
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 89, 46-66 (1982) 

On the Use of Reducible-Functional Differential 
Equations in Biological Models 

STAVROS N. BUSENBERG* 

Department of Mathematics, Harvey Mudd College, 
Claremont, California 

AND 

CURTIS C. TRAVIS+ 

Health and Safety Research Division, Oak Ridge National Laboratory, 
Oak Ridge, Tennessee 37830 

Submitted by Kenneth L. Cooke 

I. INTRODUCTION 

Biological models often lead to systems of delay or functional differential 
equations and to questions concerning the stability of equilibrium solutions 
of such equations. The monographs by Cushing [5] and MacDonald [ 1 1 ] 
discuss a number of examples of such models which describe phenomena 
from population dynamics, ecology, and physiology. The above-cited work 
of MacDonald is mainly devoted to the analysis of models leading to 
functional differential equations which are reducible to systems of ordinary 
differential equations. For example, consider the system 

dX’(t) .m 
-----=I e -A.yX*(t - s) ds, 

dX*(t) .m 
___ = 

dt .,, I dc .,, 
e-“X’(t - s) ds. 

If we define 

X’(t) = j.a. e-lSX2(t - s) ds 
-0 
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and 

X”(t) = jr e -nsX1(t - s) ds, 

then the above system reduces to the system of ordinary differential 
equations 

dX’(t) 
~ = x3 (t), dm) 

dt 
~ = X”(t), 

dt 

dX3 dX4(t) 
-=X2(t)4X3(t), dt= 

dt 
x’(t) -AX”(t). 

A necessary and sufficient condition for the reducibility of a functional 
differential equation to a system of ordinary differential equations is given by 
Fargue [6]. Fargue’s method is used by MacDonald [lo] as well as by 
Cohen et al. [3], Post and Travis [ 111 and Worz-Busekros [ 151, to reduce 
functional differential equations arising in biological models to systems of 
ordinary differential equations for which certain stability questions can be 
answered. An example of the type of biological model with which we are 
concerned is that of a community of n-interacting species described by the 
system of functional differential equations 

dX’(t) 
- =X’(t) 

dt 
ri + f aij,fT Xj(t - s) d?,(s) + G,(X) . 

I 
(1) 

i=l 0 

There, Xi is the population of the ith species, ri is the intrinsic population 
growth rate of species i, A = (aij) is an interaction matrix, vii are of bounded 
variation, and Gi is a higher order-nonlinear function of the Xi and their past 
histories. The vii may be atomic at zero as well as elsewhere, hence, both 
instantaneous and pure delay terms may be present in (1). If x= (xl,..., p), 
x’ > 0, is an equilibrium solution of (l), then its local asymptotic stability is 
determined by the asymptotic stability of the trivial solution of the linearized 
system 

4+(t) - = 2 e au101 #(t - s) dyij(s), 
dt j=l 

y’(t) =X’(t) - 2. The question that we are addressing is whether the delay 
terms in Eq. (l), and hence (2), can be replaced by terms of the form 

b,y’(t) + ~ r~ ~’ vi(t - S) g,,(S) ds’ 
k.l= 1 0 

409/89/l-4 
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where 
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fh- I 

lTk,@) = (k _ l )! e AE’ (3) 

and yet have stability of the trivial solution of the linearized system 

- = z’ 2 aij 
dZ’(t) 

dt 
b,z’(t) + y yf; fZj(t - s) g,,(S) ds 

I 
(4) 

.i= 1 k,l=1 -0 

determine the stability of the trivial of the original system (2). 
The advantage of system (4) is that it is reducible to a system of ordinary 

differential equations [6, 1 I], and hence, the stability question reduces to that 
of the location of the zeros of a polynomial. The corresponding stability 
question for system (2) involves the location of the zeros of an entire 
function which, even in the case of discrete delays, presents considerable dif- 
ficulties. 

The first result of this paper provides an affirmative answer to the question 
raised above by noting that, given any linear-retarded functional differential 
equation and a finite subset of its spectrum defined by ,4 = {A ( Re A 2 /I, p 
real}, it is possible to find a reducible system of functional differential 
equations whose spectrum exactly coincides with this set. Thus, for the 
purpose of addressing questions of stability or asymptotic behavior of 
solutions, the use of reducible-functional differential equations in biological 
models is theoretically quite general. In practice, however, it can be difficult 
to find a reducible system whose spectrum coincides exactly with a given 
subset of the spectrum of a functional differential equation. What is usually 
obtainable is a reducible system whose spectrum is close to the spectrum of a 
given functional differential equation. This leaves open the question of how 
to measure the degree of approximation so that stability properties of the 
original functional differential equation are reflected in the approximating 
reducible system. In Theorems 2-4 of this paper we shall give computable- 
sufficient conditions for the asymptotic stability of the trivial solution of 
systems of linear-retarded functional differential equations approximated by 
equations that are reducible to systems of ordinary differential equations. We 
shall then use these results in Theorems 5 and 6 to analyze the asymptotic 
stability of the feasible equilibria of a class of population models with 
hereditary (or memory) terms. Theorem 3 includes, as a special case, the 
stability result of Bailey and Williams [ 1 ] and that reported by Ladde [lo], 
and, in part, overlaps the stability result of Jordan [9], while Theorem 6 
gives a generalization to multispecies systems of the stability result for the 
single-species equation that is proved by Stech [ 131. The stability of the 
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single-species equation treated in [ 131 has also been studied by Hadeler [ 71 
and Walther [ 141. 

The statement and discussion of our results are collected in the next 
section. In that section we shall also discuss some extensions and the 
ecological implications of the stability conditions given in Theorems 5 and 6. 
The proofs of all results are contained in the third section. 

2. STABILITY CONDITIONS 

In order to simplify the statements of our theorems we introduce the 
following notation. We let C = C([-7’, 01, R”) denote the space of 
continuous functions on [-T, 0] to R” with the uniform norm topology. For 
@R-R”, we define 4,: [-T, 0] -P R” by $r(-~) = d(t - s), s E [0, r]. 
Finally, we formally define a reducible system to be a retarded functional- 
differential equation whose kernel q(s) satisfies 

M,N 

i = l,..., n, (5) 

where g,, is given by (3). We let L be a continuous-linear function mapping 
C into R”, and consider the linear-retarded functional differential equation 

dX(t) - = L(x,) = j; idrl(s)l X,(s), dt 

where q(s), 0 5 s 5 T, is an n x n matrix whose elements are of bounded 
variation. If Q is a given function in C, then X,(4) is the unique solution of 
(6) with X,,(4) = d. 0 ur notation closely follows that of Hale [S], from 
which reference we shall quote a number of results. The linear-reducible 
systems take the form 

M,N 

-= b, y’(t) + 1 y;! 1.’ gk,@ - S> u’(S) ds 
I 

(7) 
k,l= I -T 

i = I,..., n’, and g,, given by (3). Equations of the form (7) are reducible to a 
system of ordinary differential equations whose solutions with initial value a 
we denote by y(t, a), where y is a vector of length m 2 n’. 

THEOREM 1. There exists a linear-reducible system (7) such that its 
trivial solution is asymptotically stable if and only if the trivial solution of (6) 
is asymptotically stable. Moreover, for each a > 0, there exists an integer m, 
a reducible system whose dlflerential equation form has dimension m, a 
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positive constant K, and continuous-linear maps V and S, V: R” -+ R”, 
S: C + R m, such that for any 4 E C 

IX,(#) - VY,GV)/ 5 K 14 em”‘, t 2 0, 

where X,(4) solves (6) with X,(4) = 4 and y,(S#)(s) = y(t + s, S@); and 
y(t, S#) is the solution of the differential equation form of the reducible 
system with ~(0, S#) = S#. 

The implication of Theorem 1 is that in the analysis of questions of local- 
asymptotic stability or of asymptotic-decay rates, there always exists an 
appropriate reducible system that can be analyzed instead of the original 
functional differential equation (6). In this respect, it justifies the widespread 
use of reducible systems in biomathematical models [3, 5, 11, 12, 141. 

The theorem, however, leaves open the question of how to select the 
correct approximating reducible system. As we shall see in the next section, 
the general theory of functional differential equations, of which Theorem 1 is 
a direct consequence, does provide an algorithm for constructing the 
appropriate reducible system. This algorithm, however, involves the accurate 
computation of the zeros of the characteristic equation of (6) as well as the 
corresponding generalized eigenspaces-the very task one seeks to avoid by 
using the approximating reducible system (7). Consequently, it is desirable to 
have less general but more readily applicable conditions that will guarantee 
the stability of the trivial solution of equations approximated by reducible 
systems. It is the purpose of the next set of results to provide such sufficient 
conditions. 

The results that follow, if stated in their greatest possible generality, would 
be notationally very involved. Hence, we have chosen to use the general form 
of the approximating kernel only in the one-dimensional case. In the n- 
dimensional case we state the results with a special simple form of the kernel 
which sufficies to illustrate the scope of our methods and avoids 
complications in the notation. In what follows, we shall use equations with 
both finite and infinite delays. References (4,8] give good overviews of the 
theory of such equations. In particular, the notion of asymptotic stability for 
equations with finite delay that we employ is the one in [S]. 

THEOREM 2. Consider the one-dimensional retarded functional 
d@erential equation 

dX(t) 
- = a(t) + y yk, J’? h,,(s) X(t - s) ds 

dt k,l= 1 0 

+b I .O" x(t - s) h(s), 
0 

(8) 
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where (0” Idp( = 1, hk,(s) = (AJkg,,(s), 1, > 0, and g,, is a reducible kernel 
of form (3). If a < 0, and ty 

M.N 

I4 - kg, bkll -PI > 0, 

then all roots of the characteristic equation of (8) have negative-real part. If 
instead, a = 0, 0 < s,” s Idp( < 00, and 

y*‘h*‘D)+by 1 sds+ 120, (lob) 

the same conclusion holds. We note that (lob) is implied by the simpler con- 
dition 

-y ~luk’l-lbljrnsId~(s)I+ l>O. 
k,l=l I 0 

UOC) 

If in addition to (9) or (lo), it is assumed that 

Yk’h,,@) ds 

is constant for s > T, then the zero solution of (8) is asymptotically stable. 

Note that both (9) and (10) are essentially a restriction on the magnitude 
of the nonreducible term b l: X(t - s) dp(s) that guarantees stability of the 
trivial solution. The simpler condition (9) applies only when the instan- 
taneous term a X(t) is a damping term. Condition (10) applies to the more 
general case when an instantaneous term need not be present, or else, when 
this term is not a damping term. (In this case, the instantaneous term is 
incorporated into the term b l? X(t - s) dp(s).) We note in passing that the 
terms k/L, in (10~) are equal to J,” h,,(s)s ds and thus (10~) is actually a 
condition involving the first moment of dy(s) analogous to that used by 
Stech [ 131. 

A special case of condition (9) is obtained when yk, = 0 for all k, 1 and the 
measure ,u in (8) is atomic and of the form Q(s) = C ciSi(s - Ti) ds, where 
/ ciJ = 1, Ji is the Dirac delta, and Ti > 0. Equation (8) then becomes a 
delay-differential equation dX(t)/dt = ax(t) + 2 (bci) X(t - Ti), and 
condition (9) becomes 1 al - C I bcil > 0. The result in this special form has 
been obtained by Bailey and Williams [I]. In the case where 
b J-,” X(t - s) dp(s) = AX(t) + 1; X(t - s) B(s).ds, where B E L’(0, co), 
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Theorem 1 in Jordan [ 9 ] can be applied to (8) to yield a stability criterion 
with our Eq. (lob) replaced by -,[,” s lB(s)l ds + IA + [F B(s) ds(/]]A 1 + 
{,” jZI(s)j ds] > 0. This is a stronger restriction than -J‘: s IB(s)l ds + 1 > 0, 
which is the form that (lob) takes in this case. The paper of Jordan [ 9 1 and 
the relation between his results and ours was pointed out to us by M. Asunta 
Pozio. We now proceed to the n-dimensional versions of Theorem 2 which, 
as we said above, we state in a special form for notational convenience. 

THEOREM 3. Consider the retarded functional diflerential equation 

dX’(t) 6 
-= 

dt I 
a,&(t) 

J=l 

+ yij lrn Ae-“sXj(t - s) ds 
0 

+ bij i O” Xj(t - s) Q,(s) 
I 

, i = 1, 2 ,..., n, (11) 
0 

with ,I > 0, aii < 0, luij: [0, a~) + R, of bounded variation on compact 
intervals of (0, CD), and j,” ]dpJt)] = 1. Zf there exist di > 0, such that 

laiil -d;’ 1 2 djlayl + i dj[Ibij( + IYijI] 1 > 0, (12) 
j=l j=l 
i#i 

then all roots of the characteristic equation of (11) have negative-real parts. 
Zf, in addition, it is assumed that dn,(s) = yijAe-AS ds + b, d~ij(s) = 0 for 
s > T, then the trivial solution of (11) is asymptotically stable. 

A special case of Theorem 3 is obtained by setting 

yij = 0, bii = 0, luij(S) = S/T, OsszT 

ZZ 1, T< s, 

a,=0 if i # j, i, j = 1, 2 ,..., n. 

Condition (12) then becomes 

]aii]-d;’ i dj]bij] > 0, i = 1, 2 ,..., n. (13) 
j=l 
.i*i 

This condition is equivalent to that given by Ladde [lo] for the equation 

dX’(t) 
- = a,iX’(t) + i Jr BijX’(t - S) ds, 

dt jzl 0 
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where B, = b,/T. Ladde presents a stability argument using a Lyapunov 
function of Razumikhin type. This type of argument is difficult to apply 
because it involves a standard but involved estimate of a quadratic functional 
on a subset of C defined by the Lyapunov function. The present method of 
proof proceeds via an analysis of the characteristic equation thus avoiding 
these difficulties, and applies to the more general equations discussed here. 

The condition in (12) is useful when the instantaneous diagonal terms a,, 
are negative and large compared to the hereditary-delay terms. In that case, 
it gives an easily computable condition for stability. When that is not the 
case, we need to use a condition that involves the delayed part of the 
diagonal terms. Such a condition is given in 

THEOREM 4. Consider the retarded functional differential equation 

dX’(t) n 
7 = C aij fin X’(t - S) drlij(s), (14) 

j=l -0 

with vii normalized by J‘F ) dvij(s)l = 1, i, j = 1, 2,..., n. Suppose that, 
0 < l? Idq,(s)l < co, for all i, and 

'ii 
I 
.m dvii(s) < 0, -1 aii I Iom s I dqii(S)l + 1 = 0, (15) 
0 

for i = 1, 2,..., n, and there exist di > 0 such that 

1 J aii ‘a COS(SV) dq,,(s) - d,:’ 2 dj laij( > 0, 
0 jzi 

j=l 

(16) 

for all real v satisfying 

145 [d;’ ,$, djl~ijl]/[-laiil~~~ld~ii(~)l+ 11. 
i#i 

Then the roots of the characteristic equation of (14) have negative-real parts. 

It should be noted that, for the one-dimensional case, conditions (15) and 
(16) collapse to the condition - ]aii] J,” S Idvii(s)l + 1 > 0, and 
a,, 57 dqii(s) < 0. This is the condition derived by Stech [ 121 for the one- 
dimensional system, under the added restrictions that aji < 0 and vii is 
monotone increasing. In the n-dimensional case, the second condition (16) 
cannot be dropped since (15) incorporates no information on the off- 
diagonal terms of the system. We stated Theorem 4 without explicitly 
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exhibiting reducible terms in the right-hand side of Eq. (14). The addition of 
such terms can be easily done. For example, if we consider the equation 

dir’(t) + -= 
dt Jrl 

W”“Xj(t - S) ds + aij m *(t - s) dqij(s) 
s I 

7 
0 

i = 1) 2 ,..., n, 

where yii + aii < 0 and the vii satisfy the conditions stated in Theorem 6, 
then stability conditions (15) and (16) are implied by conditions (22) and 
(23) of Theorem 6. In this circumstance, the stability condition can be 
viewed as a restriction on the size of the nonreducible terms aij relative to 
that of the reducible terms Yij. 

Since Theorem 4 partly overlaps the stability result given by Jordan 191, it 
is worth considering a simple example where our result predicts stability but 
where the result in [9] fails to apply. In fact, let 

dX’(t) 
___ = -2X’(t - $) + X’(t - a,, 

dt 

dX*(t) 
---=X’(1-;)-2X*(t-f). 

dt 

(17) 

This system is of the form (14) with a,, = a,, = -2, a,, =a,, = 1, and 
dy,(s) = 6(s - b) ds. Since - laiil j: s Idvii(s)l + 1 = -2 I,” S&S - a) ds + 
1 = $ > 0, condition (15) of Theorem 4 is satisfied. In order to check 
condition (16) we first note that the appropriate restriction on I u\ is, ) u j < 
CT+i,j=, laijl/[ 1 + ai, 1: sdrlii(s)l, which implies 

IvIa. 

So, since cos(v/4) is a monotone decreasing function of ) VI for (v( < 2, we 
have 

1 aii Jo” cos(sv) dy,,(s) 1 - j+i 2 ( aij( = 2 cos(u/4) - 1 

j#i 

> 2 cos(l/2) - 1 > 0. 

So, condition (16) is satisfied, and by Theorem 4, (0,O) is an asymptotically 
stable solution of Eqs. (17). 
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On the other hand, Theorem 1 of [9] requires the condition (condition H, 
in [91) 

irn s I aii dVii(s)l 
-0 

< ( 1 Jam ai, dqii(s) ( - ,ti !r I aijdVij(s)I ) /$‘, 1: 1 aij dvij(s)l* 

j=l 

In our particular example (17) the left-hand side of this inequality is easily 
seen to be equal to i while the right-hand side is equal to (i - a)/ 
(f + i ) = f. So, this inequality fails, and Theorem 1 of [ 91 does not apply to 
Eq. (17). We note that even though Jordan [9] restricts his attention to the 
case where dqij(s) = b,(s) ds, b, E L’(0, co), his stability result does apply 
to the more general kernels we have been considering here. 

We now give two direct applications of our results to some model 
equations from the theory of population dynamics. Again, for notational 
convenience, we state the results with only a simple reducible kernel incor- 
porated in the equations. 

THEOREM 5. Consider the functional dlflerential equations 

dX’(t) 
- = x’(t) 

dt 
a,@(t) + yij irn ne-“Xj(t - s) ds 

-0 

+b,)$X’(t-s)d~ij(s) j], i= 1,2,...,n (18) 

with 1 > 0, a,, < 0, ,uij: [0, 0~)) -+ R of bounded variation, l? IQ,(s)1 = 1, 
and qij(s) = bij,uij(s) - yij eels obeying vii(s) = constant for s > T. Assume 
that (18) has an isolated feasible equilibrium f = (XL,..., x”), x’ > 0. 
Suppose that there exist dj > 0 with 

IaiiId;’ i djIa,I + e dj(IbijJ + IVijI) > 0, 1 (19) 
iti JT, 
j=l 

i = 1, 2 ,..,, n, 

then 2 is locally asymptotically stable. 

We note that the addition of a higher order-nonlinear term on the right- 
hand side of (18) does not alter the result. Also, exactly the same result 
holds for the more general equation 
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dX’(t) 
dt 

+ yi.i 1’” X’(t + s) /le.” ds , 
I 

where Li: C -+ R” is linear and continuous and 15,(x’) > 0. (Here ,5,(x’) 
denotes Li operating on the function which is identically equal to x’ on 
I-T, 01.) This type of generalization of the interacting species equation may 
be useful in modeling populations where the removal rates depend on past 
histories. Equations of this type do come up naturally in models of epidemics 
(see, e.g., Busenberg and Cooke (21 for the discussion and analysis of such a 
model) because of the delays due to the incubation periods for particular 
infections. 

Our next result treats the case where the a,, are not necessarily negative. 

THEOREM 6. Consider the retarded functional dlrerential equation 

dX’(t) 
-=X’(t) [ri+,$, /t7ijjyX’(t-S)dVij(s) 

dt 

+ yij \.= Xj(t - s) AepAs ds 
il 

, i = 1, 2 ,..., n, C-21) 
-0 

with a,, jr dq,,(s) + yii < 0, j,” / dv,(s)J = 1, aijqij(s) - YijeP”’ constant for 
s > T, and ,I > 0, i, j = 1, 2 ,..., n. Assume that (21) has an isolated feasible 
equilibrium x= (x’ ,..., p), x’ > 0, and suppose that there exist constants 
dj > 0, j = 1, 2 ,..., n such that for all i = 1, 2,..., n 

-x’ /a,, 1 fl; s 1 dqii(s)( - x’ / yii i/L $ 1 > 0, (22) 
-0 

and, 

cos(us) dy,,(s) + yii (.m cos(us) leP”’ ds ( 
‘0 

-d;' $J dj[laijl + lvijl] > 0, 
j= I 
j#i 

for all real v such that 

’ ’ ?di(laijl + Irijl) 
,!r, 

1 -3 laiil Jom s Idqii(S)J 

i+i 

-x’ ( &l/l2 1 . 

(23) 

Then x is locally asymptotically stable. 
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We again note that the addition of a higher order-nonlinear term does not 
change the result. Also, if the intrinsic-population growth terms X’(t) ri are 
given the more general form L,(X:) ri, where each Li: C + R” is linear and 
continuous with Li(,f?) > 0, then a similar result holds with x’ in Eq. (22) 
replaced by ,5,(x’). The restriction that u~,~~,~(s) - yij emas be constant for 
s > T is needed only so we may use the concept of asymptotic stability given 
in [8]. 

The biological implications of Theorems 5 and 6 can be summarized by 
saying that the feasible equilibrium will be locally asymptotically stable if 
intraspecific regulation of population densities is stronger than some positive- 
linear combination of the effect of interspecific interaction. When the 
governing equations are completely reducible to ordinary differential 
equations, then the result of Post and Travis [ 121 shows that the stability of 
the equilibrium is global in this case. Our results give only local stability of 
the feasible equilibrium and our methods of proof, via linearization about the 
equilibrium, cannot be generalized to yield global results. On the other hand, 
these last two theorems, do handle more general systems than in [ 121, and, 
as in that reference, give conditions that are interpretable in ecological terms 
which are verifiable in a finite number of algebraic steps. 

In a number of biological applications delay equations with a reducible 
kernel have been used to analyze the local (Hopf) bifurcation of a periodic 
solution from a feasible equilibrium. Examples of such analysis are given in 
[3, 111. Again, the question naturally arises about how large a class of delay 
equation can be replaced by equations with equations with reducible kernels 
and still preserve the properties of Hopf bifurcation. In order to answer this 
question, we consider the retarded functional-differential equations 
parameterized by the real parameter a, 

dW) 
~ = L(a) X, + f(a, x,), dt 

and follow Hale in assuming that L : R X C -+ R * is continuously differen- 
tiable in a, L(a): C-+ R” is linear and continuous, f(a, 4) + L(a, 4) has 
continuous first and second derivatives in a, 4 for a E R, 4 E C;f(a, 0) = 0 
for all a and f@(a, 0) = 0 for all a, where f,(d, 0) is the derivative off with 
respect to d at d = 0. Finally, assume that: 

(HI) The linear equation dX(t)/dt = L(0) X, has a simple purely 
imaginary characteristic root A,, = iy, # 0 and all characteristic roots ;lj # II,, 
3Lj # &, satisfy Re Lj < 0. 

(H2) Re L’(0) = Re dk(a)/da laEO > 0. 

Under these hypotheses, Hale [8, Chapter 11, Theorem 1.11 shows that, 
as the parameter a is increased in a neighborhood of 0 from a negative to a 
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positive value, a nontrivial-periodic solution of (24) bifurcates at a = 0. The 
above-quoted theorem in [S] provides the detailed technical meaning of the 
situation described above and we shall not repeat it here. Our purpose here is 
to show that there exists a system whose linear part is reducible 

dW)/dt = L,(a) X, + f(a, X,), (25) 

which can be used to analyze this local bifurcation of periodic solutions 
instead of the system (24). We have the following result: 

THEOREM 7. Consider the system (24) with the restrictions stated above. 
Then there exists a system with reducible-linear part (25), satisfying the 
same restrictions and such that (Hl) and (H2) are satisfied by (24) if and 
only if they are satisfied by (25). 

This result provides a justification of the use of reducible kernels in the 
analysis of the local bifurcation of periodic solutions in biological models. 
Again, it may be useful to give simple sufficient conditions for the adequacy 
of special forms of Eq. (25) arising in biomathematics in describing the 
phenomenon of Hopf bifurcation for nonreducible equations that they 
approximate. We shall not, however, pursue this question here. 

3. PROOFS OF THE STABILITY RESULTS 

The two general results, Theorems 1 and 7, rely on similar techniques for 
their veriftcation and we start by giving their proofs. 

Proof of Theorem 1. We start by showing that, given any constant 
square matrix B, there exists a reducible system whose differential equation 
form is equivalent via a similarity transformation to y’(t) = By(t). In order to 
see this, let E be the nonsingular matrix which reduces B to Jordan canonical 
form, and B,. be the kth Jordan block (j= j(k)) of E-‘BE with Lj the only 
eigenvalue oc this block (which we assume to be an mk x mk matrix. Our 
claim will be established if we construct a reducible system whose 
differential equation form has B,, as its matrix. But, the system 

&'W - = Aj y'(t), 
dt 

q=Ajy’(t)+ y’-‘(t), 1=2,3 ,..., mk (26) 

is the differential equation form of the reducible system 

WO - = AjU(f), 
dt 
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dv(t) 
- = ljv(t> + j dt 

g,,&t - s) u(s) ds, mk > 2 
-T 

= AjV(t) + U(t)> mk = 2 

obtained by defining y’ = u, y,, = v, and y’+‘(t) = IyT g,(t -3) y’(s) ds, for 
I = 1, 2 ,..., mk - 2, where gl(t) = (t’-‘/(Z - l)!) e’l’. 

We also note that given mk constants a,, a*,..., u,,,~ there always exist 
4 E C with 4(O) = a,, y l+‘(O) = i”, g,(-s) Q(S) ds = a,, so any arbitrary- 
initial vector can be obtained for (26). The entire matrix E-‘BE is now 
obtained by constructing a system which consists of a single vector whose 
components are obtained from a sequential stringing together of the 
components of systems of the form (26) starting with the first component of 
the first Jordan block and ending with the last component of the final Jordan 
block of E - ‘BE. 

We can now complete the proof of our result by using [8, Theorems 2.1 
and 4.1, Chapter 71. Specifically, given CL > 0, let /i = (I, ,..., A,), where /li 
are the roots of the characteristic equation of (6) obeying Re ,Ii > --a; and let 
m, ,..., m, be the respective multiplicities of these roots. From the theory of 
retarded function differential equations, we know that d is a finite set and 
that m 1 ,..., mp are positive integers. Using the theorems quoted above, 
decompose C into the direct sum C = P, @ Q,, such that, if d E C, there 
exist positive constants K and y such that the solution X,(d) = X,(#‘/i) + 
Xt($QA), $ = qPA @ #QA, obeys 

t 2 0. (27) 

Also, if m = m, + m, + +.. + mp, there exists a constant m x m matrix B, , 
an n x m matrix @,, whose entries are continuous functions in C([-T, 01, R), 
and a constant vector a E Rm such that 

X,(fA)(s) = @J*(S) eB*'a = Qn(0) esA(r+s)u, s E [-T, 01. (28) 

Our notation here follows that of [8], where these results are proved. 
Now, construct a reducible system whose differential equation is E- ‘B,, E, 

as was done above, then the solution y of this differential equation with 
initial value E - ‘u obeys Ey(t + s, E -‘a) = e BA(‘+s)u, which when substituted 
in (28) yields 

X,(f’A)(s) = Q,,(O) Ey(t + s, E-la). (30) 

Now, @,,(O)E is an n x m matrix with real entries which we denote by V. 
Also, letting rrPn: 4 + #“A, a ain g from the results of [8] quoted above we 
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have dpA = @,,,a, a E R”. Let U: $,,a + a and let E ~’ denote the linear map 
induced by the m X m matrix E-I, then S = E;‘U,n,,, : C + R, is a linear- 
continuous map obeying S# = E - ‘a. With all this notation, (30) can now be 
written as X,(#‘A)(s) = Vy(t + s, S@). Hence, X,($)(s) - Vy(t f s, S#) = 
X,($QA)(s), and the estimate (27) completes the proof of Theorem 1. 

From the proof of this result it is fairly clear that, even though the 
theorem provides a method of constructing reducible systems that provide 
appropriate approximations to delay functional differential equation systems, 
the method of construction is not at all easy to apply. In fact, the 
construction of the matrices C, and B,, and the projections rep,, require an 
intimate knowledge of the roots of the characteristic equation of (6) as well 
as the generalized eigenspaces corresponding to these roots. These are the 
very tasks one seeks to avoid when using reducible systems, so this result is 
mainly of theoretical import. It is also clear from the proof that this result is 
a direct consequence of known facts about functional differential equations. 

Proof of Theorem 7. From the proof of Theorem 1, we know that for 
each a E R we can construct a reducible linear part LR(a)& 4 E C, such that 
the spectrum of the linear-differential system corresponding to 
dY(t)/dt = LR(0) Y, is identical to that part of the spectrum of dX(t)/dt = 
L(0) X, which lies on the imaginary axis. These roots are all simple, by 
hypothesis; so, since L(a) is twice continuously differentiable in a, using the 
same ideas as in 18, Chap. 7, Lemma 2.21, we can show that there exists 
a0 > 0, and simple characteristic roots jLj(a) of L(a) such that Lj(0) coincide 
with the imaginary roots of L(0) and Aj(a) are twice continuously differen- 
tiable for /aI <a,,. Now, construct the reducible system with matrix B(a) 
consisting of diagonal blocks of the form 

Bj= 
Re Aj -1m Aj 
Im Aj Re Aj 1 which have the Jordan form 

Of course, since we are dealing with a real system, the Aj occur in conjugate 
pairs. Now, the entries in Bj(a) are twice continuously differentiable in a, 
hence, B(a) is twice continuously differentiable in a, /a[ < a,,, and hence, so 
is the coefficient matrix of the linear-differential system corresponding to the 
reducible system dY(t)/dt = L(a) Yt. The spectrum of this differential- 
equation system, for a near zero, coincides with the part of the spectrum of 
(24) which enters in hypotheses (Hl) and (H2). This completes the proof of 
Theorem 7. 

The same remarks that were made after the proof of Theorem 1 on the 
lack of practicality of this method of reduction apply to this case as well. We 
now proceed to the 
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Proof of Theorem 2. The characteristic equation of (8) is 

A(Z) = z - a - kz, yk’jy h,,(s) eeZS ds - b jy epzs dp(s) 

ZZ z-a- 5’ ‘y yk’ [A]” - b jy eezs dp(s). 
k,/=l 

1s” ebrs dp(s)l 5 lr ( dp(s)l = 1, 
~il/(l~Yz~‘~ 1. Si, if d(z) = 0 

and since 1, > 0, 
we have Re z 5 a + Ct;!, (yk’l + lbl, so, 

since a < 0, by condition (9) we get Re z < 0, and this completes the first 
part of Theorem 2. 

We next consider the case where a = 0, yk’ < 0, 0 < s: Idp(s)ls < 00. The 
characteristic equation in this case can be written in the form 

A(z)=z-jre-” IkTl yk’hk’(s) ds + bd,(s) 
I 

= z - 1: eers d<(s), 

and conditions (lOa) and (lob) become 

I .m d&) < 0, 
0 

- lrn s (d&)1 + 1 > 0. 
0 

Now, z = 0 is not a root of A since 

A(0) = - ,irn d[(s) > 0, 
0 

while if z = u + iv, u > 0, Y # 0 is a root we have 

0 = I Im A(u + iv)( = u + la: emuS sin(us) de(s) / 
0 

=Iu 1 +~oae-Us~sd[(r) 1. 

Now, if sd[(s) = 0 a.e. for s > 0, we get from the above relation the 
contradiction Iv1 = 0. Otherwise, we have 

which is again a contradiction. In the above sequence of inequalities, the 
strict inequality follows from the fact that ) sin(us)/us I < 1 for us # 0, and for 
some s > 0, sdQs) # 0 a.e. 
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So, from this we see that A has no roots with nonnegative-real parts when 
conditions (lOa) and (lob) hold. Finally, the fact that (10~) implies (lob) 
follows from the relation 

This completes the proof of Theorem 2. 

Proof of Theorem 3. Let D be the positive-diagonal matrix in the 
hypothesis of the theorem, and consider the characteristic matrix A of the 
differential equation for the transformed variable Y = D-IX. The (i, j)th 
entry d,(z) of d(z) is given by 

A,~(z> = aii - z + $$ + bii Ja: e-‘S @ii(S), i = 1, 2 ,..., n, 
0 

A jj(z) = df ‘dj aij + f$ 
I 

+ b, J .O” epzs dP,(S) 7 
0 I 

i#j, i, j = 1, 2 ,..., n. 

From Gershgorin’s theorem, the values of z for which the equation 
d(z) y = 0 holds for a nontrivial vector y must lie in the union of the disks 

Di= 
I 
w:Iaii-o15d;’ c di/qil 

jti 
j=l 

+ i dj & + b, l.m e-‘$ Qij(S) * 
j=l -0 /I 

Now, suppose that Re z 2 0, and z is a characteristic root of this equation. 
Then, for at least one value of i we have 

)aii-zlsdi’ 5 d,/o,/+fidj[ l&i+ibijl]/ 
j#i 
j-l 

(32) 
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since /I‘: ePrs dj+j(s)J 5 j: Id&(s)l = 1 when Re z 2 0. Since 1 > 0 and 
Re z 10, ) nyij/(~ + z)I 2 (Yij(, and (32) becomes 

l”ii-zl 2 d;l 
I 

fJ djlaijl + 5 dj[lYfjl + lbijl] < Iaii(7 
i#i j=l 1 
i=l 

the last inequality following from condition (12). This, of course, is 
impossible since a,, < 0 is real and Re z 2 0. Consequently, all the roots of 
the characteristic equation det d(z) = 0 have negative-real parts, and 
Theorem 3 is proved. 

Proof of Theorem 4. We again start by transforming to the variable 
Y= D-IX, and consider (14) with coefficients d,:‘djaij instead of aij. The 
characteristic matrix A of this system has rows A, given by 

i 

m 
dii(w) = aii epws dq,,(s) - co, i = 1, 2,..., n; 

0 

d,(w) = d,:’ d,nJ cws dVij(S), i # j, i = 1, 2 ,..., n. 
0 

Using the same arguments as in the previous proof, we know that any root z 
of the characteristic equation det d(z) = 0 must satisfy the following relation 
for some value of i= 1, 2,..., n and for constants Kj = Kj(z) with ( Kjl s 1: 

.m 
z - a,, 

! 
eers dqii(s) + d,:’ 2 d,K,a,~o~ evzs drlij(S) = 0. (33) 

0 jzi 

We first note that z = 0 cannot satisfy this relation, since it then reduces to 

the last inequality following from (16) with v = 0. Now, if z* = iv # 0 is a 
pure imaginary root of the characteristic equation, then consider the function 
g defined by 

g(z) = z - aii Jom emrs dqii(s) + d;’ 2 djKjhij ,fow e-rs dy,(s), 
j#i 

where Kj = K,(b), are complex constants with lKjl 5 1. Clearly, g(iu) = 0, 
because of this choice of Kj. So, considering the real and imaginary parts of 
g(iv) we get the relations 

409/89/l-5 
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= Re d;’ x djKjaij m e-iL’S d?,(s) , 
.i f i 1 0 I 

and 

.m sin(vs) 
~ hii 0 V I 

.m 
= Im d;’ 2 djKjaij eeiL” dy,(s) . 

j#i ! 0 I 

Now, from (35) we get 

5 d;’ t djlaijl 
j=l 
j#i 

and hence, u satisfies the restriction in (16). Now, from (34) we get 

.a, cos(vs) dqii(s) 2 d;’ x dj [aill, 
0 j+i 

(34) 

which contradicts (16). Thus g cannot have a pure imaginary root, and 
neither does the characteristic equation of (14). 

We now replace (16) by the same equation except that Uij for i # j is 
replaced by huij, 0 5 h 5 1. If h = 1, we of course return to our original 
equation. Also, conditions (15) and (16) imply the same conditions when for 
i # j the uij are replaced by hai,, 0 2 h 5 1. So, the characteristic equations 
of all these systems cannot have pure-imaginary roots, Also, the charac- 
teristic function det(d,(z)) is continuous in (h, z) in [0, 1 ] x [Re z 2 0] and 
analytic for (h, z) in [0, l] X [Re z > 01. Specifically, for h = 0, we have the 
characteristic equation 

det(d,(z)) = fi *m e-” dqii(s) - z = 0, 
i=l 0 1 

whose zeros coincide with those of the equations 

.a, 
Uii e 

.I 
--” dr,Qs) - z = 0, i = 1, 2 ,..., n. 

0 
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But, as we have seen in the proof of Theorem 2, these last equations have no 
roots z with Re t 2 0 whenever the restrictions 

.a2 
aii ! dtlii(s) < OY - I aiil Joa s I d?ii(s)l + ’ > ‘2 i = 1, 2 ,..., n, 

0 

hold. That is, of course, condition (15) of our hypotheses, so the charac- 
teristic equation det(d,(z)) = 0 has no nonnegative roots. Now, the roots of 
det A,@) are continuous functions of h, and since det d,,(A), 0 < h 4 1, has 
not roots with zero-real part, there does not exist h* in the interval [0, I], 
where det A,, has a root with positive-real parts. For, otherwise, there will 
exist some h with 0 < h < h*, for which det A,, must have a pure-imaginary 
root. So, det A = det A, has no roots with positive real part and Theorem 2 is 
established. 

Proof of Theorem 5. Let y’ = Xi - 2 and linearize the transformed 
equations (16) about y’ = 0 to get the equations 

dy'(r!= " 

dt =I j=l 

x’uijfl(t) + X’yij 1” nemASu’(t - s) ds 
0 

+ zF’bij Jom f(t - S) dp,(s) 19 i = 1, 2 ,..., n. (36) 

From Theorem 3, we see that condition (19) implies that the trivial solution 
of (36) is asymptotically stable. This completes the proof of the theorem. 

Proof of Theorem 6. Again let y’ =X’ -3 and linearize the 
transformed equations (21) about y = 0 to get the equations 

dy'(t) 
-= 

dt 
f 

j=l 

y fl(t - S) dqij(s) 

+ x’yij ,f” #(t - s) AewAs ds 1 . 
0 

This can be rewritten in the form 

4+(t) - = ?(a,, + yii) lo: y’(t - s)d [ -Uii vii(S) t YiieeAs 
dt 0 -Uii - yii I 

+ 9 T(laijl + IVijl) 

j*i 
j= I 

X 
I 
.O” u’(t - s)d 

Uij?ij(S) - YijCAs 

0 l”ijl + I Yijl 1 ’ 

(37) 

(38) 
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Equation (38) is in the form treated in Theorem 4, and conditions (22) and 
(23) imply that (15) and (16) hold, so zero is an asymptotically stable 
solution of (38), and Theorem 6 is proved. 
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