functions t → ̂eλx w(t)(ξ) and t → ̂eλy w(t)(ξ) are absolutely continuous in [0,1] with

derivatives ̂eλx w ′(t)(ξ) and ̂eλy w ′(t)(ξ) a.e. t ∈ [0,1], respectively.

Proof. By symmetry, it is sufficient to prove the lemma only for the weight eλx . Using Cauchy–
Schwarz inequality, it is easy to see that for all t ∈ [0,1] and λ ∈ R, eλx w(t) ∈ L1(R2), and also that
eλx w ′ ∈ L1(R2 × [0,1]) for all λ ∈ R.

For R > 0, let χR be the characteristic function of the square [−R, R] × [−R, R]. Since w ∈
C1([0,1]; L2(R2)), the function

t →
∫
R2

e−ixξ1 e−iyξ2 eλxχR(x, y)w(t)(x, y)dx dy = 〈
w(t), eixξ1 eiyξ2 eλxχR

〉
L2(R2)

(3.12)

defines a C1 function of the variable t with derivative given by

t → 〈
w ′(t), eixξ1 eiyξ2 eλxχR

〉
L2(R2)

,

and in consequence

∫
R2

e−ixξ1 e−iyξ2 eλxχR(x, y)w(t)(x, y)dx dy =
t∫

0

∫
R2

e−ixξ1 e−iyξ2 eλxχR(x, y)w ′(τ )(x, y)dx dy dτ

+
∫
R2

e−ixξ1 e−iyξ2 eλxχR(x, y)w(0)(x, y)dx dy.

The lemma follows from the former equality by an application of the Lebesgue Dominated Conver-
gence Theorem. �
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Proof of Theorem 1.4. Let us define g(t) := eλx w(t) and h(t) := eλx(w ′(t) + ∂3
x w(t) + ∂x∂

2
y w(t)). Then

h(t) = eλx w ′(t) − λ3 g(t) + 3λ2∂x g(t) − 3λ∂2
x g(t) + ∂3

x g(t) − λ∂2
y g(t) + ∂x∂

2
y g(t). (3.13)

From the hypotheses on w it can be seen that all terms in (3.13) are in L1(R2) for almost every
t ∈ [0,1]. We take the spatial Fourier transform in (3.13) and apply Lemma 3 to obtain that

d

dt
ĝ(t)(ξ) + [−im(ξ) − a(ξ)

]
ĝ(t)(ξ) = ĥ(t)(ξ), a.e. t ∈ [0,1], (3.14)

where

m(ξ) := −3λ2ξ1 + ξ3
1 + ξ1ξ

2
2 and a(ξ) := λ3 − 3λξ2

1 − λξ2
2 .

Using (3.14), when a(ξ) � 0, we have

ĝ(t)(ξ) = eim(ξ)tea(ξ)t ĝ(0)(ξ) +
t∫

0

eim(ξ)(t−τ )ea(ξ)(t−τ )ĥ(τ )(ξ)dτ , for all t ∈ [0,1],

and when a(ξ) > 0, we choose to write

ĝ(t)(ξ) = e−im(ξ)(1−t)e−a(ξ)(1−t) ĝ(1)(ξ) −
1∫

t

e−im(ξ)(τ−t)e−a(ξ)(τ−t)ĥ(τ )(ξ)dτ for all t ∈ [0,1].

In any case, for all t ∈ [0,1]:

∣∣ĝ(t)(ξ)
∣∣ �

∣∣ĝ(0)(ξ)
∣∣ + ∣∣ĝ(1)(ξ)

∣∣ +
1∫

0

∣∣ĥ(τ )(ξ)
∣∣dτ ,

and estimate (1.4) follows from Plancherel’s formula.
The proof of the estimate with the weight eλy is similar. �

4. Proof of Theorem 1.2

Proof. Let φ̃ ∈ C∞(R) be a non-decreasing function such that φ̃(x) = 0 for x < 0 and φ̃(x) = 1 for
x > 1 and, for R > B , let φ(x) ≡ φR(x) := φ̃(x − R). We define w ≡ w R := φ(x)u, and v ≡ v R := φ(y)u.
Since supp u(0) and supp u(1) are compact, from Theorem 1.3 and Eq. (1.1), it follows that w and v
satisfy the hypotheses of Theorem 1.4.

Taking into account that w(0) = w(1) = 0, from (1.4) we conclude that∥∥eλx w
∥∥ �

∥∥eλx(w ′ + ∂3
x w + ∂x∂

2
y w

)∥∥
= ∥∥eλx(φu′ + φ∂3

x u + φ∂x∂
2
y u + φ′′′u + 3φ′′∂xu + 3φ′∂2

x u + φ′∂2
y u

)∥∥
�

∥∥eλxφu∂xu
∥∥ + ∥∥eλx F1φ,u

∥∥, (4.15)

where φ := φ(x), ‖ · ‖ := ‖ · ‖L2(R2×[0,1]) and

F1φ,u := φ′′′u + 3φ′′∂xu + 3φ′∂2
x u + φ′∂2

y u.
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Since the derivatives of φ are supported in the interval [R, R + 1], it can be seen that

∥∥eλx F1φ,u
∥∥ � Ceλ(R+1). (4.16)

where C = C(‖u‖C([0,1];H2)), and is independent from λ and R . Therefore

∥∥eλxφu
∥∥ �

∥∥eλxφu
∥∥‖∂xu‖L∞([R,+∞)×R×[0,1]) + Ceλ(R+1).

From Theorem 1.3, with β = 1 and Sobolev embeddings, there exists a constant C1 such that

∣∣∂xu(t)(x, y)
∣∣ � C1e−x.

Thus

∥∥eλxφu
∥∥ � C1e−R

∥∥eλxφu
∥∥ + Ceλ(R+1). (4.17)

Since, from Lemma 2 ‖eλxφu‖ < ∞, we can absorb the first term on the right-hand side of (4.17) by
taking R > B such that C1e−R < 1

2 to obtain that

∥∥eλxφu
∥∥ � Ceλ(R+1).

And thus, since φ(x) = 1 for x � 2R ,

e2λR

( 1∫
0

∞∫
−∞

∞∫
2R

∣∣u(t)(x, y)
∣∣2

dx dy dt

)1/2

�
∥∥eλxφu

∥∥ � Ceλ(R+1). (4.18)

Since (4.18) is valid for all λ > 0, 2R > R + 1, and the constant C is independent from λ, by letting
λ → +∞ it follows that

( 1∫
0

∞∫
−∞

∞∫
2R

∣∣u(t)(x, y)
∣∣2

dx dy dt

)1/2

= 0.

Thus u ≡ 0 in [2R,∞) × R × [0,1].
In a similar way, for v := φ(y)u, taking into account that v(0) = v(1) = 0, an application of Carle-

man’s estimate (1.4) with weight eλy gives:

∥∥eλyφu
∥∥ = ∥∥eλy v

∥∥ �
∥∥eλy(v ′ + ∂3

x v + ∂x∂
2
y v

)∥∥
= ∥∥eλy(φu′ + φ∂3

x u + φ∂x∂
2
y u + 2φ′∂x∂yu + φ′′∂xu

)∥∥
�

∥∥eλyφu∂xu
∥∥ + ∥∥eλy F2φ,u

∥∥,

where

F2φ,u := 2φ′∂x∂yu + φ′′∂xu.

Now we reason as above to conclude that u ≡ 0 in R × [2R,∞) × [0,1].
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Finally, we notice that the function (x, y, t) → u(−x,−y,1 − t) also satisfies the hypotheses of
Theorem 1.2, which, by the former procedure, implies that u ≡ 0 in (−∞,−2R] × R × [0,1] ∪ R ×
(−∞,−2R] × [0,1].

In this manner, there exists R > 0 such that supp u(t) ⊂ [−2R,2R] × [−2R,2R] for all t ∈ [0,1].
Then, by Theorem 1.1, u ≡ 0. �
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