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Nanoscale Distribution of Ryanodine Receptors and Caveolin-3 in Mouse
Ventricular Myocytes: Dilation of T-Tubules near Junctions
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ABSTRACT We conducted super-resolution light microscopy (LM) imaging of the distribution of ryanodine receptors (RyRs)
and caveolin-3 (CAV3) in mouse ventricular myocytes. Quantitative analysis of data at the surface sarcolemma showed that
4.8% of RyR labeling colocalized with CAV3 whereas 3.5% of CAV3 was in areas with RyR labeling. These values increased
to 9.2 and 9.0%, respectively, in the interior of myocytes where CAV3 was widely expressed in the t-system but reduced in
regions associated with junctional couplings. Electron microscopic (EM) tomography independently showed only few couplings
with caveolae and little evidence for caveolar shapes on the t-system. Unexpectedly, both super-resolution LM and three-dimen-
sional EM data (including serial block-face scanning EM) revealed significant increases in local t-system diameters in many
regions associated with junctions. We suggest that this regional specialization helps reduce ionic accumulation and depletion
in t-system lumen during excitation-contraction coupling to ensure effective local Ca2þ release. Our data demonstrate that
super-resolution LM and volume EM techniques complementarily enhance information on subcellular structure at the nanoscale.
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The contraction of cardiac ventricular myocytes depends on
the rapid cell-wide transient increase in intracellular [Ca2þ]
upon depolarization of the cell-membrane potential. The car-
diac ryanodine receptor (RyR) (1), which is the intracellular
Ca2þ release channel in the sarcoplasmic reticulum (SR),
plays a central role in shaping Ca2þ transients. RyRs form
clusters of various sizes (2,3) with the majority located
within junctions between the SR and the surface membrane
and its cytoplasmic extension, the transverse tubular (t-) sys-
tem. It has been suggested that some RyR clusters are asso-
ciated with caveolae, a specialized signaling microdomain
of the surface membrane. Previous studies were complicated
by the limited resolution of optical imaging methods of
~250 nm, much larger than the nanometer scale of RyRs
and caveolae. Accordingly, these studies report varying
colocalization between RyRs and caveolin-3 (CAV3), a
caveolar marker also expressed in the t-system (4,5).

In this work, we investigated the relative distribution of
CAV3 and RyRs in mouse ventricular myocytes both in
the cytosol and near the cell surface with super-resolution
fluorescence microscopy that achieves a resolution
approaching 30 nm. Our data revealed unexpected local
t-system swellings near junctional couplings, which was
supported by two different three-dimensional electron
microscopy (EM) modalities with <10-nm resolution: EM
tomography and serial block-face scanning EM (SBFSEM).

Super-resolution images of CAV3 and RyR labeling at
the surface sarcolemma of mouse myocytes showed little
overlap, suggesting that few RyRs were in couplings
with caveolae (Fig. 1 A, for detailed methods, see the Sup-
porting Material). Only ~4.8% of RyR labeling was asso-
ciated with CAV3 positive areas and ~3.5% of CAV3
associated with RyR positive areas (n ¼ 6 cells from three
animals, Fig. 1 B, see also Table S1 in the Supporting
Material), broadly consistent with previous data in rats
(6). To support this finding, EM tomography was applied
to mouse ventricular tissue that included a part of the
surface sarcolemma, to our knowledge for the first time.
Segmentation of peripheral couplings (containing RyR
foot structures) and surface caveolae (~60 nm in diameter
and often interconnected) confirmed that the great majority
of peripheral couplings were in regions devoid of caveolae
(Fig. 1 C). A few junctional couplings containing feet were
between caveolae and subsarcolemmal SR (Fig. 1 D, see
also Fig. S1 and Movie S1 in the Supporting Material).
We conducted a similar analysis in the cytosol where
CAV3 expression occurs in the t-system (5) and RyRs
are abundant in dyadic junctions between the t-system
and SR terminal cisterns.

As shown in Fig. 2 A, the spatial distribution of CAV3 and
RyR clusters in super-resolution micrographs taken several
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FIGURE 1 Colocalization of CAV3

and RyRs at the surface sarco-

lemma. (A) Super-resolution micro-

graph of the distribution of CAV3

(green) and RyRs (red) at the surface

of a mouse cardiac myocyte. (B)

Analysis of the association of

CAV3 with RyRs. The fraction of

RyR labeling within CAV3 positive

areas was ~4.8% (front data)

whereas ~3.5% of CAV3 was found

in RyR-positive membrane areas.

(C) Segmented EM tomogram containing a patch of surface sarcolemma (light blue) and associated caveolae (green) as well as

peripheral couplings (red). (D) Detailed view of a region with abundant caveolae. (Arrows) Couplings with caveolae.
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microns below the surface sarcolemma is consistent with this
view. The association of the two labels is slightly increased
(as compared to the surface), according to distance analysis
with 9% of CAV3 and 9.2% of RyR labeling associating
with each other (Fig. 2 B, n ¼ 6 cells from three animals).
The similarity ofmanually traced t-system in EM tomograms
(Fig. 2 C) and super-resolved CAV3 labeling suggested that
CAV3 is widely distributed in the t-system except for regions
where dyadic membrane junctions occur as CAV3 labeling
was much weaker in regions with strong RyR labeling. It
was notable that the t-system diameter appeared to increase
at regions of strong RyR labeling (Fig. 2 D), broadly consis-
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FIGURE 2 Distribution of CAV3 and RyRs in the cell interior. (A

distribution at t-system. (Arrow) Direction of longitudinal cell axis. (B

per group). (C) Segmented EM tomogram of a similar region with thr

dyadic couplings (red). (D) This image illustrates the tracing (whi

linearized along the path (E) to calculate a mask that shows the full w

and RyR (red) (F). (G) Histograms of local diameters extracted from

nonjunctional (ex-dyad) regions. See main text and the Supporting
tent with the behavior seen in tomograms (Fig. 2C). This was
confirmed by a quantitative analysis of t-tubule diameters in
dyadic versus extradyadic regions on the basis of CAV3 and
RyR labeling, with full-width at quarter-maximum mean di-
ameters increasing from ~150 nm distal to dyads, to ~190 nm
(using CAV3 signal only) or ~280 nm (using CAV3 and RyR
signal) near dyads (Fig. 2, G and H, see also Methods in the
Supporting Material). The combined RyR and CAV3 signals
seemed to be a better representation of the entire t-system
lumen near junctions (see Fig. S2).

Taken together, super-resolution imaging and EM tomog-
raphy strongly support the presence of local t-systemdilations
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in regions where the t-system opposes SR at dyads and such
t-system bulges are connected by narrower tubule segments.
Further support was provided by SBFSEM, another volume
EM technique to study larger cell volumes (albeit at the
expense of a slightly lower resolution). SBFSEM clearly
showed local t-system dilations were regularly involved in
the architecture of most (but not all) dyads (Fig. 3, see also
Fig. S3 and Movie S2), as also observed in full three-dimen-
sional super-resolution images (see Fig. S3 C).

Our data identify local dilations of the t-system associated
with dyads in mouse cardiac myocytes. Frequent tubule
distensions had been observed especially at the intersections
of transverse and axial tubules (7), and constrictions were
seen in rabbit myocytes although their relationship to dyads
was unknown (8). The increased local t-system lumen near
junctions may help reduce the predicted ionic accumulation/
depletion during excitation-contraction coupling (9). Alterna-
tively, it might simply be secondary to increasing local mem-
brane area and allow the formation of large area junctions that
harbor many RyRs. In connection with this point, it would be
interesting to investigate the t-systemnear junctions in species
that have larger average tubule diameters (e.g., human and
rabbit (10)), or if this architecture changes inmouse heart fail-
ure models where t-tubule diameters are often increased.

Most peripheral couplings were in regions void of surface
caveolae, although a small number of RyR clusters were in
junctional couplings between subsarcolemmal SR and
caveolae as shown both by the low colocalization between
CAV3 and RyRs as well as direct evidence from EM tomog-
raphy. Similarly, a relatively small fraction of CAV3 colo-
calized with RyR clusters in the t-system although CAV3
was expressed widely in the t-system. A structural role of
CAV3 in the t-system is still unclear—t-tubules in tomo-
gram data did not reveal distinct caveolae shapes on the
t-system membrane (see Fig. S4), although this might
change in pathology (11). In any case, the t-system exhibits
high curvature orthogonal to the tubule axis, which may be
supported by CAV3 oligomerization. In addition, the pres-
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FIGURE 3 Segmented SBFSEM data showing t-system dila-

tions near dyadic junctions. (A) The overview shows t-system

membranes (green) and jSR (red) in a mouse myocyte. (B,

enlarged inset from panel A) Thin connecting tubules (arrows)

and regular swellings in junctional regions at z-lines.

Biophysical Journal 104(11) L22–L24
ence of CAV3 in the t-system may be important for regu-
lating other signaling systems (e.g., adrenergic signaling).

Finally, our data demonstrate that complementary data
from optical super-resolution and three-dimensional EM
images assists data interpretation and reliability. We suggest
that truly correlative optical and EM imaging approaches
should provide further information and improve our knowl-
edge of the basis of cardiac excitation-contraction coupling.
SUPPORTING MATERIAL

Methods, four figures, two movies, and movie legends are available at

http://www.biophysj.org/biophysj/supplemental/S0006-3495(13)00432-3.
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