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Abstract

Moriyasu, K. and M. Oka, The creation of homoclinic points of C'-maps, Topology and its
Applications 54 (1993) 47-64.

We create homoclinic points for C'-maps on closed manifolds. Under supplementary hypotheses
of probabilities Mané constructed homoclinic points of isolated hyperbolic sets for C’-diffeomor-
phisms, r =1, 2. We extend the result to C'-maps.
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Let M be a closed C*-manifold and f: M — M be a C’-diffeomorphism, r > 1.
Let p € M be a hyperbolic fixed point of f. The stable and unstable sets of p are
denoted respectively by

Wi(p. f) = {xeM: limd(f"(x), p) =0},

W(p, f)={xeM: lim d(f~"(x), p) =0}

Then it is well known that Wo(p, f) (c=s, u) is a C” injectively immersed
submanifold of M. The points of intersection of W*(p, f) with W*(p, f), differ-
ent from p, are called homoclinic points associated to p. The points of intersection
of the closure of W*(p, ) with W*(p, ) or the closure of W*(p, f) with
W*(p, f), different from p, will be called almost homoclinic points associated to
D.
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We know the problem of whether it is possible to create homoclinic points by a
small perturbation of diffeomorphisms when there exist almost homoclinic points.

For diffeomorphisms of the two-dimensional sphere Robinson [9] solved affir-
matively the problem in the C’-topology (r > 1). Pixton [6] extended the result of
Robinson to a separable C* two-dimensional planar manifold. After that Oliveira
[5] proved the same results for area preserving diffeomorphisms of compact
orientable surfaces. Takens [10] solved the problem for Hamiltonian diffeomor-
phisms, but in the case r = 1.

Maiié [3] solved the problem for diffeomorphisms under supplementary hy-
potheses of probabilities for the cases » =1 or 2. The theorems of Mafé play an
important role to solve the Stability Conjecture [4].

The purpose of this paper is to show that the theorems of Maiié are extended
for differentiable maps. However our proof does not unfortunately work for the
C?-topology.

Let M be a closed C*-manifold and C'(M) be the set of all C'-maps from M
into itself endowed with the C'-topology. For f€ C!(M) a point x €M is said to
be singular if the differential D f:T,M — T, )M is not surjective. Denote as
S(f) the set of all singular points of f. Obviously S(f) is closed in M.

For f € C'(M) denote a closed set A(f)by A(f) =N, of"(M). Then A(f)is
the maximal f-invariant subset of M. Define as M, the set {(x,): x; € A(f) and
f(x)=x,,,,i€Z}. Then M, is a closed subset of the product topological space
IT7. _ .M, (each M; is a replica of M). For a subset W of M denote as Cl W the

H

closure of W in M.

Theorem A. Let M be a closed C*-manifold and f: M — M be a C'-map with an
isolated hyperbolic set A. Suppose x & A. If there are a sequence {x*} CM, with
x§ — X as k - » and a strictly increasing sequence {m,} C Z* such that Cl{x*: k>0
and 0<i<m}NS(HH=0 (Cx*;: k>0 and 0<i<mINS(f)=0) and u; =
L/m X7 8« (ug =1/m L% 8,k ) converges to an f-invariant Borel probability
measure y and u(A) >0, then given a neighborhood %(f) of f in C' (M) there is
g € %(f) such that g =f on some neighborhood of A and one of the following
properties holds:

(D WA, @) N WH A, gI\A+8,

(I1) there is k > 0 such that x§ € WA, g) (xk e W*(A, g)).

As a corollary we have the following

Corollary B. Under the assumptions of Theorem A, if {xk}cW™(A, f) ((xf} c
W3(A, f)), then given a neighborhood %(f) of fin CY(M) there is g € %(f) with
g = f on some neighborhood of A such that W3(A, g) N W*(A, g)\A # §.

For x €M, we denote by A1 (x) (# (x)) the set of all f-invariant Borel
probability measures to which 1/m X7%8, (1/m, X8, ) converges for some
strictly increasing sequence {m,} C Z*.
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Theorem C. Let A be an isolated hyperbolic set for a C'-map f: M — M satisfying
Q(f | 4)=A and denote as A =AU -+ UA,, the spectral decomposition of A. If
there are x € W*(A, f) (x € W*(A, f)) and an orbit x € M, with x,=x such that
Clx;: iz 0NS(H =0 (Clx_;: i 20N S(f)=0) and u(A) > 0 forall p e (x)
(. €47 (x)) then there exists a basic set A, such that given a neighborhood %(f) of
fin CYM) there is g € %(f) satisfying g =f on some neighborhood of A; and
WA, g) N WA, gI\A; # @.

Before starting the proof we recall some definitions and notations. Let fe
C'(M). For a subset A CA(f) write A;={(x)eM;: x,€A,i€Z}). If Ais a
closed f-invariant subset (f(A)=A) of A(f), then we say that A is hyperbolic if
ANS(f)=@ and there exist a Riemannian metric ||-|| on TM and ¢ >0,
0 <A <1 such that for every x = (x;) € A, there is a splitting TM = U, ,T, M =
U,;e(E*(x;, x) ® E*(x;, x)) such that for every i € Z

(@) D, f(E°(x;, x)=E(x,,,, x) (o=5, u),

(b) for every n>0and v € E*(x;, x), | D, f"() <cA*llvli,

(c) for every n>0and v € E¥(x;, x), I D, f*)Il =c~ A" |lv].

Remark that if A is hyperbolic and (x,), (y;) € A, with xo=y,, then E*(x,, (x,))
= E*(y,, (y;), but this is not the case for E*(x,, (x;)) (c.f. [7]). Thus we write
simply E*(x,) = E*(x,, (x;)). We say that a hyperbolic set A for fe C'(M) is
isolated if there is a compact neighborhood U of A such that U,=A;. Such a
neighborhood U is called an isolating block of A. Note that if A is an isolated
hyperbolic set with 2(f | 4) = A, where £2(f | 4) is the nonwandering set of f| 4,
then A splits into a finite disjoint union A =A, U --- UA,, of basic sets A, (i.e.,
A, is a closed f-invariant set and there is x € A, such that Cl{f"(x): n >0} = A,)
(see [7,8]). Such a decomposition is called the spectral decomposition of A.
ForxeAand (x)eA s the stable and unstable sets are denoted respectively by

Wi(x, £) = {y €M: d(f{(y). fi(x))—0as i —),
W*((x,), f)={y€A(f): there is (y;) €M, such that y,=y and
d(y_;, x_;) —~0as i~ x}.
The stable and unstable sets for A are defined by
WA, fy={yeM:d(f(y), A) > 0asi—x},
WH(A, f)= {y €A(f): there is (y;) € M, such that y,=y and
d(y_;, A) > 0asi—x}
If A is isolated, then we have W*(A, f)=U,. W, f) and W¥A, f)=

UxeAfW“(x, f). The points of W*(A, f)NW*“(A, fINA are called homoclinic
points associated to A.
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To obtain Theorem A we shall give the proof for the case when ¥, {x*} and
{m,} are chosen such that

converges to p and u(A) > 0. Another case will be obtained by the same way and
so we omit the proof.

In order to prove Theorem A for diffeomorphisms Mafé [3] prepared several
lemmas which describe the orbit behaviour nearby isolated hyperbolic sets. Our
proof is in the framework of that of Mafié. Thus we need to extend his lemmas for
Cl-maps.

Let D™ be an m-dimensional disk of R™ and Emb'(D™, M) be the set of all
embeddings of D™ into M with the C'-topology. Let {D"}, . , {D"}, . A ) be a
family of m-dimensional C'-disks with x € D" for x € A (x,€ D" for x eAf)
Then we say that {D;"}, c , (D"}, < 4,) is continuous if for x € A (x € A/) there are
a neighborhood U of x in A (x in A ) and a continuous map ¢:U —
Emb'(D™, M) such that ¢(yXD™) =D} for y € U (¢(yXD™) =D!" for y € U).

For e>0, x€M and x €M, denote the local stable and local unstable sets by

W(x, ) = (y €M: d(f"(x), f*(3)) <& for n >0},

W' (x, f)={y €M: there is y € M, such that y,=y and
d(x_,, y_,) <e for n>0}.

Let A be a hyperbolic set. By [7, Proposition 1.4] we may assume that |- || is
adapted to A, that is there exists 0 <» <1 such that | D,f(0)|| <vllv| for pe A
and v € E*(p), and || D, f(0)|l > v vl for p €A, and v € E“(py, p). Then
for £ > O sufficiently small we have the following (1) and 2):

(a) {Ws(x, f)},.c4 is a continuous family of C!-disks with
LW (x, f) =E*(x),

(b) (WH(x, f)lrea , is a continuous family of C'-disks with
T W5, £) = B*(xo, ).

(1)

There exists Ay with 0 <v <A, <1 such that

(a) if y,zeW'(x, f) (x€A), then d(f*(y), f*(z)) <Ayd(y, 2)
for every n >0,
(b) if y,zeW!(x, f) (x€A;)and if y,z € M; with y,=y and (2)
=z satisfy d(x_,, y_,) <e and d(x_,, z_,) < ¢ for every
/0, then we have d(y_,, z_,) <A}d(y, z) for every n > 0.
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The following is a result described in Mafé [3] for diffeomorphisms.

There exist 0 <y <A <1 such that for £ >0
sufficiently small there is & > 0 satisfying
(a) if p€ A and x € M with d(x, p) <8, then yd( f(x),

WA(F(p). 1) <d(x, We(p, ) <A W2(S(p). 1) (3)
(b) if p€ Ay and x € M with d(x, pg) <8, then yd(x, W*(p, f))

<d(f(x), W*(f(p), f)) <Ad(x, W*(p, [))-

Here f: M;— M, is a homeomorphism defined by f((x)) = (f(x,)) for (x,) € M.

(3) is checked as follows. Take y € W*(p, f) with d(x, y)=d(x, W*(p, f))
and put v =exp} 'y. Let > 0 be a small number. Since [|v ]l =d(x, y) <d(x, p),
if the distance between x and p is small then f(y) € W(f(p), f)and || D f(v) —
expiy © foexp (W <nllvll and so

d(£(x), WA(f(p), £)) <d(f(2), F(3))
=[lexprn f 0]
=llexpzisy o £ o exp.(v)]

<D f(@) | +mlv].

Let 6(p, x) be the parallel translation of tangent vectors along the minimal
geodesic from p to x and put

v=v,+v,€8(p, x)(E'(p)) ®8(p, x)(E“(p, P))

where p=p, and T,M = U, ,(E*(p)® E“(p,, p)) is the hyperbolic splitting.
Since T,W,“(p, f) = E*(p, p), if the distance between x and p is small then so is
lo, Il /1l vy ll. Thus we can find & > 0 such that || v, || <7 llv, |l when d(x, p) <$é.
Take »' with ¥ <’ < 1 where v is as before. Then we have || D, f(v )l <v'{iv, |l
if & > 0 is small. Thus

d(f(x), W*(f(p), f)) <D, F(w) | +nllvl
<D f) |+ D f(w) |+ nlv]
<v'fvll+ Knllol + v
<{(»'+Kn+n(1-n))/(1-m}v]

={(v'+Kn+n(1-7))/(1-n)}d(x, y)

where K=sup, || D, f|l. Taking 5 > 0 small we have {v' + Kn +n(1 —n)}/(1
—mn)=A <1, which ensures that d(f(x), Ws“(f(p), )< Aadlx, y) =
rd(x, W*p, f).
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To show another inequality in (3) (b) we need the following

Take a closed neighborhood B(A) of A in M with B(A)

~OfF £\

Y S s TRPE TS o emiiian 1
M) =y. 1nen unerc arc p

sitive numbers @, and a, such that
(a) f ' U,(x):U, (%) = f(U,(x)) is a diffeomorphism and

(U (%)) 2 U,{ f(x)) for x € B(A) where U, (x) ={y eM:

d(x, y) <a}, (4)
(b) for € > 0 there is 8 > 0 such that if d(x, y) <& then for

x' €f7}{x) NB{A) there is a unique y' €~ !(y) with

d(x', y') <e.

We may suppose that U ,., W, (p, f)CB(A). Take y € We“(f(p), f) with
d(f(x), y)=d(f(x), W*(f(p), f)S. Since d(f(x), y) <d(f(x), f(p)), we have
d(y, f(p)) <d(y, f(x)) +d(f(x), f(p) <2d(f(x), f(p)). If the distance between
x and p is small, by (4)b) there exists a unique y_, €f '(y) such that y_, €
Wi(p, f). Put v = exp}?(i) y. Then, by the same method as above and by (4)(a)

d(x, W(p, f)) <d(x, y_,)

<l ) @) | +mllvl
<(K'+n)|v]

<(K'+m)d(f(x), W(f(p). f))

where K'= max{sup, ¢ p 4, l(D,f)~'ll, 1}. Therefore, put y=1/(K’+n) then
we have the conclusion. Similarly we obtain (3Xa).

For f & C'(M) the following Proposition 1 shall be proven by the same method
as in [3].

Proposition 1. Let f€ C'(M) and A be an isolated hyperbolic set for f. Let
0 <y <A<1 beasin (3). Then for ,> 0 sufficiently small there exists ry > 0 such
that if d(x, V*)<ry and d(x, V™) <ry, where Vi=U , Wi (x, f) and V™=
UsreaWey(x, ), then
(@ () yd(f(x), V) <d(x, V"),
(i) there is y € f~(x) such that d(y, V*) < Ad(f(y), V) =Ad(x, V"),
(b) () thereisy € f~(x) such that yd(y, V™) <d(f(y), V) =d(x, V"),
(i) d(f(x), V) <Ad(x, V7).

If f has homoclinic points associated to A, then it satisfies (I) of Theorem A.
Therefore, to complete Theorem A it suffices to give the proof for the following
case

f has no homoclinic points associated to A. &)
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Proposition 2. Under the notations of Proposition 1, if A satisfies (5), then for g4 > 0
sufficiently small there exists ry> 0 such that if d(x, V*)<ry and d(x,V7)<r,
then d(x, V) < Ad(f(x), V*).

For the proof we need some notations. Write W'(A, f)= U, W (x, f) and
WA, )= U, cx W, f) for £>0. Then it is easily checked that for suffi-
ciently small £ >0 and 0 <8 <& we have CIW (A, FO\WS(A, fINA=§ and
CIW A, PONWA, OINA=0.

For &£>0 small enough define a map f,:W*(A, f)—> WA, f) by f,=
FIWH(A, f). Then f(WH(A, £) D WM (A, f) and for every 0 <8 < e there exists
k > 1 such that f;X(W4(A, £)) € WA, f). For k > 1 define D = CIIW(A, I\
FEOVS(A, f)] and D} = CUIWMA, PINfL "W A, f)). Clearly D is compact
(o =s, u) and satisfies U ,, of (D) D WA, fINA, U, .of1" (DY D>WHAA, )
\A, DiNnA=¢ and D{NA=@. D{ and DY are called proper fundamental
domains for W(A, f) and W*(A, f) respectively.

Making use of the above notations the following lemma is obtained as a slight
extension of [3, Lemma 6].

Lemma 3. For £ > 0 small enough and N > 0 there is ¢ = c(e, N) >0 such that
(@) if d(x, A)<c and pe W (A, f) satisfies d(x, p)=d(x, W (A, f)), then
p e fNWE(A, 1),
(b) if d(x, A)<c and pe WH(A, ) satisfies d(x, p) =d(x, W*(A, [)), then
pEfNWHA, .

Now we give the proof of Proposition 2. Let 0 < §, < &,/2 be as in (3) for ¢, and
B(A) be as in (4). By (4Xb) we can find 0 < §, <8, such that if d(x, y) <8, then
for x_, €f (x) N B(A) there is a unique y_, €f '(y) with d(x_, y_,) <28,.
Choose 0 < 8, < §; such that if d(x, y) <8, then for x_, € f~'(x) N B(A) there is
y_, €f Ny) satisfying d(x_,, y_,) <8, By [8] there is 0 <8, <8, such that if
d(x, y) <85 (x, y € A), then W;(x, f) N Wy, f) consists of one point for y € A,
with y, =y. Since {W(x, )}, c 4, and {W2(x, )}, < 4, are continuous families, for
a sufficiently small &, if d(x, y) <85 and {z} = Vl{ju(x, DNWi(y, f) for ye M,
with y, =y, then we have that d(x, z) <§8,/3 and d(y, z) <§,/3. Take 0 <8, <
8,/2 such that if d(x, y) <8,, then d(f(x), f(y)) <8;/2. Let N, be a number
such that AMeg;<8,/2. By Lemma 3 we can take 0 <c =c(gy, N,) <8,/2 such
that

if d(x, A) <c and p e V" satisfies d(x, p) =d(x, V"),
then p & FM(V) €W, (A, f)- ©)

Choose 0 <c¢’<c such that d(x, y)<c’ implies d{(f(x), f(y)) <c. Then there
exists 0 < r, <eg, such that if d(x, V") <ry and d(x, V™) <r, then d(x, A) <c’
and x € B(A), which is our requirement.
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In fact, if d(x,V*)<r, and d(x, V") <r, then d(x, A)<c' and so
d(f(x), A) <c. Thus there is p € V* such that d(f(x), p) =d(f(x), V') <c<
8,/2. By (6) we have that p e Wy ,(y, f) for some y € A. Since d(f(x), y) <
d(f(x), p) +d(p, y) < 8,<8,, wecan take y_; € f~'(y) such that d(y_,, x) <8,.

If y_, €A, then by (3) we obtain

d(x, V*) <d(x, Wiy, £)) <A(f(x), Wi(y, 1))
= d(f(x), V).

It remains to show that Proposition 2 holds for y_; & A. Since d(x, A) <c¢ and
c<8,/2, there is y' €A such that d(x, y')<8,. Hence d(f(x), f(y")<8,/2
and so d(y, f(y") <d(y, f(x) +d(f(x), f(y") <8,+8,/2<8;. Take y' €A,
with yo=f(y’) and y_,=y’. Then we can find z € W(y’, f)mW;O(y, flcA
such that d(z, f(y')<8,/3 and d(z, y)<8,/3. Since d(z, p)<d(z, y)+
d(y, p)<8,/3+8,/2<8,<gy and z, pEWS(y, f), by (2) we have pe
Wiz, f). Since d(z, f(x)) <d(z, p)+d(p, f(x) <8,/3+8,/2+¢c<8, and x
EB(A) there exists z_, € f~'(z) satisfying d(z_,, x) <8,. Notice that z_, &

(f I(y"), f). Indeed, d(z, f(y') <8,/3<8,<8, and d(z_ 1Y N<d(z_,, x)
+d(x y') <8, + 8, <28, The choice of §, implies z_, € W"(f (¥, f). From
this

2 € WAFNY), F) WA, ) WA, F) NW(A, f),
and so z_, € A by (5). Since d(z_,, x) <8, by (3) we obtain
d(x, V*y<d(x, Wi(z_y, f))

<Ad(f(x), Wiz, f))
<Ad(f(x), p) =Ad(f(x),V*).

The proof of Proposition 2 is completed.

Let £,> 0 be sufficiently small and ry> 0 as in Propositions 1 and 2. Take
0 <6 <1 and a sequence {r,}7_, with 7, , =r}*® (n > 0). Put

V,={xeM:d(x,V*)<r, and d(x, V") <r,}

where V= U, W(x, f) and V"=U 4 Wilx, f). Let ¥¢A and take a
sequence {x*} c M, such that x§ —->x as k — . Let {m,} be a strictly increasing
sequence of positive integers. For x* = (x¥),., and n > 0, call an (x*, n)-string a
finite sequence o = {xf, x_,,...,xX ., xk} cV, (=m, <m <1 <0) satisfying

D onV,+4d,

() xf, €V, and xX_, &€ Von{xf, xL 1 coxE )
Let o, ={xf,..., x5} and oy =1{xf,..., x5} be (x*, 0)- -strings. Define an ordered
relation between o and o, by oy <o, if m; > 1,. :

As mentioned before we define a probability u, = 1/m, X7 8,« . Without loss
of generality we assume that u, converges to an f-invariant Borel probability
measure u.
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Proposition 4. Let f€ CI(M) and A be an isolated hyperbolic set satisfying (5).
Under the above notations suppose u(A)> 0. Then for every n, >0 one of the
following properties holds:

(@) there are n>n,, k>0 and (x*, n + 1)-strings o, <o, such that oNV, =
for every (x*, O)-string o with o, <o <o0,,

(b) there are n > n,, k >0 and an (x*, n + D-string o, such that cN\V, = for
every (x*, 0)-string o with o # o,.

For the proof we need the following lemma.

Lemma 5. There are constants C, and C, with C, > C, > 0 such that for every k
(@) if an (x*, 0)-string o is not an (x*, n)-string, then #o < C,(1+8)",
(b) there is N, > 0 such that if n > N, and o is an (x*, n)-string, then #0 > C,(1
+8)".

First we prove (a). Let o = {xF,..., x%} be an (x*, 0)-string and not an (x*, n)-
string. Then we can find ¢ € Z and the maximal integer s > 0 such that
ODm<—s+e<s+r<,
() m=—-s+torl=s+t.
By Propositions 1 and 2 we have

rozd(xf V) =Aa7d(xf, V™),

ro=d(xf V)= A7d(xf, V).
Since o is not an (x*, n)-string, we have x* & I/, which implies that d(x*, V") > r,
or d(x¥, V=)>r,, and so r, < A°r,. Thus we have

#o <25+ 1<2(log ro/log A)(1+8)".

Put C,=2log ry/log A, then #0 < C,(1+8)" when s > 1. Since 0 <ry <y <A <
1 and C, > 2, (a) holds for s = 0. (a) was proved.

If o is an (x*, n)-string, then x¥ €NV, for some m <t <. Since xf, | &V,
by Proposition 1

I+1~ -
v + ’r0<y’+1 ’d(x,kH, V+) Sd(x:‘, V+) <r,

and hence

(I+1—=1) > (log ro/log y)(1+8)" —log ry/log .

Take C; with 0<C, <log ry/log y <C,. Then we can find N, >0 such that
(log ro/log y —C X1+ 8)" > log r,/log y for n > N,, and so (log r,/log yX1 +
8)" —log ry/log 6 = C,(1+ 8)". Therefore #o>1+1—1t>C(1+ )"

Next we prove Proposition 4. Suppose that there is #, > 0 such that both (a) and
(b) do not hold. Then for every n >n, and every k >0

(@) if (x*, n+ 1)-strings o, and o, satisfy o, <0o,, then there is an (x*, n)-
string o with o, <o <0,,
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(b") if o) is an (x*, n + 1)-string, then there is an (x*, n)-string o with o # ;.

Let0<é<1and V, S, be as above. Take £ with 1+ 6 < ¢ < 2. Then we can
find integer s, such that 25 — 1> &s for every s >s,. We denote as v, (V,) the
number of the set of all (x*, n)-strings. For k>0 and n >n, with »(V,, ) > s,
we have by (a’)

vi(Varr) <vi(V) /€. (7N

Denote as o(k, n) the set of all (x*, 0)-strings which are not (x*, n)-strings. S, is
the set of all points x €V, satisfying that there is x € M; with x,=x such that
X, €V, for some meZ and x;€V, for 0<i<m if m>0 and x,€V, for
m<i<0if m <0.Put l(k, n) =X, 4 ,#(oNS,). Then we have

B8y = 8,11) <C{(1+8)/8) (1 +8)¢m
+{I(k, n) —l(k,n+ 1)} /m, (8)

for k>0 and n > n, with v, (V,) > s,.
In fact, from the definition of u,

mi(Sp = Sp41) = #{1 <j<my:xkes, - Sn+1}/mk
<AT(vi(V,) = vie(Vi1)) + (K, 1) = 1(k, n+ 1)} /m,
<Tv(V,)/m,+{I(k, n) —l(k,n+ 1)} /m,
where T is the maximal number of all cardinalities of (x¥, n)-strings but not
(x*, n + 1)-strings. Since T < CxX1 + 8)"*! by Lemma 5 and » (V) <
176y "v, (V,) by (7), we have
#i(Sy = Sp) S Co(148)" 7 (1/m)wy (V)
+{l(k,n) —l(k,n+ 1)} /m,
<C(1+8)" (1/m)(1/€)" "y (V)
+{I(k, n) = l(k,n+1)}/m,
<G{(1+8)/€}" (1 + 8)¢m
+{l(k, n) =U(k,n+1)}/m,.

(8) was proved.
Similarly we have

1V = Viiy) < Co{(1+8) 76} (1 +8)¢m 9)

for n > n, with v, (V) > s,.
Define r(k) = min{j: v, (V)) <s,}. Obviously r(k) >« as k — », and
vilVoy-1) — vV, ) = 1. Thus

“’k(Sr(k)—l _Sr(k))
>{C,(1+8) O™ +i(k, r(k) = 1) = I(k, r(k))}/m,. (10)
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Since v, (V, 4, 1) > s,, by (8) and (10)
{C(1+8) 7 +1(k, r(k) =1) = I(k, r(k))}/m,
< (S -1 = Sriiy)
<Cy((1+8)/€) "1+ 8)¢m
+{I(k, r(k) —1) = I(k, r(k))}/m,

and so
m' < CrlC,(1/6)™ 71+ 8)em. (11)

Denote as T’ the maximal number of all cardinalities of (x*, r(k))-strings. Then
V) < /m )T v, (V, ). Since v, (V, ) < s, by (b)) we have o N V), =1
for every (x*, 0)-string o. By Lemma 5 we have T' < C,(1+8)™ "0 and so
11 Viey) €my ' Cosg(1+ 8) 50, By (11) we have (V) < C5((1 +8) /&) 0!
where C, = C;'C3¢msy(1 + 8)*0*!. Thus (9) implies

/*Lk(I/;t):/"Lk(I/r(k))+ )y “k(Vj_VjH)

n<j<r(k)

<C{(1+8)/ey Y v c, L {(1+8) /Y

n<j<r(k)
where C, = C,(1 + 8)¢"1. Therefore
p(A) < lim p(int V) < lim  lim w,(int V,) =0

k-
where int V), denotes the interior of V,, thus contradicting.

We are in a position to give the proof of Theorem A. As mentioned before we
suppose that A satisfies the condition (5). Thus by Proposition 4 there exist n > 0,
arbitrarily large, and k > 0 satisfying one of the following properties:

(a) there exist (x*, n+ 1)-strings o, <o, such that oNV,=¢ for every
(x*, 0)-string o with o, <o < o5,

(b) there exists an (x*, n + 1)-string o, such that NV, =@ for every (x*, 0)-
string o with o # 0.

First we check that Theorem A holds for the case (a). Let g! be the last point of
oyNV, and g* be the first point of o, NV,. Then we can write g' =x* and
q*=xf for some —m, <I<m <0. Since o, is an (x*, n + 1)-string, there exist
pleo, NV,,, and a > 0 such that f%(q")=p' and f'(g") €V, forevery 0 <t <a.
By Proposition 2 we have

d(q", V") <Xd(p', V) <Xr, <ryp =1t

Thus there is y)€V* such that y)eB(r!*° q'), where B(r, q)={ye
M: d(y, q) <r).

To create a homoclinic point associated to A the proof is divided into four
claims. Take and fix o with 0 <a < 8.



58 K. Moriyasu, M. Oka

NN

Fig. 1.

Claim 1. If d(q*, V™) >r,/2 and n is large enough, then we have
W) xk_ B, gHY U <i<m—1D),
(D) d(B(r,*, q"), V7)>r,/4,
(i) fFi(yD &B(rlte, gD = 1.
(See Fig. 1.)

To see (i) suppose x*_, €B(r!*® g'). Since d(q', V™) <Ad(xk_, V™) by
Proposition 1, for n large enough
d(xk_y, q")=d(xk_,, V) —d(¢", V" )> (/A= )r,/2>r 7"

m m—1s

which is a contradiction. Thus we have (i) for i = 1.
If d(xX _,, g")<r}*™ for some 2 <i<m —1I, then

d(xk_ V) <d(xk iy, f(98)) <A4d(xk, ., vi)
<Ad(x},_;, q")+4d(q", y5)
<A(ry**+ry ) <r, (if n is large),
where 4 > 0 is a number such that d(f(z), f(w)) < Ad(z, w) for z, w € M. Since
Ao, V) <A ars F(a) +d(F(a), V)
<Arite+ar,<r, (if n is large),

we have x¥ _,., €V,, which contradicts that x%_, &V, for 1<i<sm—I-1. ()
was proved.
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(ii) follows from the fact that
d(x, V7 )=zd(q", V) —d(x,q"y>r,/2=rl**>r,/4

1+a

for every x € B(r}*2, g").
Finally, to check (iii) we use Proposition 1. Then

d(fi(¥), V") <Xd(ys, V™) <Ad(ys, V™)
for every i > 1. Since d(yi, V)= d(q', V") —d(q", y}) > r,/2 —r}*°, we have
d(f(v). a')>d(q", V") —d(f' (%), V")
>r,/2—A(r,/2— rj*‘s) >rlte
for sufficiently large n. Therefore we obtain (iii).

Set W=Ci{x*: k>0 and 0<i<m,}UB(A) where B(A) is as in (4). Then
W S(f)=0 by the assumption of Theorem A. Thus there is K> 0 such that if
the distance between x and y is sufficiently small then for every x_, € f~"{(x) N W
there exists y_; €f '(y) such that d(x_,, y_,) <Kd(x, y). This ensures the

existence of y!', €f Ny}) such that d(x%_,, yL ) <Kd(x*, y}) < K(n) where
K(n)=Kr!*® for large n > 0.

Claim 2. If d(q", V") <r,/2 and n is sufficiently large then
O xk_, & B(K(n)"/U*+®) x* ) for 2<i<m—1,
(ii) either d(B(K(n)/0*®) xk ), V7)>2r, /3 or B(K(n)Y/1*®) xk Y0V,

m—1 m~—1
= ¢,
(i) fi(y)) & B(K(n)'/A+0 xk ) (i = 0).
(See Fig. 2.)

s
WA, T) k
Xp-1
]
vt
v £ xk
0 [ 0
4
r Y ;
-n n ¥
2 S~— .r |- X
Vn+1 ¥ | v™
Al

Fig. 2.
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To show (i) suppose that x* _, € B(K(n)"/3+® xk ) for some 2<i<m —1,
then

Thus
ek V) AR 1370
d(xr]:z—i+1’ Vﬁ) SAK(n)l/(H"‘) +r,/2<r,,

from which we have x* _, , €V, thus contradicting.

If xX_,eV,_,, by Proposition 2 we have d(x%_,, V") <Ad(xk, vt)<r,
which implies that d(x%_,, V™ )>r, since x*_, &V, Thus d(x,V )>r, —
K(n)"/+ > 2r /3 for every x € B(K(n)'/+®) xk _ )if n is large. When x%

m—1
m—1

&V, _,, we have either d(x* _,V*)>r, _, or d(xk_,, V") >r,_,. This implies
that either d(x, V*)>r, or d(x, V") >r, for x € B(K(n)"/"*® xk ). There-
fore x &V, and so we obtain (ii).

By Proposition 1 we have
A(F(00). V) <Xd(oh V) <X(d(shs a') +d(a' V)
<N(ry*P+r,/2)<2r,/3<r,.
Moreover fi(y}) € V* for every i > 0 since y} € V*. Thus we have (iii) from ().

Since g? is the first point of o, NV, we have f(g?) & V,, which implies that
d(f(g®), V*)>r, or d(f(q?), V™) >r,. From Proposition 1

d(f(q?), V_) <Ad(q®, V) <aAr,<r,

and hence d(f(g?),V*)>r,. Since o, is an (x*, n+ 1)-string, we can find
p?’€o,nV,,, and a > 0 such that f%(p?) = g°. Using Proposition 1 again

r, <d(f(q2), V+) =d(fa+1(p2)’ V+)
< ,y-(a+1)d(p2’ V+) g,y—(a+])r’}+5,

from which r?/y > y°. Since d(q?, V™) =d(f(p?), V) <Ad(p?, V)< Art*?,
we have

d(q2’ V—) < ,yBar’t+8 <,y‘[3r’1+5+38 <,yfﬁr'i+5

where A =y# with0< g8 < 1.
Take ¢ > 0 such that X < 1/2. Then we have the following

Claim 3. For n sufficiently large, there are points q3, q*,,...,q%, €V, such that
M g5 =a°
(D) flg’ ) =q%,,, (U <i<?),
(i) yd(q2,, V) <d(q?,.,, V) A <i<D),
(v) d(g%, V) <Aad(g?,,,, VA <i<t)
(See Fig.3.)



Homoclinic points of C'-maps 61
v/
\4
n
11
q
Vn+t

2
q .| -
t;LF"l v

g 2
~y

Fig. 3.

To check Claim 3 let r, > 0 and ¢, > 0 be as before. Take 0 <, <r, as in (3)
for & =¢,. Then there exists 0 <8, <38, such that if d(x, y) <8, then for x_, €
f71(x) N B(A) there is a unique y_, € f~'(y) satisfying d(x_,, y_,) <8,. If n is
sufficiently large, then V), is contained in the §;-neighborhood B;(A) of A and
y~"Pry*® <r,. Since g*€V,, there exists z€ A such that d(z, g*) <8,. For
z_;€f7'(z)N A we can choose g2, €f~'(g?) as in (b)i) of Proposition 1 such
that

d(qzla Z-l) <8, and Vd(qu V_) <d(qz, Vo).

Thus we have
d(q* , V7 )<y ld(g>, V) <y VBt <, <1y,

Moreover d(q? |, V*)<d(g?,, z_,) <8, and so g*, € V,. Thus, by Proposition 2
d(qz_l, V+) <Ad(q?, VYy<ar,<r,.

Since g%, €V, we repeat this process and then we have Claim 3.
From Claim 3(i) and the fact that A' <1/2 we have

d(q*,, V*)<Nd(qd, V*)<r,/2,
S P

where C =y ~“*A. Write C(n) = Cr,*® for simplicity. Then there is y2 € V'~ such
that g2, € B(C(n), y2). By Proposition 2 it is easily checked that there exists a
sequence {y>,},.,CV,N V" such that

WD f(y2)=y%,., Gi>D,

(D) d(y2, VD <Aad(y?,, , V) = 1.

Claim 4. For n sufficiently large,
@ y2, &€ BIC()V+, y3) (i > 1),
(D f(g2)=q>,,, & BC(n)/I+ y) (1 <s <),
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(i) B(C(m)V/*™, yHcV,,
(iv) xk_, & B(C(n)/ ), y) A <i<m—1-1),
W) d(z, V™) <r,/4 for every z € B(C(n)/0*®, ).
First we check (i). By Proposition 1
d(qz_t’ V+) > ,yt+1d(ft+l(q2_t)’ V+)
_ y’“d(f(qg), V) > Yy

and hence
d(y3, V) =d(q%,. V') —d(y3, a2,) >y 'r, = C(n).
By Claim 3(ii) we have
d(y2, VY <Nd(yg, V) <rd(ys, V) (iz1),
from which
d(y2;, y3)=d(y3, V") —d(y2,, V")
> (1 —/\)d(yé, V+)
> (1=0)(y"*r, — C(m))
> C(n)"? (if n is large).

Thus we have (i).
Let A be as in the proof of Claim 1. Then we have

d(f5(q%,), v3) =d(3, £1(¥3)) —d(f*(a%:), £°(¥3))
>d(y2, f5(v})) —A'd(a,, v3)
>d(y3, £(v§)) —A°C(n),
and by Proposition 1
vd(f(v5), V') <d(v3, V"),
from which
d(f*(¥3), V) <y d(¥5, V') <y (r,/2+ C(n)) <r,_,

if n is large. Since d(f°(y2),V™)=0, we have f(y))eV, ; (1<s<t). By
Proposition 2

d(vs, £(5)) 2d(f*(¥5), V™) = d(¥5. V")
> (A~ = 1)d(y2, V')

>(A7 =D (v, = C(n)),
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from which
d(f*(a%,) yé) > (A =1D(y"*'r, — C(n)) —A°C(n)

> C(n) " (if n is large).
Thus we obtain (ii).
For x € B(C(n)/1 ), y2)

d(x, V') <d(yg, V") +d(x, y5)
<r,/2+C(n) +C(n)1/“+“) <r

if n is large. On the other hand, since y2 € V™, we have d(x, V7)) < C(n)"/1*% <
r,. Therefore x € V, and so we obtain (iii).
(iv) is easily checked by (iii), and (v) follows from the fact

d(z, V) <d(z, y}) <C(n)/"** <r,/4

for every z € B(C(n)/ "'+, y2).

Choose ¢ >0 such that 0 <c<a and (1 +aXl+c¢c)<1+8. Let Z(f) be a
neighborhood of f in C'(M). Then there exists a neighborhood .#” of the identity
in the C'-topology such that .#" o fc #(f). To obtain the conclusion we need the
following lemma.

n

Lemma 6 (cf. [3]). Given a constant ¢ > 0 and a neighborhood ¥ of the identity,
there exists R > 0 such that for 0 <r <R and x, y € M with d(x, y) <r'*° there is
h €. satisfying that i(x) =y and h(z) = z for all z outside of B(r, x).

Choose a sufficiently large n such that max{r!**, K(n)!/!*® C(n)"/1*®} <R,
If d(q',V")>r,/2, then there exists y) €V N B(r "%, ¢g') such that Claim 1
holds. Since r!*® > {1 #8/0+9) a5 in Lemma 6 there exists h, €.# such that

(1-)) hy(q") =y,

(1-ii) h, =1id on M\ B(r} %<, g").
Let g2, €V, and y? € V™ as above. Then we have g2, € B(C(n), y§) and so there
exists h1, €4 such that

QD) hy(y)) =42,

(2-ii) A, =id on M\ B(C(n)"/1+9, y2) > M\ B(C(n)"/*, y]).
By Claim 1(ii) and Claim 4(v)

B(ri*, "y nB(C(n) ", y}) = ¢

from which h, o h,e.#. Define g€ #%(f) by g=h, o h, o f. Then it is easily
checked that WS(A, g) N W*(A, g)\ A # @ by Claims 1 and 4.

Similarly, we obtain the conclusion for the case d(q', V") <r,/2 by Claims 2
and 4. We proved Theorem A for the case (a).

If (b) is satisfied, then there exists an (x*, n + 1)-string o, such that o NV, =
for every (xX, 0)-string o with o # o,. Let g2 be the first point of o; NV, and put
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g =x} for some —m; <!<0. Then we have (i)-(iv) of Claim 4 by the same way
as the case (a). Since x* & B(C(n)'/1*%), y2) for every | <i<0 by Claim 4iii),
there exists g € #(f) such that g =f on M\ B(C(m)"/"*®, y2) and g'(y?) =x¢.
Therefore x& € WA, g).

The proof of Theorem A is completed.

Theorem C is proved by using Proposition 4. For the details see the proof of
Theorem D in [3].
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