International Conference on Graph Theory and Information Security

The Locating-Chromatic Number of Binary Trees

Dian Kastika Syofyan, Edy Tri Baskoro, Hilda Assiyatun

Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia.

Abstract

Let $G = (V, E)$ be a connected graph. The locating-chromatic number of G, denoted by $\chi_L(G)$, is the cardinality of a minimum locating coloring of the vertex set $V(G)$ such that all vertices have distinct coordinates. The results on locating-chromatic number of graphs are still limited. In particular, the locating-chromatic number of trees is not completely solved. Therefore, in this paper, we study the locating-chromatic number of any binary tree.

1. Introduction

The concept of locating-chromatic number for graphs was introduced by Chartrand et al. in 2002\cite{4} as a special case of the partition dimension notion. Let $G = (V, E)$ be a connected graph. Let f be a vertex-coloring of connected graph G and induces the color partition $\Pi = \{C_1, C_2, \ldots, C_k\}$ for some k. For a vertex v of G, the color code of v with respect to Π, denoted by $f_\Pi(v)$, is defined as the k-vector $(d(v, C_1), d(v, C_2), \ldots, d(v, C_k))$ where $d(v, C_i) = \min\{d(v, x) | x \in C_i\}$ for $1 \leq i \leq k$. If all vertices have distinct color codes, then f is called a locating k-coloring of G. The minimum numbers of colors needed in a locating k-coloring of G is called the locating-chromatic number of G, denoted by $\chi_L(G)$.

The locating-chromatic numbers of some well-known classes of graphs have been studied; however the results have not been complete. Chartrand et al. in\cite{4} determined the locating-chromatic number of some well-known classes of trees, namely paths and double stars. In 2003\cite{5}, they showed that for any integer $k \in [3, n]$ and $k \neq n - 1$, there is a tree of order n with locating-chromatic number k. They also showed that no tree on n vertices with locating-chromatic number $n - 1$. Further results were also obtained by Asmiati et al.\cite{1,2} in amalgamation of stars and firecrackers. Recently, Syofyan et al.\cite{6} and Welyyanti et al.\cite{7} have determined the locating-chromatic numbers of lobsters and...
2. Main Results

A binary tree is defined as a tree in which there is exactly one vertex of degree two, namely root vertex x_0, and each of the remaining vertices is of degree one or three. A complete binary tree is a binary tree which all leaves are on the same level or all leaves have same distance to the root vertex x_0. We denote a complete binary tree with diameter $2k$ by $BT(k)$, where $k \geq 1$. A non complete binary tree is a binary tree which some of its leaves have different distance to root vertex x_0. We denote a non complete binary tree with diameter $2k$ by $BT_{nc}(k)$, where $k \geq 1$.

A graph $BT(k)$ can be constructed recursively from two copies of $BT(k-1)$ by connecting their root vertices to a new vertex x_0. We denote the two copies of $BT(k-1)$ by $BT_1(k-1)$ and $BT_2(k-1)$. Next, for any integer p and q, we denote $BT_p(k-q)$ as a subgraph $BT(k-q)$ of $BT_{\frac{k+q}{2}}(k+q+1)$. In this paper, every subgraph $BT(l)$ of $BT(k)$, where $l < k$, contains all leaves of $BT(k)$.

Let $N(u)$ be the set of neighbors of vertex u. For a coloring f of $V(BT(k))$, define $f(N(u)) = \{f(v)|v \in N(u)\}$. Its easy to show that for $k = 1$ and 2, $\chi_L(BT(k)) = 3$. Now we show the locating-chromatic number of $BT(k)$ for $k \geq 3$.

![Fig. 1. A locating 4-coloring of $BT(3)$](image)

Theorem 1. Let $BT(k)$ be a complete binary tree with $k = 3, 4$, and 5. Then, $\chi_L(BT(k)) = 4$.

Proof. All trees with locating-chromatic number 3 have characterized by Baskoro et al.\cite{3}. Since $BT(k)$ is not a graph with locating-chromatic number 3 for $k = 3, 4$, and 5, then $\chi_L(BT(k)) \geq 4$.

Now, we will show that $\chi_L(BT(k)) \leq 4$ for $k = 3, 4$, and 5. We show that there is a locating 4–coloring of $BT(k)$ for $k = 3, 4$, and 5. For $k = 3$, we define a coloring $f_3 : V(BT(3)) \rightarrow \{1, 2, 3, 4\}$ as depicted in Fig. 1. We need only to consider every two vertices u and v where $f_3(u) = f_3(v)$ and $f_3(N(u)) = f_3(N(v))$. By the coloring f_3, there are only two vertices satisfying this condition (two vertices with bold labels). Their color codes are distinguished by the unique color used only once in $BT(3)$. Therefore, all vertices in $BT(3)$ have different color codes. Thus, f_3 is a locating 4–coloring of $BT(3)$.

Now, for $k = 4$, we define a coloring $f_4 : V(BT(4)) \rightarrow \{1, 2, 3, 4\}$ as follows.

$$f_4(u) = \begin{cases}
1, & \text{if } u = x_0, \\
f_3(u), & \text{if } u \in V(BT_1(3)), \\
(f_3(u) + 2) \mod 4, & \text{if } u \in V(BT_2(3)).
\end{cases}$$

Next, we show that f_4 is a locating 4–coloring. Again, we need only to consider every two vertices u and v where $f_4(u) = f_4(v)$ and $f_4(N(u)) = f_4(N(v))$. Observe three cases below.

Case 1. $u \in V(BT_i(2))$ and $v \in V(BT_j(2))$ for $i \neq j$.

By the coloring f_4, the possibilities for u and v are occurred for every pairs i and j, where $i = 1$, $j = 2$ and $i = 3$, $j = 4$. The color codes of vertices u and v are different since they are distinguished by the unique color used only once in $BT_1(3)$ and $BT_2(3)$.
Case 2. $u \in V(BT_j(2))$ and $v \in V(BT_j(2))$ for some i, j.

By the coloring f_4, the possibilities for u is a stem vertex in $BT_3(2)$ or $BT_4(2)$ and the possibilities for v is the root vertex of $BT_2(3)$. The vertices u and v have different color codes distinguished by the unique color in $BT_2(3)$.

Case 3. $u \notin V(BT_j(2))$ and $v \notin V(BT_j(2))$ for some i, j.

By the coloring f_4, there is no possibilities for vertices u and v satisfying this condition as depicted in Fig. 2.

By three cases above, all vertices in $BT(4)$ have different color codes. Thus, f_4 is a locating 4–coloring of $BT(4)$.

Next, for $k = 5$, we define a coloring $f_5 : V(BT(5)) \to \{1, 2, 3, 4\}$ as follows.

$$f_5(u) = \begin{cases}
3, & \text{if } u = x_0, \\
4, & \text{if } u \in V(BT_1(4)), \\
(f_4(u) + 1) \mod 4, & \text{if } u \in V(BT_2(4)).
\end{cases}$$

Next, we show that f_5 is a locating 4–coloring. Similarly with the previous cases, we need only to consider every two vertices u and v where $f_5(u) = f_5(v)$ and $f_5(N(u)) = f_5(N(v))$. Observe three cases below.

Case 1. $u \in V(BT_j(2))$ and $v \in V(BT_j(2))$ for $i \neq j$.

By the coloring f_5, if their occurs then i and j are in different paritie. Observe that, the coloring f_5 implies the vertices in $BT_j(2)$ are colored by three colors for odd i and the vertices in $BT_j(2)$ are colored by four colors for even j. By this condition, the vertices u and v have different color codes distinguished by the unique color used only once in $BT_j(3)$ for j is odd.

Case 2. $u \in V(BT_j(2))$ and $v \notin V(BT_j(2))$ for some i, j.

By the coloring f_5, the minimum distance between the vertex v to a vertex with the unique color in $BT_j(3)$ is smaller than the minimum distance between the vertex u to a vertex with the unique color in $BT_1(3)$. Therefore, the color codes of vertices u and v are different.

Case 3. $u \notin V(BT_j(2))$ and $v \notin V(BT_j(2))$ for some i, j.

Since the coloring f_5 is a permutation of f_4, there is no possibilities for vertices u and v satisfying this condition.

By three cases above, all vertices in $BT(5)$ have different color codes. Thus, f_5 is a locating 4–coloring of $BT(5)$.

Theorem 2. If $a \geq 5$ and k such that $3 + \sum_{i=1}^{k} (2 + \lfloor \frac{a-i}{4} \rfloor) \leq k \leq (2 + \sum_{i=0}^{a-4} (2 + \lfloor \frac{a-i}{4} \rfloor))$, then $\chi_L(BT(k)) \leq a$.

Proof. Let f_5 be a locating 4–coloring for a $BT(5)$ as defined in the proof of Theorem 1. We define a coloring for $BT(k)$ by the recursive definition for $k \geq 6$ as follows.
1. For $k = 3 + \sum_{i=1}^{a-4}(2 + \lceil \frac{a-i}{4} \rceil)$ define $f_k : (V(BT(k))) \rightarrow \{1, 2, \ldots, a\}$ as follows.

$$f_k(u) = \begin{cases}
1, & \text{if } u = x_0, \\
f_{k-1}(u), & \text{if } u \in V(BT_1(k-1)), \\
f_{k-1}(u), & \text{if } u \text{ is the root vertex of } BT_2(k-1), \\
f_{k-2}(u), & \text{if } u \in V(BT_3(k-2)), \\
f_{k-2}(u), & \text{if } u \text{ is the root vertex of } BT_4(k-2), \\
f_{k-3}(u), & \text{if } u \in V(BT_7(k-3)), \\
(f_{k-3}(u) + (a - f_{k-3}(r))) \mod a, & \text{if } u \in V(BT_8(k-3)) \text{ and } r \text{ is the root vertex of } BT(k-3).
\end{cases}$$

2. For $(4 + \sum_{i=1}^{a-4}(2 + \lceil \frac{a-i}{4} \rceil)) \leq k \leq (2 + \sum_{i=0}^{a-4}(2 + \lceil \frac{a-i}{4} \rceil))$, let $j = k - 3 + \sum_{i=1}^{a-4}(2 + \lceil \frac{a-i}{4} \rceil)$. Define a coloring $f_k : (V(BT(k))) \rightarrow \{1, 2, \ldots, a\}$ as follows.

$$f_k(u) = \begin{cases}
 j + 2, & \text{if } u = x_0, \\
f_{k-1}(u), & \text{if } u \in V(BT_1(k-1)), \\
(f_{k-1}(u) + a - f_{k-1}(r)) \mod a, & \text{if } u \in V(BT_2(k-1)) \text{ and } r \text{ is the root vertex of } BT_1(k-1).
\end{cases}$$

Next, we will show that the coloring f_k is a locating a–coloring of $BT(k)$. For $k = 3 + \sum_{i=1}^{a-4}(2 + \lceil \frac{a-i}{4} \rceil)$, by the coloring f_k, every vertices in each $BT_i(k-2)$ colored by a locating $(a-1)$–coloring for $i = 1, 2, 3$. Now, we need only to consider every two vertices u and v, where $u \in V(B_i(k-2))$ and $v \in V(B_i(k-2))$ for $i \neq j$ such that $f_k(u) = f_k(v)$ and $f_k(N(u)) = f_k(N(v))$. Note that the color a is only used in $BT_4(k-2)$. Hence, the color codes of u and v are distinct since their distances to a vertex with color a. Therefore, all vertices of $BT(k)$ have different color codes and f_k is a locating a–coloring of $BT(k)$ for $k = 3 + \sum_{i=1}^{a-4}(2 + \lceil \frac{a-i}{4} \rceil)$.

Next, we prove that f_k is a locating a–coloring of $BT(k)$ for $(4 + \sum_{i=1}^{a-4}(2 + \lceil \frac{a-i}{4} \rceil)) \leq k \leq (2 + \sum_{i=0}^{a-4}(2 + \lceil \frac{a-i}{4} \rceil))$. The proof is similar with the proof of Theorem 1 for case $k = 4$ and 5. By the coloring f_{k-1}, we have all vertices in each $BT(k-2)$ have different color codes. We need only to consider every two vertices u and v satisfying $f_k(u) = f_k(v)$ and $f_k(N(u)) = f_k(N(v))$. Observe three cases below.

Case 1. $u \in V(BT_i(k- \lfloor \frac{k}{2} \rfloor))$ and $v \notin V(BT_i(k- \lfloor \frac{k}{2} \rfloor))$ for $i \neq j$.

Observe that, the coloring f_k implies the vertices in $BT_i(k- \lfloor \frac{k}{2} \rfloor)$ are colored by $a-1$ colors for odd i and the vertices in $BT_i(k- \lfloor \frac{k}{2} \rfloor)$ are colored by a colors for even j. By the coloring f_k, their color codes are distinguished by the unique color used only in $BT_{(i+1)}(k- \lfloor \frac{k}{2} \rfloor)$ if i is odd and $BT_{(i)}(k- \lfloor \frac{k}{2} \rfloor)$ if i is even.

Case 2. $u \in V(BT_i(k- \lfloor \frac{k}{2} \rfloor))$ and $v \notin V(BT_i(k- \lfloor \frac{k}{2} \rfloor))$ for some i, j.

By the coloring f_k, the minimum distance between the vertex v to a vertex with the unique color in used only in $BT_{(i+1)}(k+1- \lfloor \frac{k}{2} \rfloor)$ is smaller than the minimum distance between the vertex u to a vertex with the unique color in $BT_{(i)}(k+1- \lfloor \frac{k}{2} \rfloor)$. Therefore, the color codes of vertices u and v are different.

Case 3. $u \notin V(BT_i(k- \lfloor \frac{k}{2} \rfloor))$ and $v \notin V(BT_i(k- \lfloor \frac{k}{2} \rfloor))$ for some i, j.

By the coloring f_k, there is no possibilities for vertices u and v satisfying this condition.

By three cases above, all vertices in $BT(k)$ have different color codes. Thus, f_k is a locating a–coloring of $BT(k)$.

For a non complete binary tree, we have upper bound for its locating-chromatic number in the theorem below.

![Fig. 3. A locating 3-coloring of $BT(2)$](image-url)
Theorem 3. Let $BT_{nc}(k) \subset BT(k)$ be a non complete binary tree with $k \geq 3$, where the root of $BT_{nc}(k)$ is the only vertex of degree 2. Then $\chi_L(BT_{nc}(k)) \leq 3 + \lfloor \frac{k}{2} \rfloor$.

Proof. For $k = 2$ define a locating 3–coloring $g_2 : V(BT(2)) \rightarrow \{1, 2, 3\}$ as depicted in Fig. 3. We define a function $g_k : V(BT(k)) \rightarrow \{1, 2, \ldots, 3 + \lfloor \frac{k}{2} \rfloor\}$, for $k \geq 3$ by recursive definition as follows.

$$
g_k(u) = \begin{cases}
1, & \text{if } u = x_0 \text{ and } k \text{ is even}, \\
2, & \text{if } u = x_0 \text{ and } k \text{ is odd}, \\
(g_{k-1}(u) + 2) \mod (3 + \lfloor \frac{k}{2} \rfloor), & \text{if } u \in V(BT_1(k-1)), \\
(g_{k-1}(u) + 3) \mod (3 + \lfloor \frac{k}{2} \rfloor), & \text{if } k \text{ is odd and } u \in V(BT_2(k-1)).
\end{cases}
$$

Next, we show that g_k is a locating $(3 + \lfloor \frac{k}{2} \rfloor)$–coloring for $BT(k)$. For odd k, observe that the coloring g_k is a locating $(2 + \lfloor \frac{k}{2} \rfloor)$–coloring for $BT_1(k-1)$ and $BT_2(k-1)$. There is no color $(3 + \lfloor \frac{k}{2} \rfloor)$ in $BT_1(k-1)$ and there is no color $(2 + \lfloor \frac{k}{2} \rfloor)$ in $BT_2(k-1)$. Therefore, the vertices in $BT_1(k-1)$ and $BT_2(k-1)$ have different color codes. They are distinguished by their neighbor colors. While the root vertex has different color code with others vertices; it is differed by the colors $(3 + \lfloor \frac{k}{2} \rfloor)$ and $(2 + \lfloor \frac{k}{2} \rfloor)$. Then, g_k is a locating $(3 + \lfloor \frac{k}{2} \rfloor)$–coloring for $BT(k)$.

For even k, we consider four distinct $BT(k-2)$, each is colored by distinct locating $(2 + \lfloor \frac{k}{2} \rfloor)$–coloring. All vertices in every $BT(k-2)$ have different color codes. They are distinguished by their neighbor colors. Next, we check for the root vertex x_0 and vertices adjacent to x_0. These three vertices have different color codes with vertices in every $BT(k-2)$. They are distinguished by the color $2 + \lfloor \frac{k}{2} \rfloor$. Since all vertices have different color codes, g_k is a locating $(3 + \lfloor \frac{k}{2} \rfloor)$–coloring for $BT(k)$.

Now, we define $g^*_k : V(BT_{nc}(k)) \rightarrow \{1, 2, \ldots, 3 + \lfloor \frac{k}{2} \rfloor\}$, which is a restriction of g_k on $V(BT_{nc}(k)) \subset V(BT(k))$. We will show that g_k^* is a locating coloring of $BT_{nc}(k)$. We observe for two vertices u and v, where $g_k^*(u) = g_k^*(v)$ and $g_k^*(N(u)) = g_k^*(N(v))$. For odd k, let $u \in V(BT_1(k-1))$ and $v \in V(BT_2(k-1))$, their color codes are differed by colors $(3 + \lfloor \frac{k}{2} \rfloor)$ and $(2 + \lfloor \frac{k}{2} \rfloor)$. While the root vertex has different color code with others vertices, it is differed by the colors $(3 + \lfloor \frac{k}{2} \rfloor)$ and $(2 + \lfloor \frac{k}{2} \rfloor)$. For even k, let $u \in V(BT_1(k-2))$ and $v \in V(BT_2(k-2))$, for $i \neq j$, their color codes are differed by a color which missing in $BT_i(k-2)$ or $BT_j(k-2)$. Next, we check for the root vertex x_0 and vertices adjacent to x_0. These three vertices have different color codes with vertices in every $BT(k-2)$. They are distinguished by the color $2 + \lfloor \frac{k}{2} \rfloor$. Since all vertices have different color codes, g_k^* is a locating coloring of $BT_{nc}(k)$.

Acknowledgement. This research is supported by Research Grant "Program Riset Unggulan ITB-DIKTI", Ministry of Research, Technology and Higher Education, Indonesia.

References