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Abstract To investigate the transient aeroelastic responses and flutter characteristics of a variable-

span wing during the morphing process, a novel first-order state-space aeroelastic model is pro-

posed. The time-varying structural model of the morphing wing is established based on the

Euler–Bernoulli beam theory with time-dependent boundary conditions. A nondimensionalization

method is used to translate the time-dependent boundary conditions to be time-independent. The

time-domain aerodynamic forces are calculated by the reduced-order unsteady vortex lattice

method. The morphing parameters, i.e., wing span length and morphing speed, are of particular

interest for understanding the fundamental aeroelastic behavior of variable-span wings. A test case

is proposed and numerical results indicate that the flutter characteristics are sensitive to both of the

two morphing parameters. It could be noticed that the aeroelastic characteristics during the wing

extracting process are more serious than those during the extending process at the same morphing

speed by transient aeroelastic response analysis. In addition, a faster morphing process can get bet-

ter aeroelastic performance while the mechanism comlexity will arise.
ª 2013 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA.

Open access under CC BY-NC-ND license.
1. Introduction

Morphing aircrafts, which will lead to the next generation of

multi-mission aircrafts, have been a significant topic in aero-
space research recently.1–5 The variable-span wing morphing
concept is to change an aircraft’s wing span during flight. As

a result, the wing area and aspect ratio are changeable for dif-
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ferent flight conditions to obtain the optimal lift-to-drag ratio.
Aeroelastic problems with morphing can be described as the
interaction between the time-dependent/configuration-varying

aerodynamics and the structure. Time-varying or transient
aeroelastic responses and flutter analysis during the morphing
process become very important due to the rapid and large-

scale morphing motion. To meet the tremendous challenges,
effective theoretical models and computational methodologies
should be developed.

In previous work, several researchers focused on the morp-
hing aeroelastic problems, especially on the folding-wing (Z-
wing) concept.6–11 The continuous morphing process was di-

vided into several steady steps in most of the previous studies,
and the morphing velocity was not taken into account. The
complex task conditions require the morphing process to be
as efficient as possible. Hence, the steady-state analysis meth-

ods are no longer applicable for the rapid morphing process
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due to the time-varying characteristics of the aeroelastic
system.12

The multi-body dynamics approach was usually under-

taken to obtain the equations of motion of the morphing
wing.13,14 However, for the variable-span wing concept, the
multi-body simulation fails because the wing configuration is

continuous and not easily decomposed into components.
Bae et al.15 conducted the aerodynamic and static aeroelas-

tic characteristics analysis of a variable-span missile wing. The

finite element method and the panel method were used to ob-
tain the structural model and the aerodynamic model, respec-
tively. Only the impact of span length is investigated. Wang
HB and Wang HP16 established an aeroelastic model based

on the Timoshenko beam theory and the supersonic piston
aerodynamic theory. The effect trend of the axis morphing
speed on the flutter speed was discussed.

In the present study, a variable-length, Euler–Bernoulli
beam model is combined with the reduced-order unsteady
vortex lattice aerodynamic model to develop a first-order,

state-space model for transient aeroelastic analysis of the
variable-span wing during the morphing process. Effects of
the changing wing span and various morphing velocities on

the flutter speed and frequency are investigated. Furthermore,
transient aeroelastic responses are also studied.

2. Structural model

A morphing unmanned aerial vehicle with different configura-
tions is shown in Fig. 1. In this study, half of the variable-span
wing is described as a cantilever Euler–Bernoulli beam, whose

length l(t) is time-dependent. The chord length is assumed to
be constant along the span-wise and expressed as 2b. The half
span length of the original wing is l0. The morphing process

can be simplified as an extending or contracting process of
the beam at velocity _lðtÞ.

The bending displacement in the z direction and torsion

rotation about the y-axis of the wing are denote by w and h.
The external loads acting on the wing are represented by a
force L per unit length and applied to the symmetrical points
Fig. 1 An unmanned aerial vehicle with variable-span wings.
of cross-section together with a torque Mea per unit length
respectively. With the uniformity assumption, one can express
the governing equations of vertical deflection and pitching mo-

tion by using the Hamilton principle, as follows:

m
@2w

@t2
�mxa

@2h
@t2
þ EI

@4w

@y4
¼ L

�mxa
@2w

@t2
þmr2a

@2h
@t2
�GJ

@2h
@y2
¼Mea:

8>>><
>>>:

ð1Þ

where EI and GJ are the bending and torsional rigidity of the
wing, respectively, m is the mass per unit length, xa is the dis-
tance coefficient of the gravity center to the elastic axis, and ra
is the radius of gyration about the elastic axis.

The boundary conditions are split into two groups: three
boundary conditions come from the clamped end and the
other three from the free end. The latter are time-dependent:

@2wðlðtÞ; tÞ
@y2

¼ @
3wðlðtÞ; tÞ
@y3

¼ @hðlðtÞ; tÞ
@y

¼ 0 ð2Þ

To deal with the above time-varying boundary condition

problem, a nondimensionalization method is proposed to
translate a time-dependent item into a time-independent one.

Introduce the following basic non-dimensional parameters:

~y ¼ yðtÞ=lðtÞ; ~x ¼ x=b; ~wð~y; tÞ ¼ wðy; tÞ=b; ~hð~y; tÞ
¼ hðy; tÞ; ~xa ¼ xa=b; ~ra ¼ ra=b; lðtÞ ¼ l0aðtÞ;

and Eq. (1) can be cast in the following dimensionless form

½a4€~wþ 2 _aa3ð1� ~yÞ _~w0 þ a2ð€aa� _a2Þ

�ð1� ~yÞ~w0 þ a2 _a2ð1� ~yÞ2 ~w00� � ~xa½a4€~h

þ2 _aa3ð1� ~yÞ _~h0 þ a2ð€aa� _a2Þð1� ~yÞ~h0

þa2 _a2ð1� ~yÞ2~h00� þ k2w ~w
0000 ¼ a4L=mb

�~xa½a4€~wþ 2 _aa3ð1� ~yÞ _~w0 þ a2ð€aa� _a2Þ

�ð1� ~yÞ~w0 þ a2 _a2ð1� ~yÞ2 ~w00� þ ~r2a½a4€~h

þ2 _aa3ð1� ~yÞ _~h0 þ a2ð€aa� _a2Þð1� ~yÞ~h0

þa2 _a2ð1� ~yÞ2~h00� � k2h
~h00 ¼ a4Mea=mb2;

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð3Þ

where primes and dots denote differentiation with respect to

dimensionless position ~y and time t, respectively; a is the
dimensionless half span length; _a are the dimensionless morp-

hing speed. kw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðml40Þ

q
and kh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GJ=ðml20b

2Þ
q

are,

respectively, the dimensionless bending rigidity coefficient
and torsional rigidity coefficient.

The dimensionless boundary condition at the free end be-

comes time-independent

~w00ð1; tÞ ¼ ~w000ð1; tÞ ¼ ~h0ð1; tÞ ¼ 0 ð4Þ

The time-dependent governing differential equations of the

beam are fourth-order nonlinear hyperbolic partial differential
equations, whose exact solution cannot be easily obtained. A
Galerkin method would be introduced to get an approximate
solution with the aerodynamic loads in Section 4.

3. Reduced-order aerodynamic model

Fig. 2 shows the aerodynamic loads acting on the airfoil with a
flight speedV. The unsteady aerodynamic forces per unit length
can be obtained using a two-dimensional reduced-order unsteady



Fig. 2 Aerodynamic loads acting on the airfoil.

1432 R. Huang, Z. Qiu
vortex latticemethod.17 Themodel of unsteady vortex lattice de-
scribes the unsteady aerodynamic forces in time domain, which
is not limited to the assumption of harmonic motion.18

In the unsteady vortex lattice model, the airfoil is divided
into M elements representing the bound vortices, and the wake
is divided into N �M elements as the free vortices. The total

number of vortices on both the airfoil and the wake is N.
The element are all of equal size Dx in the streamwise direc-
tion. The most important boundary condition requiring zero

normal velocity across the solid boundaries can be expressed
as a dimensionless form

~W3=4 ¼ ~Kb
~Kw

� � ~Cb

~Cw

" #
ð5Þ

where the vector ~W3=4 represents the dimensionless downwash
at the collocation points of the vortex elements on the airfoil

section. ~Cb and ~Cw are the dimensionless strength vectors of
the bound vortices and the free vortices, respectively. The
kernel functions ~Kb and ~Kw can be defined by using Biot-Sav-

art’s law.
The aerodynamic governing equations in continuous time

domain can be written as

Ac
_~Cw ¼

V0

D~x
Bc

~Cw þDc
_~W3=4 ð6Þ

where V0 = V/b is the dimensionless flight speed, D~x ¼ Dx=b
is the dimensionless element size, and

Ac ¼
S

0

� �
~K�1b

~Kw þ
0 0

0 IN�M�1

� �
;

Dc ¼
S

0

� �
~K�1b ;Bc ¼ Ac lnðA�1d BdÞ; Ad ¼ I�

S

0

� �
~K�1b

~Kw;

Bd ¼
01�ðN�MÞ

C

� �
�

S

0

� �
~K�1b

~Kw; S ¼ 1 1 � � � 1 1½ �1�M;

C ¼

1

1

. .
.

1 r

2
66664

3
77775; r ¼ 0:996;

I is a unity matrix.
A lot of attentions are paid to reduced-order models for

applications in aeroelastic systems.19 A modal reduction meth-

od for extracting the most important aerodynamic modes is
used in this study.

The unsteady solution can be decomposed into two parts.
One takes the static effect of the neglected eigenmodes, and

the other determines the dynamic part, i.e.,

~Cw ¼ WRqþ ~Cs ð7Þ
where WR is a (N �M) · R matrix whose columns are the R

columns of the eigenvectors of the matrix A�1c Bc corresponding
to the first R eigenvalues most close to the origin. q is the new
generalized coordinate vector. The static correction item ~Cs

can be expressed in the following form

~Cs ¼
D~x

V0

ð�B�1c þWRKRUT
RA
�1
c ÞDc

_~W3=4 ¼
D~x

V0

KcDc
_~W3=4 ð8Þ

where Kc ¼ �B�1c þWRKRUT
RA
�1
c , KR is an R · R sub-matrix

whose non-zero entries are those of the eigenvalue matrix of
A�1c Bc corresponding to the R retained eigenvalues, and UR

is a matrix whose column of the left eigenvectors of A�1c Bc cor-

responding to the first R eigenvalues most close to the origin.
By using the unsteady Bernoulli equation, the unsteady lift

L and the moment Mea can be written as

L ¼ qab
3 V0

XM
i¼1

~Cb;i þ
XM
i¼1

Xi

j¼1

_~Cb;jD~x

 !

Mea ¼ �qab
4 V0

XM
i¼1
ð~xvb;i � �aÞ~Cb;i

"

þ
XM
i¼1
ð~xvb;i � �aÞ

Xi

j¼1

_~Cb;jD~x

#

8>>>>>>>>>><
>>>>>>>>>>:

ð9Þ

where ~xvb;i is the dimensionless location of the ith bound vor-
tex, ~Cb;i is the dimensionless strength of the ith bound vortex. �a
is the distance coefficient of the mid chord to the elastic axis,
and qa is the air density.

On the basis of Eq. (9), the right-hand side terms in Eq. (3)

can be rewritten as

L1 ¼
a4L

mb
¼ a4

pl
ðV0F1

~Cb þ F2
_~CbÞ

M1 ¼
a4Mea

mb2
¼ a4

pl
ðV0G1

~Cb þ G2
_~CbÞ

8>><
>>: ð10Þ

where

F1 ¼ 11 � � � 1 1½ �1�M; F2 ¼ D~x � F1 � trilð1ÞM�M;
G1 ¼ � ð~xvb;1 � �aÞ ð~xvb;2 � �aÞ � � � ð~xvb;M � �aÞ½ �1�M;

G2 ¼ D~x � G1 � trilð1ÞM�M; l ¼ m=pqab
2

is the mass ratio, and tril(1)M·M is a lower triangular matrix
whose nonzero elements are all equal to 1.

At the collocation points of the vortex elements, the down-
wash velocity arising from the unsteady motion of the airfoil
can be written as

W3=4 ¼ �ST _~wþDa
_~hþ V0S

T~h: ð11Þ
where Da ¼ ð~xc;1 � �aÞ ð~xc;2 � �aÞ � � � ð~xc;M � �aÞ½ �T, and ~xc;i is
the dimensionless location of the ith collocation point.

Combining Eqs. (5), (7), (8) with Eq. (10), the aerodynamic
loads can be expressed as the following forms

L1 ¼
a4

pl
H1

€~wþH2
€~hþ V0H3

_~wþ V0H4
_~h

�
þV2

0H5
~hþH6 _qþ V0H7q

�
M1 ¼

a4

pl
J1€~wþ J2

€~hþ V0J3 _~wþ V0J4
_~h

�
þV2

0J5
~hþ J6 _qþ V0J7q

�
;

8>>>>>>>>>><
>>>>>>>>>>:

ð12Þ

where the coefficients H1 � H5, J1 � J5, and the matrices H6,
H7, J6, and J7 are listed in Appendix.
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4. State-space aeroelastic model

The dimensionless aeroelastic equations can be obtained by
combining the aerodynamic loads and the structural model.

By introducing the modal analytic techniques, the bending
and torsion deformations can be represented in the terms of
truncated series,20 as follows:

~wð~y; tÞ ¼
XNw

i¼1
við~yÞgiðtÞ ¼ vg

~hð~y; tÞ ¼
XNh

i¼1
Hið~yÞbiðtÞ ¼ Hb

8>>>><
>>>>:

ð13Þ

The governing equations may be rewritten in terms of the

mode shapes as the following
a4v€gþ 2 _aa3ð1� ~yÞv0 _gþ a2ð€aa� _a2Þ
�ð1� ~yÞv0gþ a2 _a2ð1� ~yÞ2v00g� ~xa a4H€b

�
þ2 _aa3ð1� ~yÞH0 _bþ a2ð€aa� _a2Þð1� ~yÞH0b
þa2 _a2ð1� ~yÞ2H00b

i
þ k2

wv
0000
g ¼ L1

�~xa a4v€gþ 2 _aa3ð1� ~yÞv0 _gþ a2ð€aa� _a2Þ½
�ð1� ~yÞv0gþ a2 _a2ð1� ~yÞ2v00gþ ~r2a a4H€b

�
þ2 _aa3ð1� ~yÞH0 _bþ a2ð€aa� _a2Þð1� ~yÞH0b
þa2 _a2ð1� ~yÞ2H00b

i
� k2

hH
00b ¼M1:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð14Þ

Using Eqs. (12) and (13), the right-hand side terms of the
above equations are expressed as follows

L1 ¼
a4

pl
H1v€gþH2H€bþ V0H3v _gþ V0H4H _b
	

þV2
0H5HbþH6 _qþ V0H7q



M1 ¼

a4

pl
J1v€gþ J2H€bþ V0J3v _gþ V0J4H _b
	

þV2
0J5Hbþ J6 _qþ V0J7q



:

8>>>>>>>><
>>>>>>>>:

ð15Þ

Using the Galerkin method, multiplying the first equations
of Eqs. (14) and (15) by vT and the second equations of Eqs.
(14) and (15) by HT, integrating over the dimensionless span,

while taking into account the initial conditions, the governing
equations can be written in a matrix form as
ðMs þMaÞ€nþ ðCs þ V0CaÞ _nþ ðKs þ V2
0KaÞn

þD _qþ V0Eq ¼ 0
ð16Þ

where n ¼ ½ gT bT �T is the vector of the generalized structural
coordinates, and the terms of the above matrices and vectors

are defined in Appendix.
Especially, for Eq. (6), combined with Eqs. (7) and (8), the

aerodynamic governing equations are recast into the following

forms

IR _qþ D~x

V0

UT
RKcDc

€~W3=4 ¼
V0

D~x
KRqþUT

RA
�1
c BcKcDc

_~W3=4

þUT
RA
�1
c Dc

_~W3=4: ð17Þ

where IR is a R · R identity matrix.
Substituting Eq. (13) into Eq. (11), neglecting the higher-or-

der derivative terms, multiplying both sides by HT, and
integrating over the dimensionless span, the downwash veloc-
ity can be rewritten as

~W3=4 ¼ A14
_nþ V0A15n: ð18Þ

where

A14 ¼
1

SA13

½½ �ST; � � � ; �ST �AT
1 ; ½Da; � � � ; Da �INh

�;

A15 ¼
1

SA13

½½ 0; � � � ; 0 �; ½ST; � � � ; ST �INh
�;

and the matrix A13 is list in Appendix.
Substituting Eq. (18) into Eq. (17), one can obtain the aero-

dynamic governing equations as

IR _qþ Aq
€n ¼ V0

D~x
KRqþ V0Bq

_n: ð19Þ

where

Aq ¼ D~xUT
RKcDcA15 �UT

RA
�1
c BcKcDcA14 �UT

RA
�1
c DA14;

Bq ¼ UT
RA
�1
c BcKcDcA15 þUT

RA
�1
c DcA15:

Based on Eqs. (16) and (19), a first-order aeroelastic state-

space model is developed and can be expressed as

A _X ¼ BXþ CU

Y ¼ DX

(
ð20Þ

where the state variable vector and system matrices are

X ¼

a

q

n

_n

2
666664

3
777775; A ¼

0 0 0 0

0 IR 0 Aq

0 0 INwþNh
0

0 D 0 Ms þMa

2
666664

3
777775;

B ¼

0 0 0 0

0 V0

D~x
KR 0 V0Bq

0 0 0 INwþNh

0 �V0E �ðKs þ V2
0KaÞ �ðCs þ V0CaÞ

2
666664

3
777775;

C ¼ ½1 0 0 0 �T; U ¼ f _ag;Y ¼ fng;D¼ ½0 0 INwþNh
0 �:
In the present study, the flutter analysis of the variable-span

wing with different configurations a(t) and different morphing
velocities _aðtÞ will adopt the generalized aeroelastic analysis
method,21 and the governing equations can be written as

½sI� A�1ðsÞBðsÞ�XðsÞ ¼ 0: ð21Þ

where

A ¼
IR 0 Aq

0 INwþNh
0

D 0 Ms þMa

2
64

3
75;

B ¼

V0

D~x
KR 0 V0Bq

0 0 INwþNh

�V0E �ðKs þ V2
0KaÞ �ðCs þ V0CaÞ

2
64

3
75:

The eigenvalue solvingmethod inMATLAB is used to deter-

mine the system stability of the morphing wing. The aeroelastic
formulations have the state-space form which is suitable for the
use of the MATLAB ordinary differential equation solver.22



Fig. 3 Root loci of non-morphing wing flutter analysis.

Fig. 4 Flutter speed vs. wing span length.

Fig. 5 Flutter frequency vs. wing span length.
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5. Numerical results

5.1. Solution verification

Given that the current aeroelastic model for a variable-span
wing configuration is relatively complicated, various special

cases in which the system reduces to something more familiar
have been compared with known literature solutions. In the
present study, the special case of a(t) = 1 and _aðtÞ ¼ 0 is com-

puted according to the parameters used for the Goland wing.23

The bending and pitching mode shapes of the wing are intro-
duced by Hodeges and Pierce,24 and the first fourth-order
modes are used for aeroelastic analysis. The reduced-order

model of aerodynamics is constructed by using a total of 20 ei-
gen modes. The flutter speed and frequency of the current
model are 133 m/s and 72.7 rad/s, respectively, which are com-

pared with 137 m/s and 70.7 rad/s of the original Goland wing.
The error relative to that given by Goland is less than 3%.

5.2. Flutter analysis of a non-morphing wing

A test case is considered to demonstrate the results of the mod-
el and analysis. The parameters listed in Table 1 are represen-

tatives of a physical model when the wing span is non-
morphing. The full extension reaches up to 50% increase in
wing span relative to the original configuration, i.e.,
a(t) e [1.0, 1.5]. The absolute value of the dimensionless morp-

hing velocity _aðtÞ can vary between 0.1 and 0.5, i.e., the morp-
hing process can proceed from 10 s to 2 s. Furthermore, the
morphing process is assumed as a uniform motion.

The flutter speed of the non-morphing wing is 77 m/s and the
flutter frequency is about 149.6 rad/s. Fig. 3 shows the root loci
as a function of airspeed between 1 m/s and 100 m/s. For clarity,

only the region near the origin is presented. The influence of
velocity on the aerodynamic eigenvalues is regular. Meanwhile,
the tendency of structural eigenvalueswith airspeed increasing is
evident. The flutter mode is the second mode.

5.3. Flutter analysis for different wing span lengths

Figs. 4 and 5 show the flutter speed and frequency varying with

the length of the wing span, and the transient morphing speed
is assumed as zero. From the original configuration to the fully
extending wing, both the critical flutter speed and frequency

decrease significantly, the flutter speed drops from 77 m/s to
34.2 m/s, and the flutter frequency from 149.6 rad/s to
66.5 rad/s. Meanwhile, the descending speed becomes slow

when the wing span increases. The flexibility of the wing is aris-
Table 1 Basic data of the variable-span wing.

Parameters Value

Basic half span (m) 3

Chord (m) 1

Mass per unit length (kg/m) 6

Spanwise elastic axis (m) 35% of chord

Gravity center (m) 45% of chord

Mass moment of inertia (kgÆm) 0.75

Torsional rigidity (NÆm2) 6 · 104

Bending rigidity (NÆm2) 6 · 105
ing when the aspect ratio increases during the morphing pro-

cess, which is the most important influencing factor on the
aeroelastic characteristics of a variable-span wing. The flutter
mode does not change because the cross-sectional variations

are ignored in this study.

5.4. Flutter analysis for different morphing speeds

In this case, the impacts of the morphing speed to the flutter

characteristics are considered as the configuration is fixed.
Two configurations with a wing span of 1.1 times and 1.4 times
of the original span length are studied, respectively. The

dimensionless morphing speed _aðtÞ varies between �0.5 and
0.5, and the wing is at a contracting process when _aðtÞ is minus.
Figs. 6 and 7 show the flutter speeds for different morphing

speeds in the two configurations. As a result, the flutter speeds
Fig. 6 Flutter speed vs. morphing speed (a = 1.1).



Fig. 7 Flutter speed vs. morphing speed (a = 1.4).

Fig. 10 Tip vertical displacement responses with different

configurations (V = 50 m/s).
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increase in both configurations with the increasing of the
morphing speed. Taking into account the ascent speed of the

flutter speed, one can find that the impact of the morphing
speed on the aeroelastic characteristics is more serious in the
shorter wing length configurations than in the longer ones.

Figs. 8 and 9 indicate the root loci as a function of airspeed
at the highest morphing speed in both configurations, and one
can find that the starting points of the root loci move away

from the image axis farther, which indicates that the structural
properties change with the morphing speed. Let us recall the
aeroelastic governing equations, i.e., Eq. (16) and Eqs. (A15–

A22). In mathematical terms, the impacts of the morphing
speed _a on the aeroelastic system are reflected in the structural
damping matrix Cs and the structural rigidity matrix Ks. The
influences on the structural stiffness would be neglected as

the terms k2wA7 and k2hA11, which are the structural rigidity ma-
trix terms of a non-morphing wing, are three orders of magni-
tude larger than other terms due to _a. However, in the matrix

Cs, the terms are proportional to the morphing speed _a if the
wing length a is fixed. A faster morphing speed would lead
to an increase of structural damping during the wing extending

process, which would delay the flutter phenomenon occurring
and lead to an increase of the transient flutter speed. This ten-
dency would reverse during the contracting process as the
morphing speed _aðtÞ is minus.
Fig. 8 Root loci of the morphing wing (a ¼ 1:1; _a ¼ 0:5).

Fig. 9 Root loci of the morphing wing (a ¼ 1:4; _a ¼ 0:5).
5.5. Transient aeroelastic responses

The time histories of oscillations with span lengths of l0 and
1.5l0 at a flight speed of 50 m/s are obtained. The configura-
tions are both fixed. The dimensionless tip vertical displace-

ments and tip twist are plotted against time in Figs. 10 and
11. The amplitudes of oscillation decay with a span length of
l0 while grow with the 1.5l0 configuration. A critical state,
i.e., a periodic oscillation, is observed with a span length of

1.24l0 so that the flight speed of 50 m/s should be the flutter
speed predicted by the present model. The responses with the
span length of 1.5l0 indicated in Figs. 10 and 11 are 0.05 times

of the actual ones as the amplitudes of these responses are
much larger than those of the other two conditions.

Considering the impacts of the morphing speed, the tip ver-

tical displacements and tip twist are calculated during the
morphing process at the flight speed of 50 m/s. The extending
and contracting processes at different morphing velocities are
studied, respectively. In Figs. 12 and 13, the dimensionless

tip vertical displacements and tip twists during the morphing
Fig. 11 Tip twist responses with different configurations

(V= 50 m/s).



Fig. 12 Tip vertical displacement response during the morphing

process (j _aj ¼ 0:2).

Fig. 13 Tip twist response during the morphing process

(j _aj ¼ 0:2).

Fig. 14 Tip vertical displacement response during the morphing

process (j _aj ¼ 0:5).

Fig. 15 Tip twist response during the morphing process

(j _aj ¼ 0:5).
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process with a morphing speed of j _aj ¼ 0:2 and morphing time
of 5 s, as well as the responses after the morphing process, are

analyzed for 2 s. During the extending process, the flutter phe-
nomenon occurs after the critical span length a = 1.24, i.e.,
flutter delays. In Section 5.4, one can notice that the positive

morphing velocity leads to an increase of the flutter speed,
and the amplitudes of responses become so small before the
critical span length that, after the flutter point, the divergence

process of the oscillations would be slow, which would not be
obvious in the figures. During the contracting process, the flut-
ter phenomenon would not disappear after the critical span
length a = 1.24, and the amplitudes of responses grow fast
before the critical points, as the flight speed is much higher
than the flutter speed at the initial time when the span length
is 1.5l0. In this study, we can also notice that changing the wing

span length would be an efficient approach for flutter control.
Figs. 14 and 15 show the time histories of oscillations when

the morphing speed increases to j _aj ¼ 0:5. The trends of re-

sponses are similar to the last case. The amplitudes of the re-
sponses are smaller than those at a morphing speed of
j _aj ¼ 0:2, which means that faster morphing would improve

the aeroelastic response characteristics. However, the energy
consumption would be much higher, which leads to more com-
plex actuators and morphing mechanism being needed.

6. Conclusions

(1) A first-order, state-space aeroelastic model for variable-
span morphing wings has been developed by combining

a variable-length Euler–Bernoulli beam model with a
reduced-order unsteady vortex lattice model in this
paper. It takes into account the impacts of changeable
wing span length and various morphing speeds on the

aeroelastic characteristics.
(2) The numerical examples show that the critical flutter speed

of the variable-spanwing is very sensitive to the span length

since it has remarkable effects on structural rigidity proper-
ties and aerodynamic characteristics. The flutter speed
increases with increasing morphing speed during the

extending process, while decreases during the contracting
process. That’s because the morphing motion can change
structural rigidity properties and structural dampingwhich
have strong effects on the flutter characteristics.

(3) In addition, the transient aeroelastic responses during
the morphing process show that the morphing technol-
ogy would be a potential flutter control approach to

enhance flight quality.
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Appendix A.

The coefficients and matrices in Eq. (12) are defined as follows:

H1 ¼ �D~xF1
~K�1b

~KwKcDcS
T þ F2

~K�1b ST ðA1Þ

H2 ¼ D~xF1
~K�1b

~KwKcDcDa � F2
~K�1b Da

þ D~xF2
~K�1b

~KwKcDcS
T ðA2Þ

H3 ¼ F1
~K�1b ST ðA3Þ

H4 ¼ �F1
~K�1b Da þ D~xF1

~K�1b
~KwKcDcS

T � F2
~K�1b ST ðA4Þ

H5 ¼ �F1
~K�1b ST ðA5Þ

H6 ¼ F2
~K�1b

~KwWR ðA6Þ

H7 ¼ F1
~K�1b

~KwWR ðA7Þ

J1 ¼ �D~xG1
~K�1b

~KwKcDcS
T þ G2

~K�1b ST ðA8Þ

J2 ¼ D~xG1
~K�1b

~KwKcDcDa � G2
~K�1b Da

þ D~xG2
~K�1b

~KwKcDcS
T ðA9Þ

J3 ¼ G1
~K�1b ST ðA10Þ

J4 ¼ �G1
~K�1b Da þ D~xG1

~K�1b
~KwKcDcS

T � G2
~K�1b ST ðA11Þ

J5 ¼ �G1
~K�1b ST ðA12Þ

J6 ¼ G2
~K�1b

~KwWR ðA13Þ

J7 ¼ G1
~K�1b

~KwWR ðA14Þ

The matrices and vectors in Eq. (16) are defined as:

Ms ¼ a4
INw

��xaA1

��xaA
T
1 r2aINh

:

� �
ðA15Þ

Ma ¼
a4

pl

H1INw
H2A1

J1A
T
1 J2INh

:

� �
ðA16Þ

Cs ¼ 2 _aa3
A2 A3

A4 A5:

� �
ðA17Þ

Ca ¼
a4

pl

H3INw
H4A1

J3A
T
1 J4INh

:

� �
ðA18Þ

Ks ¼
Ks;11 Ks;12

Ks;21 Ks;22:

� �
ðA19Þ

Ka ¼
a4

pl

0 H5A1

0 J5INh
:

� �
ðA20Þ

D ¼ a4

pl

A12H6

A13J6:

� �
ðA21Þ

E ¼ a4

pl

A12H7

A13J7:

� �
ðA22Þ
where

Ks;11 ¼ a2ð€aa� _a2ÞA2 þ a2 _a2A6 þ k2wA7;

Ks;12 ¼ �~xaða2ð€aa� _a2ÞA3 þ a2 _a2A8Þ;

Ks;21 ¼ �~xaða2ð€aa� _a2ÞA4 þ a2 _a2A9Þ;
Ks;22 ¼ ~r2aða2ð€aa� _a2ÞA5 þ a2 _a2A10Þ þ k2hA11;

and

A1 ¼
Z 1

0

vTHd~y; A2 ¼
Z 1

0

ð1� ~yÞvTv0d~y;

A3 ¼
Z 1

0

ð1� ~yÞvTH0d~y; A4 ¼
Z 1

0

ð1� ~yÞHTv0d~y;

A5 ¼
Z 1

0

ð1� ~yÞHTH0d~y; A6 ¼
Z 1

0

ð1� ~yÞ2vTv00d~y;

A7 ¼
Z 1

0

vTv
0000
d~y; A8 ¼

Z 1

0

ð1� ~yÞ2vTH00d~y;

A9 ¼
Z 1

0

ð1� ~yÞ2HTv00d~y; A10 ¼
Z 1

0

ð1� ~yÞ2HTH00d~y;

A11 ¼
Z 1

0

HTH00d~y; A12 ¼
Z 1

0

vTd~y; A13 ¼
Z 1

0

HTd~y:
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