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The evolution of the distribution of observed land precipitation over 1901–2010 and 1979–2010 is ana-
lyzed and compared with 14 simulations from the CMIP5 climate models. Firstly, two different quantile-
based mapping methods are used to bias-correct the simulated monthly land precipitation. The results
show a very slight difference in mean annual values between the two methods. Secondly, the comparison
between observed and simulated land precipitation suggests that anthropogenic forcing most likely
caused the redistribution of the repartition of land precipitation, decreasing the extent of arid area (area
with precipitation range between 50 and 300 mm/yr), and increasing the extent of area with a precipita-
tion range between 450 and 900 mm/yr. However, the observed changes are larger than estimated from
model simulations. The future RCP8.5 (2010–2100) simulations are also analyzed. Therefore, all 14 model
simulations show the same trend pattern, only slightly different from that found over 1979–2010 but
with reduced spread.

� 2014 The Author. Published by Elsevier B.V. Open access under CC BY-NC-ND license.
1. Introduction

Over the last decade, the human influence on global precipita-
tion has been the subject of two categories of study. The first cat-
egory did not detect any human influence on global precipitation,
partly because changes in precipitation in different regions cancel
each other out, thereby reducing the strength of the average
global signal (Gillett et al., 2004; Lambert et al., 2004, 2005).
However, in the second category, the decomposition of land pre-
cipitation on multiple latitudinal bounds allows the detection of
human influence on land precipitation change (Zhang et al.,
2007; Noake et al., 2012). This method has recently been used
to detect the human influence on land evaporation (Douville
et al., 2013).

These previous studies are all based on the precipitation simu-
lated by an ensemble of climate models without using any bias
correction method, despite the clear mismatch between the simu-
lated and observed precipitation at local and regional scales (e.g. Li
et al., 2010; Piani et al., 2010). This is further compounded by the
inevitable model bias, the result of inadequate knowledge of key
physical processes (e.g., cloud physics) and simplification of the
natural heterogeneity of the climate system at finer spatial scales.
On the other hand, averaging land precipitation along within lati-
tudinal bins mixes different climates and, probably, different
biases and thus complicates interpretation of trends. For instance,
over the same latitude, the mean annual precipitation is less
(more) than 50 (10,000) mm/yr over Tamanrasset in South Algeria
(Tcherrapoundji North-East India).

Here, a new kind of detection study is proposed in which the
bias of simulated land precipitation is corrected using a quantile-
based mapping method. This detection method consists of compar-
ing the observed and simulated change in the distribution of land
precipitation. For this, two steps are required: (1) for each year, we
divide the global land area into an ensemble of areas determined
by bound of precipitation rate (for example, starting from 0 to
4000 mm/yr by an interval of 50 mm/yr); (2) we then construct
the distribution of the trend of these surface areas according to
the selected bounds of precipitation rate. This new method allows
us to detect the human influence on changes in the distribution of
land precipitation, in contrast with previous studies, (Zhang et al.,
2007; Noake et al., 2012) which detected the human influence on
latitudinal bounds.
2. Data sets

We used monthly precipitation observations over global land
areas from the most recent version (Full Data Reanalysis V6 at
0.5� � 0.5� resolution) of the Global Precipitation Climatology Cen-
tre (GPCC, http://gpcc.dwd.de) product to analyze precipitation
trends for the 1901–2010 and 1979–2010 periods. The latest ver-
sion (Version 2.2 at 1� � 1� resolution) of the Global Precipitation
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Climatology Project (GPCP) product is also used over the available
period (1979–2010). The precipitation over Antarctica is not taken
into account in this study. The GPCC is based on in situ monitoring,
while GPCP is based on in situ and satellite monitoring. Few other
precipitation datasets exist but the commonly used by the scientist
are the two datasets used here which are considered as the best
existing global precipitation product (e.g. Decharme and Douville,
2006), especially GPCC which is, for instance, used to create the
WATCH Forcing Data (Weedon et al., 2011).

We compared observed trends to those simulated by fourteen
climate models to determine whether observed changes over the
two periods were caused by external influences on the climate sys-
tem. The climate simulations were obtained from the multi-model
data archive at PCMDI (http://pcmdi9.llnl.gov/). We considered
two groups of historic simulations. One group (NAT) includes 12
simulations conducted using 12 models forced with natural exter-
nal forcing only. A second group (ALL) includes 14 simulations con-
ducted using 14 models forced with estimates of both historical
anthropogenic and natural external forcing, including volcanic
aerosols and solar irradiance changes. Future (RCP8.5 scenario)
simulations of the same 14 models are also analyzed. The compo-
sition of each group is summarized in Table 1.

The GPCP product and the different modeled land precipitations
products are bilinearly interpolated onto the same grid as the GPCC
product, i.e. 0.5� � 0.5� resolution.
3. Bias correction methods

Many quantile matching methods have been developed to
reduce the bias of climate models (e.g. Panofsky and Brier, 1968;
Li et al., 2010; Piani et al., 2010). Hence, the results could be
method-dependent. For this reason, we chose to use two different
methods to observe and test how the corrected values can be
influenced by the choice of method.

The first method is the widely used quantile-based matching
method that assumes stationarity and uses only the cumulative
distribution functions (CDFs) of the model and observations for
the baseline period (Panofsky and Brier, 1968). This method will
hereafter be referred to as the ‘‘CLASSIC method’’. Put simply, to
bias-correct model values for a projection period, we must first
find the corresponding percentile values for these projection peri-
od points in the CDF of the model for the training period, and then
locate the observed values for the same CDF values of the observa-
tions. These are the model values after bias correction.

The second method incorporates and adjusts the model CDF for
the projection period on the basis of the difference between the
Table 1
Summary of the different model simulations used in this study.

Models Historic 1901–2010 Future 2010–2100

All Nat RCP 8.5

BCC-CSM1-1 � � �
CanESM2 � � �
CCSM4 � � �
CNRM-CM5 � � �
CSIRO-Mk3-6-0 � � �
FGOALS-g2 � � �
GFDL-ESM2M � � �
GISS-E2-R � � �
INMCM4 � �
IPSL-CM5A-LR � � �
MIROC5 � �
MIROC-ESM �
MPI-ESM-LR � �
MRI-CGCM3 � � �
NorESM1-M � � �
model and observation CDFs for the training (baseline) period (Li
et al., 2010). Thus, the method explicitly accounts for distribution
changes for a given model between the projection and baseline
periods. For a given percentile, we assume that the difference be-
tween the model and observed values during the training period
also applies to the projection period, meaning that the adjustment
function remains the same. However, the difference between the
CDFs for the projection and training periods is also taken into
account. This method will hereafter be referred to as the ‘‘DELTA
method.’’

For more details concerning the two methods and their main
differences, see Li et al. (2010). The GPCC product is used as the ref-
erence for the bias correction of the different model simulations.
The training period chosen for this study is 1958–2001. In some
cases several key limitations of using bias correction approaches
can be noted (Ehret et al., 2012), especially when correcting future
simulations. For this reason we chooses to include both studies
with and without bias correction in the present work.
4. Results

Fig. 1 represents precipitation over the world’s 18 largest river
basins as observed (GPCC), simulated (CNRM-CM5), and bias-
corrected by the two different methods (CLASSIC and DELTA). In
this figure, we choose to show only the results of the historical
(ALL) and future (RCP 8.5) CNRM-CM5 simulation model, but the
conclusions are the same for the other 13 model simulations, i.e.
(1) the different biases are reduced when using the quantile-based
matching methods over all 18 river basins; (2) the mean annual
difference between the CLASSIC and DELTA correction methods is
very slight. This implies that the choice of method does not alter
the result of the detection method. Whereas, in order to use the
banding approach, the simulated precipitation over each band
has to be close to observations, otherwise we will compare two
geographically different area.

Throughout this paper, trends and P-values are computed using
Student’s t-test, assuming that the mean annual precipitation at
year N and year N + 1 are independent. One can note that a P-value
smaller than 0.01 indicates a trend that is significant at the 0.99 le-
vel. Fig. 2 (top) shows the distribution of the trend of land areas
(km2/yr) by the bounds of precipitation rate (GPCC) of 50 mm/yr
(from 0 to 4000 mm/yr) over 1901–2010 and (bottom) their corre-
sponding P-value. This methodology allows us to identify the
bounds of observed precipitation where the area changes signifi-
cantly, i.e. P-value smaller than 0.01. According to Fig. 2, the areas
receiving less than 50 mm/yr (hyper arid area) and between 550–
700 mm/yr increased significantly, by about 30,000 km2/yr and
15,000 km2/yr, respectively. This is compensated by the significant
decrease of about 55,000 km2/yr of the surface area receiving pre-
cipitation between 50 and 250 mm/yr (arid area).

Fig. 3 represents the cumulative distribution functions of the
probability of land surface area averaged over 15-year time periods
from 1905 to 2010, with the horizontal axis representing precipita-
tion (from 0 to 4000 mm/yr). This figure shows a clear rightward
shift of the CDFs over time, especially since 1980, when this shift
becomes more apparent and coincides with the acceleration of hu-
man greenhouse gas emission. Thus, the human influence could be
suspected as the driver of the observed change in the repartition of
land precipitation.

To test how humans impact this distribution, trends in observed
and simulated (ALL and NAT historical simulations) surface areas
were computed and compared. We analyzed trends in the distribu-
tion of the average annual surface areas by bounds of 50 mm/yr of
precipitation. Fig. 4 shows that the spread is reduced in model-
simulated trends is reduced and the multi-model means are closer
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Fig. 1. Comparison between observed (GPCC in black), simulated (CNRM-CM5 in red) and bias corrected (by CLASSIC and DELTA, in green and blue, respectively) yearly
average precipitation over the 18 largest river basins.

Fig. 2. (Top) Represents the distribution of the trend of land surface area (km2/yr)
by bounds of precipitation rate (GPCC) of 50 mm/yr (from 0 to 4000 mm/yr) over
1901–2010 and (bottom) their corresponding P-values.

Fig. 3. Cumulative distribution functions, where the horizontal axis represents
precipitation (from 0 to 4000 mm/yr). The vertical axis is a probability of land
surface area averaged by 15-year time periods from 1905 to 2010.
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to the observations in the case of bias-corrected precipitations. Lin-
ear annual surface trends from observations and the average of
multiple model simulations for 1901–2010 (Fig. 4(b)) exhibit
important areas of consistency in the spatial distribution change
by bounds of precipitation rate. Both observations and models
show that the surface increased for the 400–1500 mm/yr precipita-
tion range and decreased for the 50–400 mm/yr range. We note an
important difference, however: observations suggest an upward
trend in the hyper-arid areas (less than 50 mm/yr), while the mean
ALL simulation shows a slight downward trend. We also note that
the observed changes are larger than estimated by model simula-
tions. This is also true when using the average latitudinal method
(Zhang et al., 2007; Noake et al., 2012). We obtained relatively sim-
ilar results for the recent 1979–2010 trends, (Fig. 4(e)) which
shows slight differences in the surface trend in the two observed
(GPCC and GPCP) data sets. Both observations and models show that
the surface exhibits a large increase for the precipitation range of
600–1000 mm/yr and a decrease for the range of 100–400 mm/yr.
The trends in the surface of hyper-arid areas still contrasted.

When only natural effects (NAT) are taken into account, the
annual surface trends from the average of multiple model



Fig. 4. Comparison between observations (in black) and simulations (in orange with their averaged value in red) of trends in the distribution of the average annual surface
areas by bounds of 50 mm/yr of precipitation. The first (second and third) columns show the results of ALL (ALL and NAT respectively) without (with) bias correction method.

Fig. 5. Attribution analysis based on global average time series over 1979–2010.
The scaling factors estimates are shown for the average of the 14 climate models
used in this study, in two forcing analysis All (square) and Nat (circle). The results
shown her are based on the regularised optimal fingerprint method (Ribes et al.,
2013).
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simulations do not show any trend over 1901–2010 (Fig. 4(c)) and
a slight or generally opposite trend with observations over 1979–
2010 (Fig. 4(f)). This means that the change in the spatial distribu-
tion of land precipitation cannot be explained without invoking
anthropogenic radiative forcings. Contrary to the historical periods,
which show large uncertainty trends between different models, all
of the 14 future 2010–2100 simulations exhibit the same trend
pattern (Fig. 4(h)), with increased surface area for the 700–
2000 mm/yr precipitation range, and decreased surface area for
the 100–500 mm/yr range.

5. Discussion and conclusions

The bias of the simulated land precipitation was adjusted using
two different quantile matching methods. The results show that
the low frequency (yearly) of corrected precipitation is not sensi-
tive to the choice of quantile matching method. Moreover, the
quantile matching method considerably improves the distribution
of trends in average annual surface area by bounds of regions of
precipitation. This improvement is essentially explained by the
correction of the mean annual values. Indeed, when comparing
the precipitation bound area between observations and simula-
tions without bias correction method, we allow comparing two
geographically different area. The uncertainty between the differ-
ent simulations is also reduced, but still large, except over the fu-
ture period 2010–2100 under the RCP8.5 scenario, in which all
14 models exhibit the same distribution of trend patterns.

An investigation was carried out to determine whether observa-
tions show an influence on the anthropogenic forcing by analyzing
the 1901–2010 and 1979–2010 periods of land precipitation
change, and an original method was developed. The results
show that anthropogenic forcing contributed significantly to the
observed changes and that these changes cannot be explained by
internal variability and natural forcing. Indeed, by using the regu-
larised optimal fingerprinting method (Ribes et al., 2013) to simu-
lated both All (natural and anthropic) and only Nat (natural)
precipitation, see Fig. 5, we detect change (i.e. scaling factor incon-
sistent with zero and consistent with one) in the distribution of
land precipitation over 1979–2010, and this changing cannot be
explain by the natural effect only because of scaling factor is con-
sistent with zero in the natural simulations.

The Zhang et al. (2007) method has the advantage of separating
the precipitation of cold high latitude from the warm tropics; how-
ever, at the same latitudinal bound, this method did not distin-
guish between the arid and temperate regions. The original
method proposed here separates the regions by bounds of precip-
itation range. This means that the arid and temperate regions are
separated, but the cold and warm areas are not differentiated.
The alternative would be to combine the two methods by, for
example, using the proposed method over three latitudinal bounds
90S-30S, 30S-30N, 30N-90N. Using this wetness band approach
means that the bands will move in time and space, and be subject
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to different climate processes in the future and past; in addition
this spatiotemporal movement may make the results harder to
apply to societal impacts.
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