47

## The creation of homoclinic points of $C^1$ -maps

## Kazumine Moriyasu

Department of Mathematics, Tokushima University, Minamijosanjima 1-1, Tokushima 770, Japan

## Masatoshi Oka

Department of Mathematics, Science University of Tokyo, Noda, Chiba 278, Japan

Received 27 December 1991

Abstract

Moriyasu, K. and M. Oka, The creation of homoclinic points of  $C^1$ -maps, Topology and its Applications 54 (1993) 47-64.

We create homoclinic points for  $C^1$ -maps on closed manifolds. Under supplementary hypotheses of probabilities Mañé constructed homoclinic points of isolated hyperbolic sets for  $C^r$ -diffeomorphisms, r = 1, 2. We extend the result to  $C^1$ -maps.

Keywords: Homoclinic point; Isolated hyperbolic set.

AMS (MOS) Subj. Class.: Primary 58F10.

Let M be a closed  $C^{\infty}$ -manifold and  $f: M \to M$  be a  $C^r$ -diffeomorphism,  $r \ge 1$ . Let  $p \in M$  be a hyperbolic fixed point of f. The stable and unstable sets of p are denoted respectively by

$$W^{s}(p, f) = \left\{ x \in M : \lim_{n \to \infty} d(f^{n}(x), p) = 0 \right\},$$

$$W^{u}(p, f) = \left\{ x \in M : \lim_{n \to \infty} d(f^{-n}(x), p) = 0 \right\}.$$

Then it is well known that  $W^{\sigma}(p, f)$  ( $\sigma = s, u$ ) is a  $C^{r}$  injectively immersed submanifold of M. The points of intersection of  $W^{s}(p, f)$  with  $W^{u}(p, f)$ , different from p, are called homoclinic points associated to p. The points of intersection of the closure of  $W^{s}(p, f)$  with  $W^{u}(p, f)$  or the closure of  $W^{u}(p, f)$  with  $W^{s}(p, f)$ , different from p, will be called almost homoclinic points associated to p.

Correspondence to: K. Moriyasu, Department of Mathematics, Tokushima University, Minamijosan-jima 1-1, Tokushima 770, Japan.

We know the problem of whether it is possible to create homoclinic points by a small perturbation of diffeomorphisms when there exist almost homoclinic points.

For diffeomorphisms of the two-dimensional sphere Robinson [9] solved affirmatively the problem in the  $C^r$ -topology  $(r \ge 1)$ . Pixton [6] extended the result of Robinson to a separable  $C^\infty$  two-dimensional planar manifold. After that Oliveira [5] proved the same results for area preserving diffeomorphisms of compact orientable surfaces. Takens [10] solved the problem for Hamiltonian diffeomorphisms, but in the case r = 1.

Mañé [3] solved the problem for diffeomorphisms under supplementary hypotheses of probabilities for the cases r = 1 or 2. The theorems of Mañé play an important role to solve the Stability Conjecture [4].

The purpose of this paper is to show that the theorems of Mañé are extended for differentiable maps. However our proof does not unfortunately work for the  $C^2$ -topology.

Let M be a closed  $C^{\infty}$ -manifold and  $C^1(M)$  be the set of all  $C^1$ -maps from M into itself endowed with the  $C^1$ -topology. For  $f \in C^1(M)$  a point  $x \in M$  is said to be *singular* if the differential  $D_x f: T_x M \to T_{f(x)} M$  is not surjective. Denote as S(f) the set of all singular points of f. Obviously S(f) is closed in M.

For  $f \in C^1(M)$  denote a closed set A(f) by  $A(f) = \bigcap_{n \ge 0} f^n(M)$ . Then A(f) is the maximal f-invariant subset of M. Define as  $M_f$  the set  $\{(x_i): x_i \in A(f) \text{ and } f(x_i) = x_{i+1}, i \in \mathbb{Z}\}$ . Then  $M_f$  is a closed subset of the product topological space  $\prod_{i=-\infty}^{\infty} M_i$  (each  $M_i$  is a replica of M). For a subset W of M denote as  $Cl\ W$  the closure of W in M.

**Theorem A.** Let M be a closed  $C^{\infty}$ -manifold and  $f: M \to M$  be a  $C^1$ -map with an isolated hyperbolic set  $\Lambda$ . Suppose  $x \notin \overline{\Lambda}$ . If there are a sequence  $\{x^k\} \subset M_f$  with  $x_0^k \to \overline{x}$  as  $k \to \infty$  and a strictly increasing sequence  $\{m_k\} \subset \mathbb{Z}^+$  such that  $\operatorname{Cl}\{x_i^k: k \geqslant 0 \text{ and } 0 \leqslant i \leqslant m_k\} \cap S(f) = \emptyset$  and  $\mu_k^+ = 1/m_k \sum_{i=1}^{m_k} \delta_{x_i^k}$  ( $\mu_k^- = 1/m_k \sum_{i=1}^{m_k} \delta_{x_i^k}$ ) converges to an f-invariant Borel probability measure  $\mu$  and  $\mu(\Lambda) > 0$ , then given a neighborhood  $\mathcal{U}(f)$  of f in  $C^1(M)$  there is  $g \in \mathcal{U}(f)$  such that g = f on some neighborhood of  $\Lambda$  and one of the following properties holds:

- (I)  $W^s(\Lambda, g) \cap W^u(\Lambda, g) \setminus \Lambda \neq \emptyset$ ,
- (II) there is k > 0 such that  $x_0^k \in W^s(\Lambda, g)$   $(x_0^k \in W^u(\Lambda, g))$ .

As a corollary we have the following

**Corollary B.** Under the assumptions of Theorem A, if  $\{x_0^k\} \subset W^u(\Lambda, f)$  ( $\{x_0^k\} \subset W^s(\Lambda, f)$ ), then given a neighborhood  $\mathscr{U}(f)$  of f in  $C^1(M)$  there is  $g \in \mathscr{U}(f)$  with g = f on some neighborhood of  $\Lambda$  such that  $W^s(\Lambda, g) \cap W^u(\Lambda, g) \setminus \Lambda \neq \emptyset$ .

For  $x \in M_f$  we denote by  $\mathcal{M}^+(x)$  ( $\mathcal{M}^-(x)$ ) the set of all f-invariant Borel probability measures to which  $1/m_k \sum_{i=1}^{m_k} \delta_{x_i}$  ( $1/m_k \sum_{i=1}^{m_k} \delta_{x_{-i}}$ ) converges for some strictly increasing sequence  $\{m_k\} \subset \mathbb{Z}^+$ .

**Theorem C.** Let  $\Lambda$  be an isolated hyperbolic set for a  $C^1$ -map  $f: M \to M$  satisfying  $\Omega(f|_{\Lambda}) = \Lambda$  and denote as  $\Lambda = \Lambda_1 \cup \cdots \cup \Lambda_m$  the spectral decomposition of  $\Lambda$ . If there are  $x \notin W^s(\Lambda, f)$  ( $x \notin W^u(\Lambda, f)$ ) and an orbit  $x \in M_f$  with  $x_0 = x$  such that  $\operatorname{Cl}\{x_i \colon i \geqslant 0\} \cap S(f) = \emptyset$  ( $\operatorname{Cl}\{x_{-i} \colon i \geqslant 0\} \cap S(f) = \emptyset$ ) and  $\mu(\Lambda) > 0$  for all  $\mu \in \mathscr{M}^+(x)$  ( $\mu \in \mathscr{M}^-(x)$ ) then there exists a basic set  $\Lambda_i$  such that given a neighborhood  $\mathscr{U}(f)$  of f in  $C^1(M)$  there is  $g \in \mathscr{U}(f)$  satisfying g = f on some neighborhood of  $\Lambda_i$  and  $W^s(\Lambda_i, g) \cap W^u(\Lambda_i, g) \setminus \Lambda_i \neq \emptyset$ .

Before starting the proof we recall some definitions and notations. Let  $f \in C^1(M)$ . For a subset  $\Lambda \subset A(f)$  write  $\Lambda_f = \{(x_i) \in M_f : x_i \in \Lambda, i \in \mathbb{Z}\}$ . If  $\Lambda$  is a closed f-invariant subset  $(f(\Lambda) = \Lambda)$  of A(f), then we say that  $\Lambda$  is hyperbolic if  $\Lambda \cap S(f) = \emptyset$  and there exist a Riemannian metric  $\|\cdot\|$  on TM and c > 0,  $0 < \lambda < 1$  such that for every  $x = (x_i) \in \Lambda_f$  there is a splitting  $T_x M = \bigcup_{i \in \mathbb{Z}} T_{x_i} M = \bigcup_{i \in \mathbb{Z}} (E^s(x_i, x)) \oplus E^u(x_i, x)$  such that for every  $i \in \mathbb{Z}$ 

- (a)  $D_{x_i} f(E^{\sigma}(x_i, x)) = E^{\sigma}(x_{i+1}, x) \ (\sigma = s, u),$
- (b) for every  $n \ge 0$  and  $v \in E^s(x_i, x)$ ,  $||D_{x_i}f^n(v)|| \le c\lambda^n ||v||$ ,
- (c) for every  $n \ge 0$  and  $v \in E^u(x_i, x)$ ,  $||D_{x_i} f^n(v)|| \ge c^{-1} \lambda^{-n} ||v||$ .

Remark that if  $\Lambda$  is hyperbolic and  $(x_i)$ ,  $(y_i) \in \Lambda_f$  with  $x_0 = y_0$ , then  $E^s(x_0, (x_i)) = E^s(y_0, (y_i))$ , but this is not the case for  $E^u(x_0, (x_i))$  (c.f. [7]). Thus we write simply  $E^s(x_0) = E^s(x_0, (x_i))$ . We say that a hyperbolic set  $\Lambda$  for  $f \in C^1(M)$  is isolated if there is a compact neighborhood U of  $\Lambda$  such that  $U_f = \Lambda_f$ . Such a neighborhood U is called an isolating block of  $\Lambda$ . Note that if  $\Lambda$  is an isolated hyperbolic set with  $\Omega(f|_{\Lambda}) = \Lambda$ , where  $\Omega(f|_{\Lambda})$  is the nonwandering set of  $f|_{\Lambda}$ , then  $\Lambda$  splits into a finite disjoint union  $\Lambda = \Lambda_1 \cup \cdots \cup \Lambda_m$  of basic sets  $\Lambda_i$  (i.e.,  $\Lambda_i$  is a closed f-invariant set and there is  $x \in \Lambda_i$  such that  $C\{f^n(x): n \ge 0\} = \Lambda_i$ ) (see [7,8]). Such a decomposition is called the spectral decomposition of  $\Lambda$ .

For  $x \in \Lambda$  and  $(x_i) \in \Lambda_f$  the stable and unstable sets are denoted respectively by

$$W^{s}(x, f) = \{ y \in M : d(f^{i}(y), f^{i}(x)) \to 0 \text{ as } i \to \infty \},$$

$$W^{u}((x_{i}), f) = \{ y \in A(f) : \text{ there is } (y_{i}) \in M_{f} \text{ such that } y_{0} = y \text{ and}$$

$$d(y_{-i}, x_{-i}) \to 0 \text{ as } i \to \infty \}.$$

The stable and unstable sets for  $\Lambda$  are defined by

$$W^{s}(\Lambda, f) = \{ y \in M : d(f^{i}(y), \Lambda) \to 0 \text{ as } i \to \infty \},$$

$$W^{u}(\Lambda, f) = \{ y \in A(f) : \text{ there is } (y_{i}) \in M_{f} \text{ such that } y_{0} = y \text{ and }$$

$$d(y_{-i}, \Lambda) \to 0 \text{ as } i \to \infty \}.$$

If  $\Lambda$  is isolated, then we have  $W^s(\Lambda, f) = \bigcup_{x \in \Lambda} W^s(x, f)$  and  $W^u(\Lambda, f) = \bigcup_{x \in \Lambda_f} W^u(x, f)$ . The points of  $W^s(\Lambda, f) \cap W^u(\Lambda, f) \setminus \Lambda$  are called homoclinic points associated to  $\Lambda$ .

To obtain Theorem A we shall give the proof for the case when  $\bar{x}$ ,  $\{x^k\}$  and  $\{m_k\}$  are chosen such that

$$\mu_{k}^{-} = \frac{1}{m_{k}} \sum_{i=1}^{m_{k}} \delta_{x_{-i}^{k}}$$

converges to  $\mu$  and  $\mu(\Lambda) > 0$ . Another case will be obtained by the same way and so we omit the proof.

In order to prove Theorem A for diffeomorphisms Mañé [3] prepared several lemmas which describe the orbit behaviour nearby isolated hyperbolic sets. Our proof is in the framework of that of Mañé. Thus we need to extend his lemmas for  $C^1$ -maps.

Let  $D^m$  be an m-dimensional disk of  $\mathbb{R}^m$  and  $\mathrm{Emb}^1(D^m, M)$  be the set of all embeddings of  $D^m$  into M with the  $C^1$ -topology. Let  $\{D_x^m\}_{x\in\Lambda}$  ( $\{D_x^m\}_{x\in\Lambda_f}$ ) be a family of m-dimensional  $C^1$ -disks with  $x\in D_x^m$  for  $x\in\Lambda$  ( $x\in\Lambda_f$ ). Then we say that  $\{D_x^m\}_{x\in\Lambda_f}$  ( $\{D_x^m\}_{x\in\Lambda_f}$ ) is continuous if for  $x\in\Lambda$  ( $x\in\Lambda_f$ ) there are a neighborhood U of x in  $\Lambda$  (x in  $\Lambda_f$ ) and a continuous map  $\phi:U\to\mathrm{Emb}^1(D^m,M)$  such that  $\phi(y)(D^m)=D_y^m$  for  $y\in U$  ( $\phi(y)(D^m)=D_y^m$  for  $y\in U$ ). For  $\varepsilon>0$ ,  $x\in M$  and  $x\in M_f$  denote the local stable and local unstable sets by

$$W_{\varepsilon}^{s}(x, f) = \{ y \in M : d(f^{n}(x), f^{n}(y)) \le \varepsilon \text{ for } n \ge 0 \},$$

 $W_{\varepsilon}^{u}(x, f) = \{ y \in M : \text{ there is } y \in M_{f} \text{ such that } y_{0} = y \text{ and } \}$ 

$$d(x_{-n}, y_{-n}) \le \varepsilon \text{ for } n \ge 0$$
.

Let  $\Lambda$  be a hyperbolic set. By [7, Proposition 1.4] we may assume that  $\|\cdot\|$  is adapted to  $\Lambda$ , that is there exists  $0 < \nu < 1$  such that  $\|D_p f(v)\| \le \nu \|v\|$  for  $p \in \Lambda$  and  $v \in E^s(p)$ , and  $\|D_{p_0} f(v)\| \ge \nu^{-1} \|v\|$  for  $p \in \Lambda_f$  and  $v \in E^u(p_0, p)$ . Then for  $\varepsilon > 0$  sufficiently small we have the following (1) and (2):

(a) 
$$\{W_{\varepsilon}^{s}(x, f)\}_{x \in \Lambda}$$
 is a continuous family of  $C^{1}$ -disks with  $T_{x}W_{\varepsilon}^{s}(x, f) = E^{s}(x)$ ,

(b) 
$$\{W_{\varepsilon}^{u}(\mathbf{x}, f)\}_{\mathbf{x} \in A_{f}}$$
 is a continuous family of  $C^{1}$ -disks with  $T_{x_{0}}W_{\varepsilon}^{u}(\mathbf{x}, f) = E^{u}(x_{0}, \mathbf{x}).$  (1)

There exists  $\lambda_0$  with  $0 < \nu < \lambda_0 < 1$  such that

(a) if 
$$y,z \in W_{\varepsilon}^{s}(x, f)$$
  $(x \in \Lambda)$ , then  $d(f^{n}(y), f^{n}(z)) \leq \lambda_{0}^{n} d(y, z)$  for every  $n \geq 0$ ,

(b) if 
$$y,z \in W_{\varepsilon}^{u}(x, f)$$
  $(x \in \Lambda_{f})$  and if  $y,z \in M_{f}$  with  $y_{0} = y$  and  $z_{0} = z$  satisfy  $d(x_{-n}, y_{-n}) \le \varepsilon$  and  $d(x_{-n}, z_{-n}) \le \varepsilon$  for every  $n \ge 0$ , then we have  $d(y_{-n}, z_{-n}) \le \lambda_{0}^{n} d(y, z)$  for every  $n \ge 0$ .

The following is a result described in Mañé [3] for diffeomorphisms.

There exist  $0 < \gamma < \lambda < 1$  such that for  $\varepsilon > 0$  sufficiently small there is  $\delta > 0$  satisfying

- (a) if  $p \in \Lambda$  and  $x \in M$  with  $d(x, p) \le \delta$ , then  $\gamma d(f(x), W_{\varepsilon}^{s}(f(p), f)) \le d(x, W_{\varepsilon}^{s}(p, f)) \le \lambda d(f(x), W_{\varepsilon}^{s}(f(p), f)),$  (3)
- (b) if  $\mathbf{p} \in \Lambda_f$  and  $x \in M$  with  $d(x, p_0) \le \delta$ , then  $\gamma d(x, W_{\varepsilon}^u(\mathbf{p}, f))$  $\le d(f(x), W_{\varepsilon}^u(\tilde{f}(\mathbf{p}), f)) \le \lambda d(x, W_{\varepsilon}^u(\mathbf{p}, f)).$

Here  $\tilde{f}: M_f \to M_f$  is a homeomorphism defined by  $\tilde{f}((x_i)) = (f(x_i))$  for  $(x_i) \in M_f$ . (3) is checked as follows. Take  $y \in W_{\varepsilon}^u(\mathbf{p}, f)$  with  $d(x, y) = d(x, W_{\varepsilon}^u(\mathbf{p}, f))$  and put  $v = \exp_x^{-1} y$ . Let  $\eta > 0$  be a small number. Since  $||v|| = d(x, y) \le d(x, p)$ , if the distance between x and p is small then  $f(y) \in W_{\varepsilon}^u(\tilde{f}(\mathbf{p}), f)$  and  $||D_x f(v) - \exp_{f(x)}^{-1} \circ f \circ \exp_x(v)|| \le \eta ||v||$  and so

$$d(f(x), W_{\varepsilon}^{u}(\tilde{f}(\boldsymbol{p}), f)) \leq d(f(x), f(y))$$

$$= \|\exp_{f(x)}^{-1} f(y)\|$$

$$= \|\exp_{f(x)}^{-1} \circ f \circ \exp_{x}(v)\|$$

$$\leq \|D_{x} f(v)\| + \eta \|v\|.$$

Let  $\theta(p, x)$  be the parallel translation of tangent vectors along the minimal geodesic from p to x and put

$$v = v_1 + v_2 \in \theta(p, x)(E^s(p)) \oplus \theta(p, x)(E^u(p, p))$$

where  $p=p_0$  and  $T_{\boldsymbol{p}}M=\bigcup_{i\in\mathbb{Z}}(E^s(p_i)\oplus E^u(p_i,\boldsymbol{p}))$  is the hyperbolic splitting. Since  $T_{\boldsymbol{p}}W^u_{\epsilon}(\boldsymbol{p},f)=E^u(p,\boldsymbol{p})$ , if the distance between x and p is small then so is  $\|v_2\|/\|v_1\|$ . Thus we can find  $\delta>0$  such that  $\|v_2\|\leqslant\eta\|v_1\|$  when  $d(x,p)<\delta$ . Take  $\nu'$  with  $\nu<\nu'<1$  where  $\nu$  is as before. Then we have  $\|D_xf(v_1)\|\leqslant\nu'\|v_1\|$  if  $\delta>0$  is small. Thus

$$d(f(x), W_{\varepsilon}^{u}(\tilde{f}(p), f)) \leq ||D_{x}f(v)|| + \eta ||v||$$

$$\leq ||D_{x}f(v_{1})|| + ||D_{x}f(v_{2})|| + \eta ||v||$$

$$\leq v'||v_{1}|| + K\eta ||v_{1}|| + \eta ||v||$$

$$\leq \{(\nu' + K\eta + \eta(1 - \eta))/(1 - \eta)\} ||v||$$

$$= \{(\nu' + K\eta + \eta(1 - \eta))/(1 - \eta)\} d(x, y)$$

where  $K = \sup_{x \in M} \|D_x f\|$ . Taking  $\eta > 0$  small we have  $\{\nu' + K\eta + \eta(1 - \eta)\}/(1 - \eta) = \lambda < 1$ , which ensures that  $d(f(x), W_{\varepsilon}^{u}(\tilde{f}(\boldsymbol{p}), f)) \leq \lambda d(x, y) = \lambda d(x, W_{\varepsilon}^{u}(\boldsymbol{p}, f))$ .

To show another inequality in (3) (b) we need the following

Take a closed neighborhood  $B(\Lambda)$  of  $\Lambda$  in M with  $B(\Lambda)$  $\cap S(f) = \emptyset$ . Then there are positive numbers  $\alpha_0$  and  $\alpha_1$  such that

- (a)  $f | U_{\alpha_0}(x) : U_{\alpha_0}(x) \to f(U_{\alpha_0}(x))$  is a diffeomorphism and  $f(U_{\alpha_0}(x)) \supset U_{\alpha_1}(f(x))$  for  $x \in B(\Lambda)$  where  $U_{\alpha}(x) = \{ y \in M : d(x, y) < \alpha \},$  (4)
- (b) for  $\varepsilon > 0$  there is  $\delta > 0$  such that if  $d(x, y) \le \delta$  then for  $x' \in f^{-1}(x) \cap B(\Lambda)$  there is a unique  $y' \in f^{-1}(y)$  with  $d(x', y') \le \varepsilon$ .

We may suppose that  $\bigcup_{p \in \Lambda_f} W_{\varepsilon}^u(p, f) \subset B(\Lambda)$ . Take  $y \in W_{\varepsilon}^u(\tilde{f}(p), f)$  with  $d(f(x), y) = d(f(x), W_{\varepsilon}^u(\tilde{f}(p), f))$ . Since  $d(f(x), y) \leq d(f(x), f(p))$ , we have  $d(y, f(p)) \leq d(y, f(x)) + d(f(x), f(p)) \leq 2d(f(x), f(p))$ . If the distance between x and p is small, by (4)(b) there exists a unique  $y_{-1} \in f^{-1}(y)$  such that  $y_{-1} \in W_{\varepsilon}^u(p, f)$ . Put  $v = \exp_{f(x)}^{-1} y$ . Then, by the same method as above and by (4)(a)

$$d(x, W_{\varepsilon}^{u}(\mathbf{p}, f)) \leq d(x, y_{-1})$$

$$\leq \|(D_{x}f)^{-1}(v)\| + \eta \|v\|$$

$$\leq (K' + \eta) \|v\|$$

$$\leq (K' + \eta) d(f(x), W_{\varepsilon}^{u}(\tilde{f}(\mathbf{p}), f))$$

where  $K' = \max\{\sup_{x \in B(\Lambda)} \|(D_x f)^{-1}\|, 1\}$ . Therefore, put  $\gamma = 1/(K' + \eta)$  then we have the conclusion. Similarly we obtain (3)(a).

For  $f \in C^1(M)$  the following Proposition 1 shall be proven by the same method as in [3].

**Proposition 1.** Let  $f \in C^1(M)$  and  $\Lambda$  be an isolated hyperbolic set for f. Let  $0 < \gamma < \lambda < 1$  be as in (3). Then for  $\varepsilon_0 > 0$  sufficiently small there exists  $r_0 > 0$  such that if  $d(x, V^+) \leqslant r_0$  and  $d(x, V^-) \leqslant r_0$ , where  $V^+ = \bigcup_{x \in \Lambda} W^s_{\varepsilon_0}(x, f)$  and  $V^- = \bigcup_{x \in \Lambda_T} W^u_{\varepsilon_0}(x, f)$ , then

- (a) (i)  $\gamma d(f(x), V^+) \leq d(x, V^+)$ ,
  - (ii) there is  $y \in f^{-1}(x)$  such that  $d(y, V^+) \le \lambda d(f(y), V^+) = \lambda d(x, V^+)$ ,
- (b) (i) there is  $y \in f^{-1}(x)$  such that  $\gamma d(y, V^{-}) \le d(f(y), V^{-}) = d(x, V^{-})$ ,
  - (ii)  $d(f(x), V^{-}) \le \lambda d(x, V^{-})$ .

If f has homoclinic points associated to  $\Lambda$ , then it satisfies (I) of Theorem A. Therefore, to complete Theorem A it suffices to give the proof for the following case

f has no homoclinic points associated to 
$$\Lambda$$
. (5)

**Proposition 2.** Under the notations of Proposition 1, if  $\Lambda$  satisfies (5), then for  $\varepsilon_0 > 0$  sufficiently small there exists  $r_0 > 0$  such that if  $d(x, V^+) \le r_0$  and  $d(x, V^-) \le r_0$  then  $d(x, V^+) \le \lambda d(f(x), V^+)$ .

For the proof we need some notations. Write  $W_{\varepsilon}^{s}(\Lambda, f) = \bigcup_{x \in \Lambda} W_{\varepsilon}^{s}(x, f)$  and  $W_{\varepsilon}^{u}(\Lambda, f) = \bigcup_{x \in \Lambda_{f}} W_{\varepsilon}^{u}(x, f)$  for  $\varepsilon > 0$ . Then it is easily checked that for sufficiently small  $\varepsilon > 0$  and  $0 < \delta < \varepsilon$  we have  $\operatorname{Cl}[W_{\varepsilon}^{s}(\Lambda, f) \setminus W_{\delta}^{s}(\Lambda, f)] \cap \Lambda = \emptyset$  and  $\operatorname{Cl}[W_{\varepsilon}^{u}(\Lambda, f) \setminus W_{\delta}^{u}(\Lambda, f)] \cap \Lambda = \emptyset$ .

For  $\varepsilon > 0$  small enough define a map  $f_{\Lambda}: W_{\varepsilon}^{u}(\Lambda, f) \to W^{u}(\Lambda, f)$  by  $f_{\Lambda} = f \mid W_{\varepsilon}^{u}(\Lambda, f)$ . Then  $f_{\Lambda}(W_{\varepsilon}^{u}(\Lambda, f)) \supset W_{\varepsilon}^{u}(\Lambda, f)$  and for every  $0 < \delta \le \varepsilon$  there exists  $k \ge 1$  such that  $f_{\Lambda}^{-k}(W_{\varepsilon}^{u}(\Lambda, f)) \subset W_{\delta}^{u}(\Lambda, f)$ . For  $k \ge 1$  define  $D_{k}^{s} = \text{Cl}[W_{\varepsilon}^{s}(\Lambda, f) \setminus f^{k}(W_{\varepsilon}^{s}(\Lambda, f))]$  and  $D_{k}^{u} = \text{Cl}[W_{\varepsilon}^{u}(\Lambda, f) \setminus f^{k}(W_{\varepsilon}^{u}(\Lambda, f))]$ . Clearly  $D_{k}^{\sigma}$  is compact  $(\sigma = s, u)$  and satisfies  $\bigcup_{n \ge 0} f^{n}(D_{k}^{s}) \supset W_{\varepsilon}^{s}(\Lambda, f) \setminus \Lambda$ ,  $\bigcup_{n \ge 0} f^{n}(D_{k}^{u}) \supset W_{\varepsilon}^{u}(\Lambda, f) \setminus \Lambda$ ,  $D_{k}^{s} \cap \Lambda = \emptyset$  and  $D_{k}^{u} \cap \Lambda = \emptyset$ .  $D_{1}^{s}$  and  $D_{1}^{u}$  are called proper fundamental domains for  $W_{\varepsilon}^{s}(\Lambda, f)$  and  $W_{\varepsilon}^{u}(\Lambda, f)$  respectively.

Making use of the above notations the following lemma is obtained as a slight extension of [3, Lemma 6].

**Lemma 3.** For  $\varepsilon > 0$  small enough and N > 0 there is  $c = c(\varepsilon, N) > 0$  such that (a) if  $d(x, \Lambda) \le c$  and  $p \in W^s_\varepsilon(\Lambda, f)$  satisfies  $d(x, p) = d(x, W^s_\varepsilon(\Lambda, f))$ , then  $p \in f^N(W^s_\varepsilon(\Lambda, f))$ ,

(b) if  $d(x, \Lambda) \leq c$  and  $p \in W^u_{\epsilon}(\Lambda, f)$  satisfies  $d(x, p) = d(x, W^u_{\epsilon}(\Lambda, f))$ , then  $p \in f_{\Lambda}^{-N}(W^u_{\epsilon}(\Lambda, f))$ .

Now we give the proof of Proposition 2. Let  $0<\delta_0\leqslant \varepsilon_0/2$  be as in (3) for  $\varepsilon_0$  and  $B(\Lambda)$  be as in (4). By (4)(b) we can find  $0<\delta_1<\delta_0$  such that if  $d(x,y)\leqslant \delta_1$  then for  $x_{-1}\in f^{-1}(x)\cap B(\Lambda)$  there is a unique  $y_{-1}\in f^{-1}(y)$  with  $d(x_{-1},y_{-1})\leqslant 2\delta_0$ . Choose  $0<\delta_2<\delta_1$  such that if  $d(x,y)\leqslant \delta_2$  then for  $x_{-1}\in f^{-1}(x)\cap B(\Lambda)$  there is  $y_{-1}\in f^{-1}(y)$  satisfying  $d(x_{-1},y_{-1})\leqslant \delta_0$ . By [8] there is  $0<\delta_3\leqslant \delta_2$  such that if  $d(x,y)\leqslant \delta_3$  ( $x,y\in \Lambda$ ), then  $W^s_{\varepsilon_0}(x,f)\cap W^u_{\varepsilon_0}(y,f)$  consists of one point for  $y\in \Lambda_f$  with  $y_0=y$ . Since  $\{W^s_{\varepsilon_0}(x,f)\}_{x\in \Lambda}$  and  $\{W^u_{\varepsilon_0}(x,f)\}_{x\in \Lambda_f}$  are continuous families, for a sufficiently small  $\delta_3$  if  $d(x,y)\leqslant \delta_3$  and  $\{z\}=W^s_{\varepsilon_0}(x,f)\cap W^u_{\varepsilon_0}(y,f)$  for  $y\in M_f$  with  $y_0=y$ , then we have that  $d(x,z)\leqslant \delta_2/3$  and  $d(y,z)\leqslant \delta_2/3$ . Take  $0<\delta_4\leqslant \delta_3/2$  such that if  $d(x,y)\leqslant \delta_4$ , then  $d(f(x),f(y))\leqslant \delta_3/2$ . Let  $N_1$  be a number such that  $\lambda^{N_1}\varepsilon_0<\delta_4/2$ . By Lemma 3 we can take  $0< c=c(\varepsilon_0,N_1)<\delta_4/2$  such that

if 
$$d(x, \Lambda) \leq c$$
 and  $p \in V^+$  satisfies  $d(x, p) = d(x, V^+)$ ,  
then  $p \in f^{N_1}(V^+) \subset W^s_{\delta_{L/2}}(\Lambda, f)$ . (6)

Choose 0 < c' < c such that  $d(x, y) \le c'$  implies  $d(f(x), f(y)) \le c$ . Then there exists  $0 < r_0 < \varepsilon_0$  such that if  $d(x, V^+) \le r_0$  and  $d(x, V^-) \le r_0$  then  $d(x, \Lambda) \le c'$  and  $x \in B(\Lambda)$ , which is our requirement.

In fact, if  $d(x, V^+) \leqslant r_0$  and  $d(x, V^-) \leqslant r_0$ , then  $d(x, \Lambda) \leqslant c'$  and so  $d(f(x), \Lambda) \leqslant c$ . Thus there is  $p \in V^+$  such that  $d(f(x), p) = d(f(x), V^+) \leqslant c \leqslant \delta_4/2$ . By (6) we have that  $p \in W^s_{\delta_4/2}(y, f)$  for some  $y \in \Lambda$ . Since  $d(f(x), y) \leqslant d(f(x), p) + d(p, y) \leqslant \delta_4 < \delta_2$ , we can take  $y_{-1} \in f^{-1}(y)$  such that  $d(y_{-1}, x) < \delta_0$ . If  $y_{-1} \in \Lambda$ , then by (3) we obtain

$$d(x, V^{+}) \leq d(x, W_{\varepsilon_{0}}^{s}(y_{-1}, f)) \leq \lambda d(f(x), W_{\varepsilon_{0}}^{s}(y, f))$$
$$= \lambda d(f(x), V^{+}).$$

It remains to show that Proposition 2 holds for  $y_{-1} \notin \Lambda$ . Since  $d(x, \Lambda) \leqslant c$  and  $c < \delta_4/2$ , there is  $y' \in \Lambda$  such that  $d(x, y') \leqslant \delta_4$ . Hence  $d(f(x), f(y')) \leqslant \delta_3/2$  and so  $d(y, f(y')) \leqslant d(y, f(x)) + d(f(x), f(y')) \leqslant \delta_4 + \delta_3/2 \leqslant \delta_3$ . Take  $y' \in \Lambda_f$  with  $y'_0 = f(y')$  and  $y'_{-1} = y'$ . Then we can find  $z \in W^u_{\epsilon_0}(y', f) \cap W^s_{\epsilon_0}(y, f) \subset \Lambda$  such that  $d(z, f(y')) \leqslant \delta_2/3$  and  $d(z, y) \leqslant \delta_2/3$ . Since  $d(z, p) \leqslant d(z, y) + d(y, p) \leqslant \delta_2/3 + \delta_4/2 < \delta_2 < \epsilon_0$  and  $z, p \in W^s_{\epsilon_0}(y, f)$ , by (2) we have  $p \in W^s_{\epsilon_0}(z, f)$ . Since  $d(z, f(x)) \leqslant d(z, p) + d(p, f(x)) \leqslant \delta_2/3 + \delta_4/2 + c < \delta_2$  and  $z \in B(\Lambda)$ , there exists  $z_{-1} \in f^{-1}(z)$  satisfying  $d(z_{-1}, x) \leqslant \delta_0$ . Notice that  $z_{-1} \in W^u_{\epsilon_0}(f^{-1}(y'), f)$ . Indeed,  $d(z, f(y')) \leqslant \delta_2/3 < \delta_2 < \delta_1$  and  $d(z_{-1}, y') \leqslant d(z_{-1}, x) + d(x, y') < \delta_0 + \delta_4 < 2\delta_0$ . The choice of  $\delta_0$  implies  $z_{-1} \in W^u_{\epsilon_0}(f^{-1}(y'), f)$ . From this

$$z_{-1} \in W_{\varepsilon_0}^u(\tilde{f}^{-1}(\mathbf{y}'), f) \cap W^s(\Lambda, f) \subset W^u(\Lambda, f) \cap W^s(\Lambda, f),$$

and so  $z_{-1} \in \Lambda$  by (5). Since  $d(z_{-1}, x) \le \delta_0$ , by (3) we obtain

$$d(x, V^{+}) \leq d(x, W_{\varepsilon_{0}}^{s}(z_{-1}, f))$$

$$\leq \lambda d(f(x), W_{\varepsilon_{0}}^{s}(z, f))$$

$$\leq \lambda d(f(x), p) = \lambda d(f(x), V^{+}).$$

The proof of Proposition 2 is completed.

Let  $\varepsilon_0 > 0$  be sufficiently small and  $r_0 > 0$  as in Propositions 1 and 2. Take  $0 < \delta < 1$  and a sequence  $\{r_n\}_{n=1}^{\infty}$  with  $r_{n+1} = r_n^{1+\delta}$   $(n \ge 0)$ . Put

$$V_n = \{x \in M : d(x, V^+) \le r_n \text{ and } d(x, V^-) \le r_n\}$$

where  $V^+ = \bigcup_{x \in \Lambda} W^s_{\varepsilon_0}(x, f)$  and  $V^- = \bigcup_{x \in \Lambda_f} W^u_{\varepsilon_0}(x, f)$ . Let  $\bar{x} \notin \Lambda$  and take a sequence  $\{x^k\} \subset M_f$  such that  $x_0^k \to \bar{x}$  as  $k \to \infty$ . Let  $\{m_k\}$  be a strictly increasing sequence of positive integers. For  $x^k = (x_i^k)_{i \in \mathbb{Z}}$  and n > 0, call an  $(x^k, n)$ -string a finite sequence  $\sigma = \{x_l^k, x_{l-1}^k, \dots, x_{m+1}^k, x_m^k\} \subset V_0$   $(-m_k \le m < l < 0)$  satisfying

- (i)  $\sigma \cap V_n \neq \emptyset$ ,
- (ii)  $x_{l+1}^k \notin V_0$  and  $x_{m-1}^k \notin V_0 \cap \{x_l^k, x_{l-1}^k, \dots, x_{-m_k}^k\}$ .

Let  $\sigma_1 = \{x_{l_1}^k, \dots, x_{m_1}^k\}$  and  $\sigma_2 = \{x_{l_2}^k, \dots, x_{m_2}^k\}$  be  $(x^k, 0)$ -strings. Define an ordered relation between  $\sigma_1$  and  $\sigma_2$  by  $\sigma_1 < \sigma_2$  if  $m_1 > l_2$ .

As mentioned before we define a probability  $\mu_k = 1/m_k \sum_{i=1}^{m_k} \delta_{x_{-i}^k}$ . Without loss of generality we assume that  $\mu_k$  converges to an f-invariant Borel probability measure  $\mu$ .

**Proposition 4.** Let  $f \in C^1(M)$  and  $\Lambda$  be an isolated hyperbolic set satisfying (5). Under the above notations suppose  $\mu(\Lambda) > 0$ . Then for every  $n_1 > 0$  one of the following properties holds:

- (a) there are  $n \ge n_1$ , k > 0 and  $(x^k, n+1)$ -strings  $\sigma_1 < \sigma_2$  such that  $\sigma \cap V_n = \emptyset$  for every  $(x^k, 0)$ -string  $\sigma$  with  $\sigma_1 < \sigma < \sigma_2$ ,
- (b) there are  $n \ge n_1$ , k > 0 and an  $(x^k, n + 1)$ -string  $\sigma_1$  such that  $\sigma \cap V_n = \emptyset$  for every  $(x^k, 0)$ -string  $\sigma$  with  $\sigma \ne \sigma_1$ .

For the proof we need the following lemma.

**Lemma 5.** There are constants  $C_1$  and  $C_2$  with  $C_2 > C_1 > 0$  such that for every k

- (a) if an  $(x^k, 0)$ -string  $\sigma$  is not an  $(x^k, n)$ -string, then  $\#\sigma \leq C_2(1+\delta)^n$ ,
- (b) there is  $N_1 > 0$  such that if  $n \ge N_1$  and  $\sigma$  is an  $(x^k, n)$ -string, then  $\#\sigma \ge C_1(1 + \delta)^n$ .

First we prove (a). Let  $\sigma = \{x_1^k, \dots, x_m^k\}$  be an  $(x^k, 0)$ -string and not an  $(x^k, n)$ -string. Then we can find  $t \in \mathbb{Z}$  and the maximal integer  $s \ge 0$  such that

- (i)  $m \leq -s + t \leq s + t \leq l$ ,
- (ii) m = -s + t or l = s + t.

By Propositions 1 and 2 we have

$$r_0 \geqslant d(x_{t-s}^k, V^-) \geqslant \lambda^{-s} d(x_t^k, V^-),$$
  
$$r_0 \geqslant d(x_{t+s}^k, V^+) \geqslant \lambda^{-s} d(x_t^k, V^+).$$

Since  $\sigma$  is not an  $(x^k, n)$ -string, we have  $x_t^k \notin V_n$ , which implies that  $d(x_t^k, V^+) > r_n$  or  $d(x_t^k, V^-) > r_n$ , and so  $r_n < \lambda^s r_0$ . Thus we have

$$\#\sigma \leq 2s + 1 < 2(\log r_0/\log \lambda)(1+\delta)^n$$
.

Put  $C_2 = 2 \log r_0 / \log \lambda$ , then  $\#\sigma \le C_2 (1 + \delta)^n$  when  $s \ge 1$ . Since  $0 < r_0 < \gamma < \lambda < 1$  and  $C_2 \ge 2$ , (a) holds for s = 0. (a) was proved.

If  $\sigma$  is an  $(x^k, n)$ -string, then  $x_l^k \in \sigma \cap V_n$  for some  $m \le l \le l$ . Since  $x_{l+1}^k \notin V_0$ , by Proposition 1

$$\gamma^{l+1-t}r_0 \leq \gamma^{l+1-t}d(x_{l+1}^k, V^+) \leq d(x_t^k, V^+) \leq r_n$$

and hence

$$(l+1-t) \geqslant (\log r_0/\log \gamma)(1+\delta)^n - \log r_0/\log \gamma.$$

Take  $C_1$  with  $0 < C_1 < \log r_0 / \log \gamma < C_2$ . Then we can find  $N_1 > 0$  such that  $(\log r_0 / \log \gamma - C_1)(1 + \delta)^n \ge \log r_0 / \log \gamma$  for  $n \ge N_1$ , and so  $(\log r_0 / \log \gamma)(1 + \delta)^n - \log r_0 / \log \delta \ge C_1(1 + \delta)^n$ . Therefore  $\#\sigma \ge l + 1 - t \ge C_1(1 + \delta)^n$ .

Next we prove Proposition 4. Suppose that there is  $n_1 > 0$  such that both (a) and (b) do not hold. Then for every  $n \ge n_1$  and every k > 0

(a') if  $(x^k, n+1)$ -strings  $\sigma_1$  and  $\sigma_2$  satisfy  $\sigma_1 < \sigma_2$ , then there is an  $(x^k, n)$ -string  $\sigma$  with  $\sigma_1 < \sigma < \sigma_2$ ,

(b') if  $\sigma_1$  is an  $(x^k, n+1)$ -string, then there is an  $(x^k, n)$ -string  $\sigma$  with  $\sigma \neq \sigma_1$ . Let  $0 < \delta < 1$  and  $V_n$ ,  $S_n$  be as above. Take  $\xi$  with  $1 + \delta < \xi < 2$ . Then we can find integer  $s_0$  such that  $2s - 1 > \xi s$  for every  $s \geqslant s_0$ . We denote as  $\nu_k(V_n)$  the number of the set of all  $(x^k, n)$ -strings. For k > 0 and  $n \geqslant n_1$  with  $\nu_k(V_{n+1}) > s_0$  we have by (a')

$$\nu_k(V_{n+1}) \leqslant \nu_k(V_n)/\xi. \tag{7}$$

Denote as  $\sigma(k, n)$  the set of all  $(x^k, 0)$ -strings which are not  $(x^k, n)$ -strings.  $S_n$  is the set of all points  $x \in V_0$  satisfying that there is  $x \in M_f$  with  $x_0 = x$  such that  $x_m \in V_n$  for some  $m \in \mathbb{Z}$  and  $x_i \in V_0$  for  $0 \le i \le m$  if  $m \ge 0$  and  $x_i \in V_0$  for  $m \le i \le 0$  if m < 0. Put  $l(k, n) = \sum_{\sigma \in \sigma(k, n)} \#(\sigma \cap S_n)$ . Then we have

$$\mu_k(S_n - S_{n+1}) < C_2 \{ (1+\delta)/\xi \}^n (1+\delta)\xi^{n_1} + \{ l(k, n) - l(k, n+1) \}/m_k$$
(8)

for k > 0 and  $n \ge n_1$  with  $\nu_k(V_n) > s_0$ .

In fact, from the definition of  $\mu_{\nu}$ 

$$\begin{split} \mu_k(S_n - S_{n+1}) &= \# \Big\{ 1 \leqslant j \leqslant m_k \colon x_{-j}^k \in S_n - S_{n+1} \Big\} / m_k \\ & \leqslant \Big\{ T \big( \nu_k(V_n) - \nu_k(V_{n+1}) \big) + l(k, n) - l(k, n+1) \Big\} / m_k \\ & \leqslant T \nu_k(V_n) / m_k + \big\{ l(k, n) - l(k, n+1) \big\} / m_k \end{split}$$

where T is the maximal number of all cardinalities of  $(x^k, n)$ -strings but not  $(x^k, n+1)$ -strings. Since  $T \le C_2(1+\delta)^{n+1}$  by Lemma 5 and  $\nu_k(V_n) \le (1/\xi)^{n-n_1}\nu_k(V_n)$ , by (7), we have

$$\mu_{k}(S_{n} - S_{n+1}) \leq C_{2}(1+\delta)^{n+1}(1/m_{k})\nu_{k}(V_{n})$$

$$+ \{l(k, n) - l(k, n+1)\}/m_{k}$$

$$\leq C_{2}(1+\delta)^{n+1}(1/m_{k})(1/\xi)^{n-n_{1}}\nu_{k}(V_{n_{1}})$$

$$+ \{l(k, n) - l(k, n+1)\}/m_{k}$$

$$\leq C_{2}\{(1+\delta)/\xi\}^{n}(1+\delta)\xi^{n_{1}}$$

$$+ \{l(k, n) - l(k, n+1)\}/m_{k} .$$

(8) was proved.

Similarly we have

$$\mu_k(V_n - V_{n+1}) \le C_2 \{ (1+\delta)/\xi \}^n (1+\delta) \xi^{n_1}$$
(9)

for  $n \ge n_1$  with  $\nu_k(V_n) > s_0$ .

Define  $r(k) = \min\{j: \nu_k(V_j) \le s_0\}$ . Obviously  $r(k) \to \infty$  as  $k \to \infty$ , and  $\nu_k(V_{r(k)-1}) - \nu_k(V_{r(k)}) \ge 1$ . Thus

$$\mu_{k}(S_{r(k)-1} - S_{r(k)})$$

$$\geqslant \left\{ C_{1}(1+\delta)^{r(k)-1} + l(k, r(k) - 1) - l(k, r(k)) \right\} / m_{k}. \tag{10}$$

Since  $\nu_k(V_{r(k)-1}) > s_0$ , by (8) and (10)

$$\begin{aligned}
& \left\{ C_1 (1+\delta)^{r(k)-1} + l(k, r(k)-1) - l(k, r(k)) \right\} / m_k \\
& \leq \mu_k \left( S_{r(k)-1} - S_{r(k)} \right) \\
& \leq C_2 ((1+\delta)/\xi)^{r(k)-1} (1+\delta) \xi^{n_1} \\
& + \left\{ l(k, r(k)-1) - l(k, r(k)) \right\} / m_k
\end{aligned}$$

and so

$$m_k^{-1} < C_1^{-1} C_2 (1/\xi)^{r(k)-1} (1+\delta) \xi^{n_1}.$$
 (11)

Denote as T' the maximal number of all cardinalities of  $(x^k, r(k))$ -strings. Then  $\mu_k(V_{r(k)}) \leq (1/m_k)T'\nu_k(V_{r(k)})$ . Since  $\nu_k(V_{r(k)}) \leq s_0$ , by (b') we have  $\sigma \cap V_{r(k)+s_0} = \emptyset$  for every  $(x^k, 0)$ -string  $\sigma$ . By Lemma 5 we have  $T' \leq C_2(1+\delta)^{r(k)+s_0}$  and so  $\mu_k(V_{r(k)}) \leq m_k^{-1}C_2s_0(1+\delta)^{r(k)+s_0}$ . By (11) we have  $\mu_k(V_{r(k)}) < C_3((1+\delta)/\xi)^{r(k)-1}$  where  $C_3 = C_1^{-1}C_2^2\xi^{n_1}s_0(1+\delta)^{s_0+1}$ . Thus (9) implies

$$\mu_{k}(V_{n}) = \mu_{k}(V_{r(k)}) + \sum_{n \leq j < r(k)} \mu_{k}(V_{j} - V_{j+1})$$

$$< C_{3}\{(1+\delta)/\xi\}^{r(k)-1} + C_{4} \sum_{n \leq j < r(k)} \{(1+\delta)/\xi\}^{j}$$

where  $C_4 = C_2(1 + \delta)\xi^{n_1}$ . Therefore

$$\mu(\Lambda) \leqslant \lim_{n \to \infty} \mu(\text{int } V_n) \leqslant \lim_{n \to \infty} \lim_{k \to \infty} \mu_k(\text{int } V_n) = 0$$

where int  $V_n$  denotes the interior of  $V_n$ , thus contradicting.

We are in a position to give the proof of Theorem A. As mentioned before we suppose that  $\Lambda$  satisfies the condition (5). Thus by Proposition 4 there exist n > 0, arbitrarily large, and k > 0 satisfying one of the following properties:

- (a) there exist  $(x^k, n+1)$ -strings  $\sigma_1 < \sigma_2$  such that  $\sigma \cap V_n = \emptyset$  for every  $(x^k, 0)$ -string  $\sigma$  with  $\sigma_1 < \sigma < \sigma_2$ ,
- (b) there exists an  $(x^k, n+1)$ -string  $\sigma_1$  such that  $\sigma \cap V_n = \emptyset$  for every  $(x^k, 0)$ -string  $\sigma$  with  $\sigma \neq \sigma_1$ .

First we check that Theorem A holds for the case (a). Let  $q^1$  be the last point of  $\sigma_1 \cap V_n$  and  $q^2$  be the first point of  $\sigma_2 \cap V_n$ . Then we can write  $q^1 = x_m^k$  and  $q^2 = x_l^k$  for some  $-m_k < l < m < 0$ . Since  $\sigma_1$  is an  $(x^k, n+1)$ -string, there exist  $p^1 \in \sigma_1 \cap V_{n+1}$  and  $a \ge 0$  such that  $f^a(q^1) = p^1$  and  $f^t(q^1) \in V_n$  for every  $0 \le t \le a$ . By Proposition 2 we have

$$d\left(q^{1},\,V^{+}\right) \leq \lambda^{a}d\left(p^{1},\,V^{+}\right) \leq \lambda^{a}r_{n+1} \leq r_{n+1} = r_{n}^{1+\delta}.$$

Thus there is  $y_0^1 \in V^+$  such that  $y_0^1 \in B(r_n^{1+\delta}, q^1)$ , where  $B(r, q) = \{y \in M: d(y, q) \le r\}$ .

To create a homoclinic point associated to  $\Lambda$  the proof is divided into four claims. Take and fix  $\alpha$  with  $0 < \alpha < \delta$ .



Fig. 1.

**Claim 1.** If  $d(q^1, V^-) > r_n/2$  and n is large enough, then we have

- (i)  $x_{m-i}^k \notin B(r_n^{1+\alpha}, q^1)$   $(1 \le i \le m-l)$ , (ii)  $d(B(r_n^{1+\alpha}, q^1), V^-) > r_n/4$ ,
- (iii)  $f^{i}(y_{0}^{1}) \notin B(r_{n}^{1+\alpha}, q^{1}) \ (i \geqslant 1).$

(See Fig. 1.)

To see (i) suppose  $x_{m-1}^k \in B(r_n^{1+\alpha}, q^1)$ . Since  $d(q^1, V^-) \le \lambda d(x_{m-1}^k, V^-)$  by Proposition 1, for n large enough

$$d(x_{m-1}^k, q^1) \ge d(x_{m-1}^k, V^-) - d(q^1, V^-) > (1/\lambda - 1)r_n/2 > r_n^{1+\alpha}$$

which is a contradiction. Thus we have (i) for i = 1.

If  $d(x_{m-i}^k, q^1) \le r_n^{1+\alpha}$  for some  $2 \le i \le m-l$ , then

$$\begin{split} d\big(x_{m-i+1}^k,\,V^+\big) &\leqslant d\big(x_{m-i+1}^k,\,f\big(y_0^1\big)\big) \leqslant Ad\big(x_{m-i}^k,\,y_0^1\big) \\ &\leqslant Ad\big(x_{m-i}^k,\,q^1\big) + Ad\big(q^1,\,y_0^1\big) \\ &\leqslant A\big(r_n^{1+\alpha} + r_n^{1+\delta}\big) \leqslant r_n \quad \text{(if $n$ is large)}, \end{split}$$

where A > 0 is a number such that  $d(f(z), f(w)) \leq Ad(z, w)$  for  $z, w \in M$ . Since

$$d(x_{m-i+1}^k, V^-) \le d(x_{m-i+1}^k, f(q^1)) + d(f(q^1), V^-)$$
  
$$\le Ar_n^{1+\alpha} + \lambda r_n \le r_n \quad \text{(if } n \text{ is large)},$$

we have  $x_{m-i+1}^k \in V_n$ , which contradicts that  $x_{m-i}^k \notin V_n$  for  $1 \le i \le m-l-1$ . (i) was proved.

(ii) follows from the fact that

$$d(x, V^{-}) \ge d(q^{1}, V^{-}) - d(x, q^{1}) > r_{n}/2 - r_{n}^{1+\alpha} > r_{n}/4$$

for every  $x \in B(r_n^{1+\alpha}, q^1)$ .

Finally, to check (iii) we use Proposition 1. Then

$$d(f^{i}(y_{0}^{1}), V^{-}) \leq \lambda^{i}d(y_{0}^{1}, V^{-}) \leq \lambda d(y_{0}^{1}, V^{-})$$

for every  $i \ge 1$ . Since  $d(y_0^i, V^-) \ge d(q^1, V^-) - d(q^1, y_0^1) > r_n/2 - r_n^{1+\delta}$ , we have

$$\begin{split} d(f^{i}(y_{0}^{1}), q^{1}) \geq d(q^{1}, V^{-}) - d(f^{i}(y_{0}^{1}), V^{-}) \\ \geq r_{n}/2 - \lambda(r_{n}/2 - r_{n}^{1+\delta}) > r_{n}^{1+\alpha} \end{split}$$

for sufficiently large n. Therefore we obtain (iii).

Set  $W = \operatorname{Cl}\{x_{-i}^k : k \ge 0 \text{ and } 0 \le i \le m_k\} \cup B(\Lambda) \text{ where } B(\Lambda) \text{ is as in (4). Then}$  $W \cap S(f) = \emptyset$  by the assumption of Theorem A. Thus there is K > 0 such that if the distance between x and y is sufficiently small then for every  $x_{-1} \in f^{-1}(x) \cap W$ there exists  $y_{-1} \in f^{-1}(y)$  such that  $d(x_{-1}, y_{-1}) \leq Kd(x, y)$ . This ensures the existence of  $y_{-1}^1 \in f^{-1}(y_0^1)$  such that  $d(x_{m-1}^k, y_{-1}^1) \le Kd(x_m^k, y_0^1) \le K(n)$  where  $K(n) = Kr_n^{1+\delta}$  for large n > 0.

- Claim 2. If  $d(q^1, V^-) \le r_n/2$  and n is sufficiently large then (i)  $x_{m-i}^k \notin B(K(n)^{1/(1+\alpha)}, x_{m-1}^k)$  for  $2 \le i \le m-l$ , (ii) either  $d(B(K(n)^{1/(1+\alpha)}, x_{m-1}^k), V^-) > 2r_n/3$  or  $B(K(n)^{1/(1+\alpha)}, x_{m-1}^k) \cap V_n$ 
  - (iii)  $f^{i}(y_{0}^{1}) \notin B(K(n)^{1/(1+\alpha)}, x_{m-1}^{k}) \ (i \ge 0).$ (See Fig. 2.)



Fig. 2.

To show (i) suppose that  $x_{m-i}^k \in B(K(n)^{1/(1+\alpha)}, x_{m-1}^k)$  for some  $2 \le i \le m-l$ , then

$$d(x_{m-i+1}^k, x_m^k) \leq Ad(x_{m-i}^k, x_{m-1}^k) \leq AK(n)^{1/(1+\alpha)}$$

Thus

$$d(x_{m-i+1}^{k}, V^{+}) \leq AK(n)^{1/(1+\alpha)} + r_n^{1+\delta} \leq r_n,$$
  
$$d(x_{m-i+1}^{k}, V^{-}) \leq AK(n)^{1/(1+\alpha)} + r_n/2 \leq r_n,$$

from which we have  $x_{m-i+1}^k \in V_n$ , thus contradicting.

If  $x_{m-1}^k \in V_{n-1}$ , by Proposition 2 we have  $d(x_{m-1}^k, V^+) \leq \lambda d(x_m^k, V^+) < r_n$ , which implies that  $d(x_{m-1}^k, V^-) > r_n$  since  $x_{m-1}^k \notin V_n$ . Thus  $d(x, V^-) \geqslant r_n - K(n)^{1/(1+\alpha)} > 2r_n/3$  for every  $x \in B(K(n)^{1/(1+\alpha)}, x_{m-1}^k)$  if n is large. When  $x_{m-1}^k \notin V_{n-1}$ , we have either  $d(x_{m-1}^k, V^+) > r_{n-1}$  or  $d(x_{m-1}^k, V^-) > r_{n-1}$ . This implies that either  $d(x, V^+) > r_n$  or  $d(x, V^-) > r_n$  for  $x \in B(K(n)^{1/(1+\alpha)}, x_{m-1}^k)$ . Therefore  $x \notin V_n$  and so we obtain (ii).

By Proposition 1 we have

$$d(f^{i}(y_{0}^{1}), V^{-}) \leq \lambda^{i}d(y_{0}^{1}, V^{-}) \leq \lambda^{i}(d(y_{0}^{1}, q^{1}) + d(q^{1}, V^{-}))$$
$$< \lambda^{i}(r_{n}^{1+\delta} + r_{n}/2) < 2r_{n}/3 < r_{n}.$$

Moreover  $f^i(y_0^1) \in V^+$  for every  $i \ge 0$  since  $y_0^1 \in V^+$ . Thus we have (iii) from (ii). Since  $q^2$  is the first point of  $\sigma_2 \cap V_n$ , we have  $f(q^2) \notin V_n$ , which implies that  $d(f(q^2), V^+) > r_n$  or  $d(f(q^2), V^-) > r_n$ . From Proposition 1

$$d\big(f\big(q^2\big),\,V^-\big) \leqslant \lambda d\big(q^2,\,V^-\big) \leqslant \lambda r_n < r_n$$

and hence  $d(f(q^2), V^+) > r_n$ . Since  $\sigma_2$  is an  $(x^k, n+1)$ -string, we can find  $p^2 \in \sigma_2 \cap V_{n+1}$  and  $a \ge 0$  such that  $f^a(p^2) = q^2$ . Using Proposition 1 again

$$\begin{split} r_n &< d \left( f \left( q^2 \right), \, V^+ \right) = d \left( f^{a+1} \left( \, p^2 \right), \, V^+ \right) \\ &\leq \gamma^{-(a+1)} d \left( \, p^2, \, V^+ \right) \leq \gamma^{-(a+1)} r_n^{1+\delta}, \end{split}$$

from which  $r_n^{\delta}/\gamma > \gamma^a$ . Since  $d(q^2, V^-) = d(f^a(p^2), V^-) \leqslant \lambda^a d(p^2, V^-) \leqslant \lambda^a r_n^{1+\delta}$ , we have

$$d(q^2, V^-) \leq \gamma^{\beta a} r_n^{1+\delta} \leq \gamma^{-\beta} r_n^{1+\delta+\beta\delta} \leq \gamma^{-\beta} r_n^{1+\delta}$$

where  $\lambda = \gamma^{\beta}$  with  $0 < \beta < 1$ .

Take t > 0 such that  $\lambda^t < 1/2$ . Then we have the following

**Claim 3.** For n sufficiently large, there are points  $q_0^2$ ,  $q_{-1}^2$ , ...,  $q_{-t}^2 \in V_n$  such that

- (i)  $q_0^2 = q^2$ ,
- (ii)  $f(q_{-i}^2) = q_{-i+1}^2 \ (1 \le i \le t),$
- (iii)  $\gamma d(q_{-i}^2, V^-) \le d(q_{-i+1}^2, V^-) (1 \le i \le t),$
- (iv)  $d(q_{-i}^2, V^+) \le \lambda d(q_{-i+1}^2, V^+) (1 \le i \le t)$ .

(See Fig. 3.)



To check Claim 3 let  $r_0>0$  and  $\varepsilon_0>0$  be as before. Take  $0<\delta_0< r_0$  as in (3) for  $\varepsilon=\varepsilon_0$ . Then there exists  $0<\delta_1<\delta_0$  such that if  $d(x,y)\leqslant \delta_1$  then for  $x_{-1}\in f^{-1}(x)\cap B(\Lambda)$  there is a unique  $y_{-1}\in f^{-1}(y)$  satisfying  $d(x_{-1},y_{-1})\leqslant \delta_0$ . If n is sufficiently large, then  $V_n$  is contained in the  $\delta_1$ -neighborhood  $B_{\delta_1}(\Lambda)$  of  $\Lambda$  and  $\gamma^{-t-\beta}r_n^{1+\delta}< r_n$ . Since  $q^2\in V_n$ , there exists  $z\in \Lambda$  such that  $d(z,q^2)<\delta_1$ . For  $z_{-1}\in f^{-1}(z)\cap \Lambda$  we can choose  $q_{-1}^2\in f^{-1}(q^2)$  as in (b)(i) of Proposition 1 such that

$$d(q_{-1}^2, z_{-1}) < \delta_0$$
 and  $\gamma d(q_{-1}^2, V^-) \le d(q^2, V^-)$ .

Thus we have

$$d(q_{-1}^2, V^-) \le \gamma^{-1} d(q^2, V^-) \le \gamma^{-1-\beta} r_n^{1+\delta} < r_n < r_0.$$

Moreover  $d(q_{-1}^2, V^+) \le d(q_{-1}^2, z_{-1}) \le \delta_0$  and so  $q_{-1}^2 \in V_0$ . Thus, by Proposition 2

$$d(q_{-1}^2, V^+) \leq \lambda d(q^2, V^+) \leq \lambda r_n < r_n.$$

Since  $q_{-1}^2 \in V_n$ , we repeat this process and then we have Claim 3.

From Claim 3(i) and the fact that  $\lambda^i < 1/2$  we have

$$d(q_{-t}^2, V^+) \leqslant \lambda^t d(q_0^2, V^+) \leqslant r_n/2,$$
  
$$d(q_{-t}^2, V^-) \leqslant \gamma^{-(t+\beta)} r_n^{1+\delta} = C r_n^{1+\delta}$$

where  $C = \gamma^{-(t+\beta)}$ . Write  $C(n) = Cr_n^{1+\delta}$  for simplicity. Then there is  $y_0^2 \in V^-$  such that  $q_{-t}^2 \in B(C(n), y_0^2)$ . By Proposition 2 it is easily checked that there exists a sequence  $\{y_{-t}^2\}_{t\geq 0} \subset V_0 \cap V^-$  such that

- (i)  $f(y_{-i}^2) = y_{-i+1}^2 \ (i \ge 1),$
- (ii)  $d(y_{-i}^2, V^+) \le \lambda d(y_{-i+1}^2, V^+) \ (i \ge 1).$

Claim 4. For n sufficiently large,

- (i)  $y_{-i}^2 \notin B(C(n)^{1/(1+\alpha)}, y_0^2)$   $(i \ge 1)$ ,
- (ii)  $f^s(q_{-t}^2) = q_{-t+s}^2 \notin B(C(n)^{1/(1+\alpha)}, y_0^2) \ (1 \le s \le t),$

(iii) 
$$B(C(n)^{1/(1+\alpha)}, v_0^2) \subset V_n$$

(v) 
$$d(z, V^-) < r_n/4$$
 for every  $z \in B(C(n)^{1/(1+\alpha)}, y_0^2)$ .

First we check (i). By Proposition 1

$$\begin{split} d(q_{-t}^2, V^+) &\geqslant \gamma^{t+1} d(f^{t+1}(q_{-t}^2), V^+) \\ &= \gamma^{t+1} d(f(q_0^2), V^+) > \gamma^{t+1} r_n \end{split}$$

and hence

$$d(y_0^2, V^+) \ge d(q_{-t}^2, V^+) - d(y_0^2, q_{-t}^2) > \gamma^{t+1} r_n - C(n).$$

By Claim 3(ii) we have

$$d(y_{-i}^2, V^+) \leq \lambda^i d(y_0^2, V^+) \leq \lambda d(y_0^2, V^+) \quad (i \geq 1),$$

from which

$$d(y_{-i}^{2}, y_{0}^{2}) \ge d(y_{0}^{2}, V^{+}) - d(y_{-i}^{2}, V^{+})$$

$$> (1 - \lambda)d(y_{0}^{2}, V^{+})$$

$$> (1 - \lambda)(\gamma^{t+1}r_{n} - C(n))$$

$$> C(n)^{1/(1+\alpha)} \quad \text{(if } n \text{ is large)}.$$

Thus we have (i).

Let A be as in the proof of Claim 1. Then we have

$$d(f^{s}(q_{-t}^{2}), y_{0}^{2}) \ge d(y_{0}^{2}, f^{s}(y_{0}^{2})) - d(f^{s}(q_{-t}^{2}), f^{s}(y_{0}^{2}))$$

$$\ge d(y_{0}^{2}, f^{s}(y_{0}^{2})) - A^{s}d(q_{-t}^{2}, y_{0}^{2})$$

$$\ge d(y_{0}^{2}, f^{s}(y_{0}^{2})) - A^{s}C(n),$$

and by Proposition 1

$$\gamma^{s}d(f^{s}(y_{0}^{2}), V^{+}) \leq d(y_{0}^{2}, V^{+}),$$

from which

$$d(f^{s}(y_{0}^{2}), V^{+}) \leq \gamma^{-s}d(y_{0}^{2}, V^{+}) \leq \gamma^{-s}(r_{n}/2 + C(n)) < r_{n-1}$$

if n is large. Since  $d(f^s(y_0^2), V^-) = 0$ , we have  $f^s(y_0^2) \in V_{n-1}$   $(1 \le s \le t)$ . By Proposition 2

$$d(y_0^2, f^s(y_0^2)) \ge d(f^s(y_0^2), V^+) - d(y_0^2, V^+)$$

$$\ge (\lambda^{-s} - 1)d(y_0^2, V^+)$$

$$\ge (\lambda^{-s} - 1)(\gamma^{t+1}r_n - C(n)),$$

from which

$$d(f^{s}(q_{-t}^{2}), y_{0}^{2}) \ge (\lambda^{-s} - 1)(\gamma^{t+1}r_{n} - C(n)) - A^{s}C(n)$$

$$> C(n)^{1/(1+\alpha)} \quad (\text{if } n \text{ is large}).$$

Thus we obtain (ii).

For  $x \in B(C(n)^{1/(1+\alpha)}, y_0^2)$ 

$$d(x, V^{+}) \leq d(y_0^2, V^{+}) + d(x, y_0^2)$$
  
$$\leq r_n/2 + C(n) + C(n)^{1/(1+\alpha)} < r_n$$

if *n* is large. On the other hand, since  $y_0^2 \in V^-$ , we have  $d(x, V^-) \le C(n)^{1/(1+\alpha)} < r_n$ . Therefore  $x \in V_n$  and so we obtain (iii).

(iv) is easily checked by (iii), and (v) follows from the fact

$$d(z, V^{-}) \le d(z, y_0^2) \le C(n)^{1/(1+\alpha)} < r_n/4$$

for every  $z \in B(C(n)^{1/(1+\alpha)}, y_0^2)$ .

Choose c>0 such that  $0 < c < \alpha$  and  $(1+\alpha)(1+c) < 1+\delta$ . Let  $\mathcal{U}(f)$  be a neighborhood of f in  $C^1(M)$ . Then there exists a neighborhood  $\mathcal{N}$  of the identity in the  $C^1$ -topology such that  $\mathcal{N} \circ f \subset \mathcal{U}(f)$ . To obtain the conclusion we need the following lemma.

**Lemma 6** (cf. [3]). Given a constant c > 0 and a neighborhood  $\mathcal{N}$  of the identity, there exists R > 0 such that for  $0 < r \le R$  and  $x, y \in M$  with  $d(x, y) \le r^{1+c}$  there is  $h \in \mathcal{N}$  satisfying that h(x) = y and h(z) = z for all z outside of B(r, x).

Choose a sufficiently large n such that  $\max\{r_n^{1+\alpha}, K(n)^{1/(1+\alpha)}, C(n)^{1/(1+\alpha)}\} < R$ . If  $d(q^1, V^-) > r_n/2$ , then there exists  $y_0^1 \in V^+ \cap B(r_n^{1+\delta}, q^1)$  such that Claim 1 holds. Since  $r_n^{1+\alpha} > r_n^{(1+\delta)/(1+c)}$ , as in Lemma 6 there exists  $h_1 \in \mathcal{N}$  such that

(1-i) 
$$h_1(q^1) = y_0^1$$
,

(1-ii)  $h_1 = \text{id on } M \setminus B(r_n^{1+\alpha}, q^1).$ 

Let  $q_{-t}^2 \in V_n$  and  $y_0^2 \in V^-$  as above. Then we have  $q_{-t}^2 \in B(C(n), y_0^2)$  and so there exists  $h_2 \in \mathcal{N}$  such that

$$(2-i)^{2} h_{2}(y_{0}^{2}) = q_{-t}^{2},$$

(2-ii)  $h_2 = \text{id on } M \setminus B(C(n)^{1/(1+c)}, y_0^2) \supset M \setminus B(C(n)^{1/(1+\alpha)}, y_0^2).$ 

By Claim 1(ii) and Claim 4(v)

$$B(r_n^{1+\alpha}, q^1) \cap B(C(n)^{1/(1+\alpha)}, y_0^2) = \emptyset$$

from which  $h_1 \circ h_2 \in \mathcal{N}$ . Define  $g \in \mathcal{U}(f)$  by  $g = h_1 \circ h_2 \circ f$ . Then it is easily checked that  $W^s(\Lambda, g) \cap W^u(\Lambda, g) \setminus \Lambda \neq \emptyset$  by Claims 1 and 4.

Similarly, we obtain the conclusion for the case  $d(q^1, V^-) \le r_n/2$  by Claims 2 and 4. We proved Theorem A for the case (a).

If (b) is satisfied, then there exists an  $(x^k, n+1)$ -string  $\sigma_1$  such that  $\sigma \cap V_n = \emptyset$  for every  $(x^k, 0)$ -string  $\sigma$  with  $\sigma \neq \sigma_1$ . Let  $q^2$  be the first point of  $\sigma_1 \cap V_n$  and put

 $q^2 = x_l^k$  for some  $-m_k \le l < 0$ . Then we have (i)-(iv) of Claim 4 by the same way as the case (a). Since  $x_i^k \notin B(C(n)^{1/(1+\alpha)}, y_0^2)$  for every  $l \le i \le 0$  by Claim 4(iii), there exists  $g \in \mathcal{U}(f)$  such that g = f on  $M \setminus B(C(n)^{1/(1+\alpha)}, y_0^2)$  and  $g^l(y_0^2) = x_0^k$ . Therefore  $x_0^k \in W^u(\Lambda, g)$ .

The proof of Theorem A is completed.

Theorem C is proved by using Proposition 4. For the details see the proof of Theorem D in [3].

## References

- [1] N. Aoki and M. Oka, Homoclinic points C'-created under hypotheses by probability measures, in: Probability Measures on Groups X (Plenum, New York, 1991) 1-10.
- [2] M. Hirsch, J. Palis, C. Pugh and M. Shub, Neighborhoods of hyperbolic sets, Invent. Math. 9 (1970) 121-134
- [3] R. Mañé, On the creation of homoclinic points, Publ. Math. IHES 66 (1987) 139-159.
- [4] R. Mañé, A proof of the C<sup>1</sup> stability conjecture, Publ. Math. IHES 66 (1987) 161-210.
- [5] F. Oliveira, On the generic existence of homoclinic points, Ergodic Theory Dynamical Systems 7 (1987) 567-595.
- [6] D. Pixton, Planar homoclinic points, J. Differential Equations 44 (1982) 365-382.
- [7] F. Przytycki, Anosov endomorphisms, Studia Math. 58 (1976) 249-285.
- [8] F. Przytycki, On  $\Omega$ -stability and structural stability of endomorphisms satisfying Axiom A, Studia Math. 60 (1977) 61–77.
- [9] C. Robinson, Closing stable and unstable manifolds on the two-sphere, Proc. Amer. Math. Soc. 41 (1973) 299-303.
- [10] F. Takens, Homoclinic points in conservative systems, Invent. Math. 18 (1972) 267-292.