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a b s t r a c t

The well-known problem of the longest common subsequence (LCS), of two strings of
lengths n and m respectively, is O(nm)-time solvable and is a classical distance measure
for strings. Another well-studied string comparison measure is that of parameterized
matching, where two equal-length strings are a parameterized match if there exists a
bijection on the alphabets such that one string matches the other under the bijection.
All works associated with parameterized pattern matching present polynomial time
algorithms.
There have been several attempts to accommodate parameterizedmatching alongwith

other distance measures, as these turn out to be natural problems, e.g., Hamming distance,
and a bounded version of edit-distance. Several algorithms have been proposed for these
problems.
In this paper we consider the longest common parameterized subsequence problem

which combines the LCS measure with parameterized matching. We prove that the
problem is NP-hard, and then show a couple of approximation algorithms for the problem.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The problem of finding the longest common subsequence, denoted as LCS, of two given strings is one of the classical and
well-studied problems in the area of algorithms: given two strings B and C of lengths n andm respectively (throughout this
paper we will assume n ≥ m), we wish to find the longest string that is a subsequence of both B and C .
For apparent reasons, LCS is one of the most natural measures used to test the similarity between two strings. While this

problem and its variants are interesting theoretically, they are of fundamental practical use in the areas ofmolecular biology
and code analysis, e.g., where one wishes to test the differences between two programming language code fragments. To
name only one, the well-known UNIX diff command applies LCS as its main tool.
The classic andwell-known solution ofWagner and Fischer [19] uses dynamic programming to solve the problem in time

O(nm). It can be generalized to solve LCS for any fixed number of input strings in polynomial time. Masek and Paterson [16]
improved the running time of the case where n = m to O(n2/ log n), by using the ‘‘four Russians’’ technique. Other solutions
– e.g., [10,18,17] – in which the running time of the solutions are dependent on different parameters besides the length of
the strings, have also been provided.
While, as mentioned, the problem for any fixed number of strings can be solved in polynomial time, Maier [15] showed

that LCS on an arbitrary number of strings is NP-hard (by applying a reduction from vertex cover), and later Jiang and Li [11]
showed that there exists a constant δ > 0 for which there is no nδ-approximation algorithm for the problem, unless P = NP.
Note that when the number of input strings is fixed to be 2, almost all LCS variants can be solved in polynomial time.
Another very important and interesting model for testing similarity between strings, introduced by Baker [2–5], is called

parameterized matching, or p-match in short. In this model, two length-n input strings are said to p-match if (roughly, and
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will be detailed later) there exists a bijection on the alphabet symbols which maps the ith symbol of the first string to the
ith symbol of the second. As the symbols of the alphabet can be, for example, programming language code tokens, this
model has practical importance in testing whether two code segments are essentially the same, even when some tokens
(e.g., variable names) have been globally renamed.
In parameterized pattern matching, we get a length-n text and a length-m pattern and wish to report all locations i in

the text where the pattern p-matches the length-m text substring starting at location i. Extensive amount of work has been
done on this problem: Amir et al. [1] showed an efficient algorithm even when the alphabet size is O(n), which runs in
worst-case O(n log σ) time, where σ is the size of the parametric alphabet. In [8] they showed how to efficiently provide
an approximate solution, and in [9] they generalized the problem for the 2-dimensional case. Work was done by [13,3,4,6]
to provide parameterized text indexing by showing how to efficiently construct a parameterized suffix tree. Finally, Ferragina
and Grossi [7] showed how to provide for efficient parameterized text indexing even in external memory.
In parameterized pattern matching, we benefit from two facts: the first, that in each match, consecutive symbols of the

text are compared against the consecutive symbols of the pattern, and the second, that in two locations where the pattern
matches the text, the corresponding bijections need not be the same. It is very natural and tempting to solve the problem
without using these conditions to aid us; by this, we adapt the p-match model to the LCS problem, thus defining the LCPS
problem discussed in this paper. Such a setting would be very practical in the case where, for example, two code fragments
– an original, and a suspected copy – are being tested for similarity after the alleged copy has been edited, besides possibly
having its variable names changed. Unfortunately, we show that this problem is NP-hard.We prove this by a reduction from
the problem of 3D-matching in hypergraphs [12], and then provide a couple of approximation algorithms, which yield a
λ
√
|OPT|-length solution for any constant λ, where OPT is the optimal solution.
A note must be made about the similarity between LCS and edit-distance [14]: testing the similarity of two strings via

LCS is the equivalent of doing so using edit-distance when the edit operations allowed are only insertions and deletions.
Baker [5] discusses the notion of parameterized edit-distance, in which the operations allowed are insertions, deletions, and
p-matches, where the p-match edit operation replaces a substring in the first stringwith a substring that p-matches it which
appears in the second. Therefore, the aiding conditions of parameterized pattern matching still play a role there.
The rest of this paper is organized as follows: in Section 2 we provide the formal definitions of our problems and some

preliminaries, including a naïve algorithm for the specific casewhere the parametric alphabet is small. In Section 3we prove
that the LCPS problem is NP-hard. In Sections 4 and 5 we provide an approximation for a specific case of the problem called
LCMS, and for the general LCPS, respectively.

2. Problem definitions and preliminaries

Let S = s1 . . . sn and T = t1 . . . tn be strings over alphabet setΣ ∪Π , such thatΣ ∩Π = ∅. Following the notations used
in [1], we say S and T are a parameterized match (p-match for short) if there exists a bijection f :Π → Π for which, for each
i = 1, . . . , n, it holds that:

1. if si ∈ Σ , then si = ti.
2. if si ∈ Π , then also ti ∈ Π , and f (si) = ti.

For two strings B = b1 . . . bn and C = c1 . . . cm over Σ ∪ Π , We define their common parameterized subsequence (CPS
for short) as a pair of two ascending sequences I = 〈i1, . . . , ik〉 and J = 〈j1, . . . , jk〉 of locations in B and C respectively
(i.e., i` ∈ {1, . . . , n} and j` ∈ {1, . . . ,m} for each ` = 1, . . . , k), such that BI p-matches C J , where BI = bi1bi2 . . . bik and
C J = cj1cj2 . . . cjk .
The longest common parameterized subsequence problem is defined as follows:

Input: Two strings B = b1 . . . bn and C = c1 . . . cm over alphabet setΣ ∪Π , such thatΣ ∩Π = ∅.
Output: A CPS of maximal length, denoted LCPS.
By CPS we will also denote the decision version of the problem, in which we ask whether two strings have a common

parameterized subsequence of a specified length. The meaning will be clear from the context.
The specific case of the LCPS problem in which Σ = ∅ (i.e., the only alphabet is the parametric alphabetΠ ) is denoted

the longest common mapped subsequence (LCMS) problem.
LetA be an algorithm (exact or approximate) for the LCPS problem.A(B, C) returns a pair (I, J) of sequences of indices in

B and C respectively. Denote I = 〈i1, . . . , ik〉 and J = 〈j1, . . . , jk〉. We define the length of the solution |(I, J)| = |I| = |J| = k
and denote |A(B, C)| = |(I, J)|.

Solving the problem for asymptotically-smallΠ

Theorem 1. There exists an algorithmN for the LCPS problem, which solves the problem in O(|Π |! · nm) time.

Proof. We propose the following ‘‘naïve’’ brute force algorithm: for each possible bijection f :Π → Π , construct a new
string Bf by replacing each symbol bi ∈ Π in B with f (bi), and find LCS(Bf , C) using [19]. Finally, choose the bijection f for
which LCS(Bf , C) gave a maximal-length result, and recover its corresponding indices in Bf (and hence, in B) and in C . Since
there are |Π |! possible bijections fromΠ toΠ , and [19] runs in time O(nm), the running time is O(|Π |! · nm). �

Corollary 1. If |Π | = c for some constant c, then the LCPS problem can be solved in time O(nm).
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Corollary 2. Assume w.l.o.g. that n ≥ m and let c be a constant. If |Π | ≤ c log n
log log n , then the LCPS problem can be solved in time

O((c log n/ log log n)! · nm) = O
(
2
c log n
log log n log

(
c log n
log log n

)
nm
)
= O(nc+1m) . (1)

Remark 1. Note thatN also trivially solves the LCMS problem, and therefore will be used as such later.

3. Finding the LCPS of two strings is NP-hard

We define the decision version of the LCPS problem: for two strings B and C and an integer t , we say (B, C, t) ∈ CPS if
there exists a solution (I, J) for LCPS(B, C) such that |(I, J)| ≥ t .

Sequence graphs.A convenientway of describing the CPS restrictions is by defining the sequence graph: given the input strings
B and C and two sequences 〈i1, . . . , ik〉 and 〈j1, . . . , jk〉 of locations in B and C respectively, a sequence graph is a directed
planar graph G = (V , E) in which the vertex set V is the set of location-specific characters of B and C , set on a grid in the
following manner:

1. for each i = 1, . . . , n, bi is set at grid location (i, 1);
2. for each j = 1, . . . ,m, cj is set at grid location (j, 0);

and E is defined such that there is an edge from (i`, 1) to (j`, 0) for each ` = 1, . . . , k. Formally: E = {((i`, 1), (j`, 0)) | ` =
1, . . . , k}.

Remark 2. For convenience, whenwe refer to some edgewritten as ‘‘(bi, cj)’’ or described as ‘‘the edgemapping bi to cj’’, we
mean the specific edge from grid-point (i, 1) to grid-point (j, 0) (if such exists), and not to any other edge whose endpoints
are two other grid-points labeled with the symbol bi and the symbol cj, respectively, which might also exist in the graph.

If a sequence graph contains some edge (bi, cj), we say bi ismapped to cj. Two different edges (bi, cj), (bi′ , cj′) are said to
be intersecting if the straight line on the plane connecting grid-point (i, 1) to grid-point (j, 0) (which corresponds to (bi, cj))
crosses the straight line connecting (i′, 1) to (j′, 0) (which corresponds to (bi′ , cj′)). Alternatively: if i′ ≥ i, but j′ ≤ j.

Observation 1. If the sequences 〈i1, . . . , ik〉 and 〈j1, . . . , jk〉 are both ascending, then the sequence graph does not contain
intersecting edges.

A sequence graph is said to be a CPS graph if it corresponds to some CPS, i.e., to two sequences 〈i1, . . . , ik〉 and 〈j1, . . . , jk〉
which comply with the conditions described in Section 2. Notice that there is always a one-to-one correspondence between
a CPS of two strings and a CPS graph.
Let X, Y , Z be three disjoint sets such that |X | = |Y | = |Z | = n, and let S ⊆ X × Y × Z . In the 3D-matching problem [12],

we wish to find a subset S ′ ⊆ S which is a perfect matching of X , Y , and Z , i.e., every element of X , Y , and Z is covered by S ′
exactly once. In the problem’s decision version, denoted 3DM, when given (X, Y , Z, S), we say (X, Y , Z, S) ∈ 3DM if there
exists such a perfect matching S ′ ⊆ S. Notice that we can always assume n < |S| < n3, otherwise solving the problem is
trivial.

Theorem 2. LCPS is NP-hard.

Proof. We show that LCPS is NP-hard (or rather, that CPS ∈ NPC) using a reduction from 3DM:

The reduction. Given the input-tuple (X, Y , Z, S) for the 3DM problem, where |X | = |Y | = |Z | = n (note that in this section
n denotes the size of X , Y , and Z) and S = {t1, . . . , ts} ⊆ X × Y × Z , we choose Σ = ∅ and Π = X ∪ S ∪ {∗}. In order
to construct the reduction strings properly, we first require some notation: for a specific tuple ti = (x, y, z), we denote
x(ti) = x, y(ti) = y and z(ti) = z. For some fixed yi ∈ Y , we define S(yi) = {(x, y, z) ∈ S | y = yi}, i.e., S(yi) is the set of all
tuples in S having yi as their y-coordinate. Denote s(yi) = |S(yi)|. Furthermore, assume S(yi) = {tr1 , . . . , trs(yi)}, where the
sequence 〈tr1 , . . . , trs(yi)〉 is S(yi) sorted in ascending order of x-coordinates. We define the blocks

BByi = x(tr1)x(tr2) . . . x(trs(yi)−1)x(trs(yi)), (2)

and

BCyi = trs(yi) trs(yi)−1 . . . tr2 tr1 . (3)

In other words, inBByi we list the x-coordinates of the tuples in an ascending order, and inBCyi we list the tuples themselves
(each tuple serves as a single character), only this time, in the descending order of their respective x-coordinates. As we
shall see later, the role of BByi and BCyi will be to assure that no two tuples which share the same y-coordinate value will
be included in S ′, i.e., each yi will be covered at most once by a tuple in S ′. Finally, we define BBzi and BCzi , using the same
principle, only this time for the z-coordinates.
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We nowmove to construct the strings, each comprised of three segments:

B =

Seg. 1︷ ︸︸ ︷
x(t1) ∗3 . . . ∗3 x(ts)∗3

Seg. 2︷ ︸︸ ︷
BBy1 ∗

3 . . . ∗3 BByn∗
3

Seg. 3︷ ︸︸ ︷
BBz1 ∗

3 . . . ∗3 BBzn∗
3, (4)

and

C = t1 ∗3 . . . ∗3 ts∗3︸ ︷︷ ︸
Seg. 1

BCy1 ∗
3 . . . ∗3 BCyn∗

3︸ ︷︷ ︸
Seg. 2

BCz1 ∗
3 . . . ∗3 BCzn∗

3︸ ︷︷ ︸
Seg. 3

. (5)

Notice that each of the strings contains s + 2n blocks of ∗ symbols – each block is of length 3 – and 3s non-∗ symbols
(since each tuple appears exactly once in each segment of C , and for each such single appearance, the tuple’s x-coordinate
appears once in the respective segment of B). We derive that |B| = |C | = 3(s + 2n) + 3s = 6s + 6n. Finally, we choose
t = 3s+ 9n < 6s+ 6n.
Before showing that this reduction is correct, we require some definitions: for some sequence graph of B and C , we define

an (∗, ∗)-type edge as an edge whose endpoints are both ∗ symbols, and an (x, t)-type edge as an edge whose endpoint in B
is some x-coordinate value, andwhose endpoint in C is some tuple. Likewise we define an (x, ∗)-type edge and an (∗, t)-type
edge. We continue to the following claim:

Claim 1. Assume a CPS of B and C is given, and is of length 3s + 9n, and let f be its corresponding bijection. Then the following
statements apply to the corresponding CPS graph and bijection f :

1. f (∗) = ∗.
2. There are exactly 3n (x, t)-type edges, and exactly 3s+ 6n (∗, ∗)-type edges.
3. Every ∗ at some location i in B is mapped to its respective ∗ at location i in C.
4. Each segment of B contributes exactly n (x, t)-type edges. In particular, Segment 1 of B contributes n (x, t)-type edges, all of
them vertical.

5. EachBByi (resp.B
B
zj ) block contributes exactly one edge, to a symbol inBCyi (resp.B

C
zj ).

Proof. We prove each item using the previous ones:
1. Assume by contradiction that f (∗) 6= ∗. In this case (as shown by a very loose analysis), there are (a) at most 3 (∗, t)-type
edges (since each unique tuple ti appears at most 3 times in C , one in each segment), (b) at most 3s (x, ∗)-type edges
(since a unique x-coordinate appears at most s times in each segment of B), and (c) at most 3n (x, t)-type edges (since
there are n distinct x-coordinates, each of them may be mapped to a tuple, and each unique tuple appears 3 times in C).
We derive that this scenario gives us at most 3+ 3s+ 3n < 3s+ 9n edges, which contradicts the fact that the LCPS is of
length 3s+ 9n. We conclude that indeed, f (∗) = ∗.

2. From the last item it follows that each x-coordinate xi is mapped by f to some tuple tj. Since each unique tuple appears
exactly 3 times in C , and there are n distinct x-coordinates, then there are at most 3n (x, t)-type edges. Now, since the
number of (∗, ∗)-type edges is bounded by 3(s+2n) (the number of ∗ symbols in each string), we conclude that in order
to reach length 3s+ 9n, we require the number of (∗, ∗)-type edges to be exactly 3(s+ 2n) = 3s+ 6n, and the number
of (x, t)-type edges to be exactly 3n.

3. Since the number of (∗, ∗)-type edges is 3s+ 6n, and no two edges can intersect each other (since it is a CPS graph), the
only way to obtain this number of edges is by mapping every ∗ at some location i in B to the ∗ at the respective location
i in C .

4. First of all, notice that an (x, t)-type edge emanating from a specific segment in B cannot go to other than its respective
segment in C , otherwise it would result in the loss of (∗, ∗)-type edges, which would contradict Item 3. In each segment
of B, there are n distinct x-coordinates. In each segment of C , each unique tuple appears once. Therefore, each segment can
contribute at most n (x, t)-type edges, and must contribute exactly n of those, otherwise we would not reach the target
length. Finally, each non-vertical (x, t)-type edge emanating from Segment 1 of Bwould result in the loss of (∗, ∗)-type
edges. We conclude all (x, t)-type edges in Segment 1 of B are vertical and therefore go to symbols in Segment 1 of C .

5. First notice that an edge emanating from some block BByi cannot go to other than the block BCyi ; the opposite would
result in losing (∗, ∗)-type edges. We proceed to show that there is at most a single edge from each block. Assume by
contradiction that there are two edges fromBByi toBCyi , and let thembe (xa, tc) and (xb, td). Assumew.l.o.g. that xb appears
right of xa inBByi . Since a unique tuple can appear at most once inBCyi , then obviously tc 6= td. It follows that also xa 6= xb
(since f is a proper function). Notice that x(tc) = xa and x(td) = xb (in words, both edges must be from an x-value to a
tuple having this value as its x-coordinate), otherwise we would lose one of the n vertical (x, t)-type edges in Segment 1,
which always map a value to a tuple having it as its x-coordinate. However, since xb appears right of xa and xa 6= xb, it
follows that in BCyi , the tuples for which xb is the x-coordinate appear left of the tuples for which xa is the x-coordinate.
In particular, td is left of tc inBCyi . We conclude that the two edges intersect, which contradicts the fact that this is a CPS
graph. The proof forBBzj andBCzj is similar.We have just proved that eachBByi (resp.B

B
zj ) block contributes atmost a single

edge, but since we require n edges from Segment 2 (resp. Segment 3) in order to obtain the target length, we conclude
that each such block contributes exactly one edge. �
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It remains to show that the reduction described is correct:
Claim 2. (X, Y , Z, S) ∈ 3DM if and only if (B, C, 3s+ 9n) ∈ CPS.
Proof. We prove both directions:

(only if) Given a subset S ′ ⊆ S, |S ′| = n, which covers each element of X , Y , or Z exactly once (i.e., S ′ is a perfect matching),
we determine the respective I, J sequences by describing a CPS graph: for each i = 1, . . . , 6s+ 6n:
1. If bi = ci = ∗, then map bi to ci.
2. Otherwise, ci is some tuple in S. If it also holds that ci ∈ S ′, then:

(a) If i is a location in Segment 1, map bi to ci.
(b) If i is a location in Segment 2, then ci appears as a symbol in the blockBCy(ci), and therefore x(ci) appears as
a symbol bj inBBy(ci). Therefore, map bj to ci.

(c) If i is a location in Segment 3, the argument is similar, only this time withBCz(ci) andBBz(ci) respectively.

Claim 3. The above scheme yields a CPS graph and therefore a CPS of length 3s+ 9n.

Proof. First notice that the mappings of the form (∗, ∗) actually define that f (∗) = ∗ and contribute 3s + 6n
edges. Since they are all vertical, they do not intersect with each other. Since all other edges in Segment 1 are also
vertical (i.e., are of the form (bi, ci)), they do not intersect with the above edges or each other. In addition, since S ′
is a matching, each unique xi value is mapped to a unique tuple denoted t(xi) having xi it as its x-coordinate value.
Hence it defines by this that f (xi) = t(xi) for i = 1, . . . , n. Since |S ′| = n, we conclude that this has contributed
another n edges. Finally, at each BByi block, we make a singlemapping to a value in BCyi (because S

′ is a matching,
and all tuples inBCyi share the same y-coordinate, and in addition a unique tuple can appear at most once inBCyi ).
Notice that mappings in these blocks are consistent with mappings in Segment 1, and therefore agree with the
definition of f made before. The argument forBBzj andBCzj is similar. Finally, since eachBByi orB

B
zj block contributes

a single edge, we conclude that those blocks contributed 2n edges all together, none of them intersects with other
edges. It follows that the constructed graph is a CPS graph with 3s+ 9n edges and therefore the claim follows. �

We thus conclude that (B, C, 3s+ 9n) ∈ CPS.
(if) Assume that (B, C, 3s + 9n) ∈ CPS, i.e., B, C have a common parameterized subsequence of length 3s + 9n, and

consider the corresponding CPS graph and the bijection f . By Item 4 of the first claim, each (x, t)-type edge in
Segment 1 is vertical and therefore agrees with the mapping of each unique xi to a unique tuple tj for which
x(tj) = xi. Define S ′ = {tj | ∃xi, f (xi) = tj}. Since all tuples sharing the same y-coordinate (resp. z-coordinate)
appear in the sameBCy (resp.B

C
z ) block, and by Item 5 such block contributes a single edge (which agrees with the

mappings defined by the edges in Segment 1, since f is a bijection), we conclude each unique y-coordinate (resp.
z-coordinate) is covered, and furthermore covered exactly once by S ′. We conclude that S ′ is a perfect matching
and therefore (X, Y , Z, S) ∈ 3DM. �

3DM ∈ NPC, CPS is trivially in NP, and the above reduction clearly can be performed in polynomial time. We therefore
conclude CPS ∈ NPC. Therefore if LCPS admits a polynomial time algorithm, then P = NP. �

4. Approximating LCMS

Recall that LCMS is the specific case of the LCPS problem where Σ = ∅. For a given parameter λ > 0, we provide an
O(n2λ

2
+1m)-time algorithm, ALCMSλ , for which, for two strings B and C of lengths n and m respectively, |ALCMSλ (B, C)| ≥

λ
√
|OPT(B, C)|, where OPT(B, C) denotes the optimal solution.
First, some notation: for a string S, letΠS = {a ∈ Π | a appears in S}. Given some alphabet set Γ ⊆ Σ ∪Π , we denote

by SΓ the string S with all symbols not from Γ deleted, while, for symbols not deleted, preserving their original location in
S. In other words, we keep aside each symbol in SΓ its original location in S. We will refer to this location as the symbol’s
effective location. For our two strings B and C , let πmin = min{|ΠB|, |ΠC |}. Finally, let OPT(B, C) = (I∗, J∗) be the optimal
solution, and let I∗ = 〈i∗1, . . . , i

∗
t 〉 and J

∗
= 〈j∗1, . . . , j

∗
t 〉. We define π

∗ to be the number of distinct symbols which appear in
BI
∗

(equivalently, in C J
∗

; by the problem properties, it is the same).
Our algorithmALCMSλ utilizes the fact that two strategies for the LCMS problem are available: for the first, notice that both

|ΠB| ≥ πmin and |ΠC | ≥ πmin by the definition of πmin. We can therefore create sequences I, J for which |I| = |J| = πmin,
by mapping the `th unique symbol which appears in B, to the `th unique symbol which appears in C , for ` = 1, . . . , πmin.
For the second strategy, assume we know the λ2 symbols most frequent in BI

∗

, and the λ2 symbols most frequent in C J
∗

.
Running the naïve algorithm on the two strings, wherein all symbols not from the λ2 most frequent are deleted, will yield a
solution of length at least |OPT(B,C)|

π∗/λ2
(since if we partitionΠBI∗ to π

∗/λ2 sets, each of size λ2, one of themmust give us length

of at least |B
I∗
|

π∗/λ2
=
|OPT(B,C)|
π∗/λ2

when running the naïve algorithm on the strings induced by its symbols only). Since we do

not knowΠBI∗ , we test every possible combination of λ
2 symbols in both strings and choose the combination yielding the

maximal result. Finally, our approximation algorithm chooses the better of the two strategies.
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4.1. Analysis

Theorem 3. Given a parameter λ > 0,ALCMSλ is an O(n2λ
2
+1m)-time approximation algorithm for LCMS, such that |ALCMSλ (B, C)|

≥ λ
√
|OPT(B, C)|.

Proof. We provide the approximation factor and the running-time analysis:

Approximation. From the discussion above, the algorithm returns sequences of length max{πmin,
|OPT(B,C)|
π∗/λ2

}. Notice that:

λ2|OPT(B, C)| = π∗ ·
|OPT(B, C)|
π∗/λ2

(6)

≤ min{|ΠB|, |ΠC |} ·
|OPT(B, C)|
π∗/λ2

(7)

= πmin ·
|OPT(B, C)|
π∗/λ2

, (8)

where (7) is true because π∗ is bounded by min{|ΠB|, |ΠC |} and (8) is true by definition. We therefore conclude that
max{πmin,

|OPT(B,C)|
π∗/λ2

} ≥ λ
√
|OPT(B, C)|. Since |ALCMSλ (B, C)| = max{πmin,

|OPT(B,C)|
π∗/λ2

}, the approximation factor follows.

Running-time. Computing the sequences of size pimin can be done efficiently by sorting both strings according to the symbols
of the alphabet. Computing the second strategy can be efficiently executed by (a) leaving only one copy of each unique
symbol in the two sorted strings, and (b) re-sort the sorted strings, this time using the indices as the keys by which the
sorting is done. Since there are

(
|ΠB|
λ2

)
≤ nλ

2
options forΠ ′, and

(
|ΠC |
λ2

)
≤ nλ

2
options forΠ ′′, and running the naïve algorithm

costs O(nm), we conclude that the running-time is bounded by O(nλ
2
· nλ

2
· nm) = O(n2λ

2
+1m). �

5. Approximating LCPS

For a given parameter λ > 0, we provide an O(n4λ
2
+1m)-time algorithm, ALCPSλ , for which, for two strings B and C of

lengths n andm respectively, |ALCPSλ (B, C)| ≥ min{λ
√
|OPT(B, C)|, 12 |OPT(B, C)|}.

Note that almost all notation remains the same, except that this time, (I∗, J∗) is the solution returned by OPT(BΠ , CΠ )
(instead of OPT(B, C), as before). Again, I∗ = 〈i∗1, . . . , i

∗
t 〉 and J

∗
= 〈j∗1, . . . , j

∗
t 〉. π

∗ is defined as before to be the number of
distinct symbols which appear in BI

∗

(or equivalently, in C J
∗

).
Our algorithmALCPSλ utilizes the fact that this time three strategies for the LCPS problem are available: while the first two

remain the same as before – and thus, actually work now on BΠ and CΠ – the third corresponds to BΣ and CΣ : we can simply
run the ordinary LCS algorithm on BΣ and CΣ , thus obtaining a legal CPS. As before, our approximation algorithmALCPSλ will
choose the best of the three.

5.1. Analysis

Theorem 4. Given a parameter λ > 0,ALCPSλ is an O(n4λ
2
+1m)-time approximation algorithm for LCPS, such that

|ALCPSλ (B, C)| ≥ min
{
λ
√
|OPT(B, C)|,

1
2
|OPT(B, C)|

}
.

Proof. We provide the approximation factor and the running-time analysis:

Approximation.
√
2λ is used as the parameter when runningALCMS on BΠ and CΠ , and thereforeALCMS√

2λ
returned amax{πmin,

|OPT(BΠ ,CΠ )|
π∗/2λ2

}-length solution. It follows that the entireALCPSλ algorithm returned a solution of length max{πmin,
|OPT(BΠ ,CΠ )|
π∗/2λ2

,

|LCS(BΣ , CΣ )|}. Notice that:

2λ2|OPT(B, C)| ≤ 2λ2|OPT(BΠ , CΠ )| + 2λ2|LCS(BΣ , CΣ )| (9)

= π∗ ·
|OPT(BΠ , CΠ )|
π∗/2λ2

+ 2λ2|LCS(BΣ , CΣ )| (10)

≤ πmin ·
|OPT(BΠ , CΠ )|
π∗/2λ2

+ 2λ2|LCS(BΣ , CΣ )| , (11)

where (9) is true because |OPT(B, C)| ≤ |OPT(BΠ , CΠ )| + |LCS(BΣ , CΣ )| (since symbols from Π in the optimal solution
cannot contribute more than |OPT(BΠ , CΠ )|, and likewise, symbols from Σ in the optimal solution cannot contribute
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more than |LCS(BΣ , CΣ )|), and (11) is true due to the same explanation of (7)–(8). We conclude that πmin ·
|OPT(BΠ ,CΠ )|
π∗/2λ2

+

2λ2|LCS(BΣ , CΣ )| ≥ 2λ2|OPT(B, C)| and therefore

max
{
πmin ·

|OPT(BΠ , CΠ )|
π∗/2λ2

, 2λ2|LCS(BΣ , CΣ )|
}
≥ λ2|OPT(B, C)| . (12)

We can therefore split to cases:

1. If 2λ2|LCS(BΣ , CΣ )| ≥ πmin ·
|OPT(BΠ ,CΠ )|
π∗/2λ2

, we get that |LCS(BΣ , CΣ )| ≥ 1
2 |OPT(B, C)|.

2. Otherwise, πmin ·
|OPT(BΠ ,CΠ )|
π∗/2λ2

> 2λ2|LCS(BΣ , CΣ )|. Since It follows that πmin ·
|OPT(BΠ ,CΠ )|
π∗/2λ2

≥ λ2|OPT(B, C)|, in this case

we finally conclude that max{πmin,
|OPT(BΠ ,CΠ )|
π∗/2λ2

} ≥ λ
√
|OPT(B, C)|.

Summing up the two cases, we get:

max
{
πmin,

|OPT(BΠ , CΠ )|
π∗/2λ2

, |LCS(BΣ , CΣ )|
}
≥ min

{
λ
√
|OPT(B, C)|,

1
2
|OPT(B, C)|

}
. (13)

Since |ALCPSλ (B, C)| = max{πmin,
|OPT(BΠ ,CΠ )|
π∗/2λ2

, |LCS(BΣ , CΣ )|}, the approximation factor follows.

Running-time. The running-time is dominated by the use of ALCMS√
2λ
as a sub-procedure. Since it is executed on BΠ and CΠ

with
√
2λ as the parameter, its running-time (and therefore the running-time of the entire algorithm) is O(n2(

√
2λ)2+1m) =

O(n4λ
2
+1m). �
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