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SUMMARY 

A convex subset K of a vector space E over the field of real numbers  is 
linearly bounded (linearly closed) if every line intersects K in a bounded 
(closed) subset of the line. A hyperplane is the set of x ~ E that  satisfy a 

linear equat ionf(x)  = c, w h e r e f i s  a linear functional and c is a real number.  
A main, but  not the only, purpose of this note is to establish the following 

simple theorem, inspired in part  by  an interesting observation of Karl in ' s  [1], 
and, in part, by certain anticipated applications. 

MAIN THEOREM. Let L be the intersection of a linearly closed and linearly 
bounded convex set K with n hyperplanes. Then every extreme point of L is a 
convex combination of at most n 4- 1 extreme points of K.  

This theorem often simplifies the problem of finding the min imum or 
maximum of a linear functional restricted to the intersection of a convex set 
with those vectors that  satisfy a given finite number  of linear equalities. 
Such problems, in various guises, arise in many investigations; sometimes the 
convex set is a set of (probability) measures, sometimes a set of matrices. 

Though it costs us something in simplicity and directness of argument,  we 
present the proof as a sequence of lemmas, some of which we label as theorems 
and corollaries, in order also to make a small contribution to the s tudy of 
general faces of convex sets. 

* M y  initial t h o u g h t s  for th is  paper  evolved out  of  a r emark  m a d e  by  Leona rd  
J. Savage. I am  grateful  to Isdore  Fleischer  for enthusias t ical ly  par t ic ipat ing wi th  me  
in several  helpful  discussions.  I t hank  Rober t  Phelps  and Karel  D e L e e u w  for gu id ing  
me  to the  li terature. 

T h i s  paper  was conceived while its au thor  held a Regular  Pos t -doctora l  Nat ional  
Science Founda t ion  Fel lowship,  and  comple ted  wi th  the  financial suppo r t  of  N .S .F .  
Gran t  14648. 
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I. INTERNAL SETS 

Let  us recall that if x and y are two distinct points in a real vector space, E, 
then the set of points, Ax +/~y,  with A > 0,/z > 0, and A -+-/~ ~ 1, is called 
the open interval determined by the end points x and y.  Following Bourbaki, 
[2, p. 6 @  a point, z, in a convex set, K,  is said to be an internal point of K, 
if, for every x ~ K with x ~ z, there is a y ~ K,  such that  z is in the open 
interval determined by x and y. We say that  a convex set, S, is an internal set 
if every point  of S is an internal point of S. I t  is easy to see that S is an 
internal set if, and only if, for every pair of distinct points z 1 and z 2 that  are 
elements of S, there is an open interval, I ,  such that  z 1 ~ I, z2 ~ I, and I c S. 

I t  is not true that  the convex hull of the union of two internal sets is an 
internal set. But, it is true in the special case that  the two sets are two inter-  
secting open intervals. F rom this it easily follows that  the convex hull of 
the union of any two intersecting internal sets is an internal set. This  in 
turn quickly implies: 

(1.1) SUBLEMMA. Let $1, "', Sn be a finite number of internal sets with the 
property that for each i, 2 ~_ i < n, Si has a non empty intersection with the 
union of the Sj  .for j < i, then the convex hull of the union of all the Si is an 
internal set. 

The  proof of the following is now immediate.  

(1.2) SUBLEMMA. Let S ,  be a collection of sets with the property that for 
every finite collection of subscripts ~1, "", c%, the convex hull of the union of 
Sob , "", S~ , is an internal set. Then the convex hull of the union of all the sets, 
S~, is an internal set. 

As a corollary one has: 

(1.3) LEMMA. Given any collection of internal sets with a non empty inter- 
section, the convex hull of their union is an internal set. 

Suppose that  S is an internal set, K is convex and S C K. Then  the col- 
lection of all internal subsets A, of K, such that  S C A has a union, whose 
convex hull is, in view of (1.3), also an internal set. 

Therefore,  we have established: 

(1.4) PROPOSITION. For each convex set K and each internal set, S, such 
that S C K,  there exists a unique internal set, F, such that (1) ,  F C K ;  and (2) ,  
i f  G is any internal set such that S C G C K, then G C F. 

I f  in (1.4) one lets S consist of a single point one obtains: 

(1.5) For each element, x, of  a convex set, K,  there is a unique largest internal 

subset, F, of K such that x ~ F. 
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This  set will be called the internal component of x, or the internal component 
of x in K, and will be designated by F(x), or by F(x, K) ,  when greater preci- 
sion of notation is needed. I t  is trivial to see that  i f y  ~ F(x), then F(y) = F(x). 
This  implies that  

(1.6) For every x and y, the internal component of x and the internal compo- 
nent of y, are disjoint, or else they are identical. 

I I .  FACES OF A CONVEX SET 

Let  K be convex. A subset, F,  of K is said to be a face of K if (i) F is convex, 
and (ii) for every x ~ F, and every open interval I ,  if x e I C K,  then I C F. 

Two kinds of faces of K are particularly interesting: (1) those obtained by 
intersecting K with an affine variety of support  to K ;  these have been called 
facettes of K by Bourbaki [2, p. 86] ; (2) the elementary faces of K, where a 
face, F,  of K will be said to be elementary provided that it is an internal set. 
The  word "elementary"  is used because it will soon be shown that  every 
face of K is the union of a unique disjoint collection of elementary faces of K.  

Since the intersection of any collection of faces of K is again a face of K,  it 
follows that  for each subset, S, of K,  among the faces of K that  contain S, 
there is a smallest. 

(2.1) THEOREM. Let x be an element of a convex set, K.  Then the smallest 
face of K that contains x is identical with the largest internal subset of K that 
contains x. 

PROOF. Let  x ~ K, and let F be the largest internal subset of K that  
contains x. We first show that F is a face of K. Let  y ~ F,  and let I be an open 
interval such that y ~ I and I C K.  We must  show that  I C F. I f  y = x, then 
I is some internal subset of K that  contains x. Therefore I C F.  I f  y 7~ x, 
then there exists an open interval 11 such that  x ~ I1, y e I1, and I 1 C K.  
Moreover 11 and I have a point in common, namely y. Therefore the convex 
hull of 11 and I is an internal set that  contains x. Therefore it is a subset of F.  
Hence I c F.  Thus  F is a face of K.  Now let G be any face of K that  contains 
x. We want to show that  F C G. Let  y ~ F.  Then  there is an open interval I 
such that  x ~ / ,  y e I ,  and I C K.  Since G is a face of K,  I C G. Therefore 
y ~ G. This  completes the proof. 

For  an example of interest, observe that  if K is the set of all countably 
additive probabil i ty  measures, x, defined on some a-field, q/, of subsets of a 
set, U, then, for every x, the smallest face of K that  contains x is the set of all 
probabil i ty measures, y,  such that  (i) y and x are absolutely continuous with 
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respect to each other, and (ii) there is a positive constant  k, such that  for 

every .4 E ~,  x(.4) ~ ky(.4) ~ kZx(.4). (Of course (i) is r e d u n d a n t  in  the 
l ight of (ii)). 

T h e  following three rather  similar proposi t ions are easy corollaries to 
T h e o r e m  (2.1). 

(2.2) Every internal subset, S, of K is a subset of one and only one elementary 
face of K. This face is the smallest face of K that contains S. In particular 
every point, x, of K, is an element of one and only one elementary face of K, 
namely the smallest face of K that contains x. 

(2.3) Every face of K is a union of a unique collection of disjoint elementary 
faces of K. In particular, the elementary faces of K form a partition of K. 

(2.4) A nonempty convex set, K, has precisely one face, if  and only if, it is an 
internal set. 

III .  TIaE SMALLEST FACE OE K GENERATED BY A SUBSET, S, OF K 

(3.1) For any convex subset, S, of K, [Jx~S F(x) is a convex set. 

PROOV. Let  Yl e F(xa) , and  let Y2 e F(x2), with Yl ~ Y2, and  x 1 e S,  and  
x 2 e S. Le t  y : ;~Yl + (1 - -  A) y2, with A > 0. I t  is necessary only to see 
tha t  there  exists an x • S such that  y • F(x). Th e re  are four cases depend ing  

on whether  or no t  x~ : Y o  i : 1, 2. T h e  trivial case is x i - -y~ ,  i : 1, 2. I n  
this  event  y : Ax 1 -~ (1 - -  A) x 2. Since S is convex, y • S, and, certainly 

y • F(y). W e  now out l ine the  proof for the  case x 1 :/: Yl and  x 2 :/: y2, the  
other  two cases be ing  similar and  even easier. The re  exist open intervals  I 1 

and  12 wi th  xj • I~-, y j  ~ I j  and I s C K,  j : 1, 2. Le t  L be the set of in ternal  

points  of the  convex hull  of 11 w I S. Th en ,  for any x in  the  open interval  

de te rmined  by  x 1 and x~, x • L. Moreover  y e L. Since x and y are m em ber s  
of some in te rna l  set, y • F(x). Thi s  completes the  proof. 

F r o m  (3.1) easily follows 

(3.2) For any convex subset S of K, [Jx~s F(x) is the smallest face of K that 
contains S. 

For  any set S, let C(S) be the convex hull of S, that  is, the  smallest convex 
set that  contains  S as a subset.  Of  course, if S C K,  the  smallest face of K 
that  contains  S is the  same as the smallest face of K that  contains  C(S). 
Therefore  one obtains:  

(3.3) For any subset S of K, [.Jx~c~s) F(x) is the smallest face of K that 
contains S. 
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IV .  FACES OF THE INTERSECTION OF Two CONVEX SETS 

(4.1) Let K and L be convex sets, K CL.  Let S C K.  Then the smallest 

face of  K that contains S is a subset of  the smallest face of  L that contains S. 

PROOE. Every internal subset of K is an internal subset of L. Therefore, 
for each x, each internal subset of K that contains x is an internal subset of L 

that contains x. This implies that the largest internal subset of K that con- 

tains x is some internal subset of L that contains x. Hence for every x E K~ 

F(x,  K )  C F(x,  L). In  particular, this is true for every x in the convex hull  
of S. Now apply (3.3) to complete the proof. 

(4.2) The intersection of  two internal sets is an internal set. 

PROOF. Let x 1 =/: x2, xj e X a n X s where Xj are internal sets, j = 1, 2. 
There exists an open interval 11 such that xj E I 1 C X1, j = 1, 2; and there. 

exists an open interval I s such that xj e 12 C X~, j = 1, 2. Let l = 11 c~ I S. 

Then  xj ~ I C X 1 n Xs, j = 1, 2. This  completes the proof. 

(4.3) THEOREM. Let K be the intersection of  two convex sets K 1 and K2: 

and suppose that x e K.  For i = 1 and i = 2, let Fi be the smallest face of  K~ 
that contains x. Similarly, let F be the smallest face of K that contains x. Therr 
F = Fl  C~ F ~. 

PROOF. (4.1) implies that F CF1 n F s. (4.2) implies that F 1 n F s is some 
internal set that contains x. Since F 1 ~ F 2 C K, it is a subset of the largest 
internal subset of K that contains x. That  is, in view of (2.1), F 1 c~ F 2 C F .  
This completes the proof. 

An easy corollary of (4.3), essentially a reformulation of it, is: 

(4.4) Let F C K = K 1 n Ks, where K 1 and K s are convex. Then F is an 
elementary face of  K,  i f  and only if, F is the intersection of an elementary face, 
F1, of  K 1 with an elementary face, F2, of  K 2. Moreover Fi is unique, and is the 
smallest face of  K i that contains F, i = 1, and i = 2. 

Clearly F i would not necessarily be unique were it not assumed to be elementary. 

Of course it is trivial that if F~ is any face of Ki, then F a n F s is a face of 
K 1 n K s. However, the converse is not true. That  is, 

(4.5) There exist convex sets K 1 and K 2 and a face F of K 1 n K s such that 
for  no faces F~ of K~ does F equal the intersection of F 1 with F v This pheno- 
menon can occur even in a vector space of two real dimensions, as the 
interested reader may enjoy verifying for himself. 

The  special case of (4.4) in which one of the Ki is an internal set is simpler 
to formulate, and does arise, for example when one of the Ki  is a hyperplane. 
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(4.6) Let K be a convex set, suppose that H is an internal set and that F is a 
subset of H c~ K. Then F is an elementary face of H n K, i f  and only if, F is the 
intersection of H with an elementary face, G, of K.  Moreover G is unique, and 
is the smallest face of K that contains F. 

As remarked in (4.5), (4.4) cannot be improved so as to be applicable to 
faces that are not necessarily elementary. However, (4.6) does yield: 

(4.7) Let K be convex, and let H be an internal set. Then F is a face of H c~ K,  
i f  and only if, F is the intersection of H with a face, G, of K. 

PROOF. The "if"  part is trivial. So suppose that F is a face of H ~ K. 
Let  F~ be the collection of elementary faces of H c~ K that are subsets of F. 
By (2.3), F = U F~. By (4.6) there exist elementary faces, G~, of K such that 
F~ -= H n  G~. Let G = U G~. Then  

F =  U F ~ =  U ( H n G ~ ) = H n ( U G ~ ) = H n G -  

T o  verify that G is a face of K, first observe that G = U F(x, K )  as x ranges 
,over F. Then apply (3.2) to see that G is a face of K, and thereby complete 
t he  proof. 

V. THE SKELETONS OF CONVEX SETS 

Let ~ be a cardinal number. A vector subspace, S, of a real vector space, E, 
has (Hamel) dimension, ~, if ~ is the cardinality of a basis for S. Any translate 
,of the subspace S is called an affine variety and has (aNne) dimension ~. 

A convex set will be said to have (affine) dimension ~ if the smallest affine 
variety containing it has dimension c~. In  particular, every face of a convex 
set K has a dimension. Modifying a notion borrowed from combinatorial 
topology, we define for each cardinal ~, the a-skeleton of K as the union of all 
faces of K that have dimension less than or equal to c~. The 0-dimensional 
,skeleton of K is, of course, the set of extreme points of K. 

For another example, if K is a convex cone, then a point is in the one 
dimensional skeleton of K, if and only if, it is on some extreme generator as 
defined by Bourbaki [2, p. 82]. 

(5.1) THEOREM. Let K be the intersection of two convex sets K 1 and K s 
and let x ~ K.  Then x is an extreme point of K,  i f  and only if, x is the only point 
in both Fl(x ) and Fz(x), when Fi(x ) is the smallest face of K i that contains x. 

PROOF. Immediate from (4.3). 
Of Course, (5.1) can trivially be generalized to: 

(5.2) Let K be the intersection of n convex sets Ki, i = 1, ..., n. Then x is an 
~extreme point of K if, and only if, x is the only point in all Fi(x). 
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Let  S be a vector subspace of E. The  quotient space, E/S,  has a dimension 

called the codimcnsion of S in E. Given two affine varieties A 1 and A 2 with 

A 1 C A2, the codimension of A 1 in A 2 is the codimension of S 1 in S~ where Si  
is the unique subspace of which Ai  is a translate. Finally, given two convex 
sets K1 and K S with K 1 C Ks, the codimension of  K 1 in Ks is the codimension 
of A 1 in A S where Ai  is the affine variety generated by Ki. 

I t  is well known that  if S 1 and S 2 are subspaces, then the codimension of 

S 1 ~ S 2 in S S equals the codimension of S 1 in $1 V Ss, where S 1 V Ss is the 
smallest convex set containing both S a and S S. This  easily implies that  if A~ 
and A S are affine varieties with a nonempty intersection, then the codimension 
of A~ ca A S in A 2 equals that of A 1 in A1 V As. This  is not true for arbitrary 
convex sets A 1 and A~. However, for internal sets this fact does hold. Namely, 
it is easy to prove: 

(5.3) Let K a and K 2 be internal sets with a nonempty intersection. Then the 

codimension of K 1 n K 2 in K 2 equals that of  K 1 in K 1 ~/ K S. 

(5.4) I f  a hyperplane, H, has a nonempty intersection with an internal set, F, 
and i f  H n F is k-dimensional, then F is at most (k + 1)-dimensional. 

(5,5)  THEOREM. Let K be a convex set and let H be an internal set of  codi- 
mension ~ in the real vector space E. Then, for  all B, the fl-skeleton of K ca H 

is a subset of  the (~ + fi)-skeleton of  K.  

PROOf. Let  F be an elementary face of K ca H whose dimension does not 
exceed/3, and, let G be the smallest face of K such that  F C G. Then,  accord- 
ing to (4.6), G is an internal set, and G ca H = F. Thus,  the codimension 
of F in G = the codimension of G ca H in G = the codimension of H in 
G ~ / H  < t h e  codimension of H in E = ~ .  The  dimension of G = t h e  
dimension of F plus the codimension of F in G < fl + ~. Tha t  is, G is part  
of the (~ + fl)-skeleton of K,  and, consequently so is F.  This  completes the 
proof. 

If/~ = 0, the fl-skeleton is the same as the set of extreme points. In  this 
case (5.5) can be reformulated as 

(5.6) Let K be convex and let H be an internal set of  codimension ~ in E. 
Then the extreme points of  K ~ H are a subset of  the ~-skeleton of  K.  

Some special cases of (5.6) are 

(5.7) I f  H is an open halfspace, or the intersection of a finite number of  open 
halfspaces, then every extreme point of  K c~ H is an extreme point of K.  
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(5.8) I f  H is the intersection of finite number, n, of hyperplanes, then every 
extreme point of H n K is an element of the n-dimensional skeleton of K,  

I f  in (5.5) one lets = ---- 1, one obtains 

(5.9) Let H be a hyperplane. Then, for every fl, the fl-skeleton of K c~ H i s  a 
subset of the ([3 + 1)-skeleton of K.  

VI. LINEARLY CLOSED AND LINEARLY BOUNDED SETS 

A set K is linearly closed if every line, l, intersects K in a closed subset of L 
The  intersection of all linearly closed sets that  contain a set, K,  is said to be 
the linear closure of K.  

(6.1) THEOaXM. The linear closure of a face of a linearly closed convex set, 
K,  is a face of K.  

We leave the proof  of (6.1) to the interested reader. 

(6.2) Let K be a linearly closed and linearly bounded convex set. Then for 
each integer n ~ 1, and every x in the n-dimensional skeleton of K,  x is a convex 
combination of at most n + 1 extreme points of K.  

PROOf. Let  x be in the n-skeleton of K. Then  for some face, F,  of K of 
dimension not exceeding n, x e F.  The  linear closure, F, of F can be seen to 
be a compact  convex set of dimension not exceeding n, and x ~/~. As shown 
in [1], x is a convex combination of at most n - -  1 extreme points of/~. By 
(6.1),/~ is a face of K.  Therefore  every extreme point  o f f  is an extreme point 
of K. This  completes the proof. 

The  main theorem is an immediate  corollary to (5.8) and (6.2). 
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