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Abstract

In this paper we consider the monic polynomial sequence (Pα,q
n (x)) that is orthogonal on [−1, 1] with

respect to the weight function x2q+1(1 − x2)α(1 − x), α > −1, q ∈ N; we obtain the coefficients of
the tree-term recurrence relation(TTRR) by using a different method from the one derived in Atia et al.
(2002) [2]; we prove that the interlacing property does not hold properly for (Pα,q

n (x)); and we also prove

that, if xα+i,q+ j
n,n is the largest zero of Pα+i,q+ j

n (x), xα+ j,q+ j
2n−2 j,2n−2 j < xα+i,q+i

2n−2i,2n−2i , 0 ≤ i < j ≤ n − 1.
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1. Introduction

It is a well known fact that if (pn) is orthogonal with respect to a (real) weight function,
namely w(x), and such weight function is positive on [a, b], then the zeros of pn are real, distinct,
interlace, and lie inside ]a, b[, but such an interlacing property is no longer valid when the weight
is a signed function. In fact, Perron [9] proved that when the w(x) changes sign once then one of
zeros can lie outside of [a, b].

In this paper we prove that such zero can lie into one of the endpoints of the interval, a or b.
We consider the monic polynomial sequence (Pα,q

n (x)) that is orthogonal on [−1, 1] with respect
to the weight function x2q+1(1 − x2)α(1 − x), α > −1, q ∈ N that changes sign once, at x = 0,
and we prove that all the zeros are real, non interlacing, and that one of the zeros is the endpoint
a = −1.

The sequence of monic orthogonal polynomials (Pα,q
n (x)) satisfies for n ≥ 0 the following

TTRR [4]:

Pα,q
n+2(x) = (x − β

α,q
n+1)Pα,q

n+1(x) − γ
α,q
n+1 Pα,q

n (x), (1)

with initial conditions Pα,q
0 (x) = 1, Pα,q

1 (x) = x −β
α,q
0 , being (β

α,q
n ) and (γ

α,q
n ) the coefficients

of the recurrence relation. They were calculated in [2] by using the Laguerre–Freud equations,
and, later on, an explicit expression for Pα,q

n (x) was given in [1]. The main aim of this paper is
to keep studying these polynomials, more precisely, the behavior of the zeros of (Pα,q

n (x)).
People working on zeros of orthogonal polynomials know how difficult it is to explore this

area. In fact, even in the case of Jacobi polynomials results on zeros are presented as conjectures
(see [5,6]).

In order to do this study, we use generalized Gegenbauer polynomials (GGα,µ
n ) that are

orthogonal on [−1, 1] with respect to the weight function |x |
µ(1 − x2)α , α > −1, µ > −1.

Actually, GGα,µ
2n (x) = J

α,
µ−1

2
n (x2) (GGα,µ

n (x) = x
1−(−1)n

2 J
α,

µ−(−1)n

2
[

n
2 ]

(x2)) where the Jn are the

Jacobi polynomials on the interval [0, 1] with weight x
µ−1

2 (1− x)α and are given by the classical
formula

J
α,

µ−1
2

n (x) = x−
µ−1

2 (1 − x)−α


d

dx

n

(xn+
µ−1

2 (1 − x)n+α).

Some properties of GG-polynomials can be found in [10,3].
The structure of the paper is the following: in Section 2 we present basic definitions, some

notations, and a few preliminary results, in Section 3 we obtain some algebraic relations between
(Pα,q

n (x)) and the GG-polynomials as well as the recurrence coefficients of the TTRR fulfilled
by (Pα,q

n (x)), and in Section 4 some results regarding zeros of (Pα,q
n (x)) are given.

2. Basic definitions and preliminary results

The Pochhammer symbol, or shifted factorial, is defined as

(α)0 = 1, (α)n = α(α + 1) · · · (α + n − 1), n ≥ 1. (2)
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The Gauss’s hypergeometric function is

2 F1(α, β; γ ; z) =

∞
n=0

(α)n(β)n

n!(γ )n
zn, α, β ∈ C; γ ∈ C \ Z−; |z| < 1. (3)

When α, or β, is a negative integer the hypergeometric series (3) terminates, i.e. it reduces to a
polynomial (of degree α, or β resp.).

Observe that after straightforward calculation one gets

2 F1(−m, β; γ ; z) =

m
n=0

(−m)n(β)n

n!(γ )n
zn

=

m
n=0

m

n

 (β)n

(γ )n
(−z)n . (4)

Denoting by

2 F1(α, β; γ ; z) ≡ F, 2 F1(α ± 1, β; γ ; z) ≡ F(α ± 1),

2 F1(α, β ± 1; γ ; z) ≡ F(β ± 1), 2 F1(α, β; γ ± 1; z) ≡ F(γ ± 1).

The functions F(α ± 1), F(β ± 1), and F(γ ± 1) are said to be contiguous of F [7, p. 242].
Among the relations of this type we cite the following ones:

(α − β)F − αF(α + 1) + βF(β + 1) = 0, (5)

(α − β)(1 − z)F + (γ − α)F(α − 1) − (γ − β)F(β − 1) = 0. (6)

Definition 2.1. For n ≥ 0, GG polynomials are given by

GGα,µ
2n (x) = x2n

2 F1


−n, −n −

µ

2
+

1
2
; −2n − α −

µ

2
+

1
2
;

1

x2


(7)

GGα,µ
2n+1(x) = x2n+1

2 F1


−n, −n −

µ

2
−

1
2
; −2n − α −

µ

2
−

1
2
;

1

x2


. (8)

3. Algebraic relations between (Pα,q
n (x)) and the GG-polynomials

Proposition 3.1. For any n ≥ 0, and any integer q the following identities hold:

Pα,q
2n (x) = GGα,2q+2

2n (x), (9)

Pα,q
2n+1(x) = (1 + x)GGα+1,2q+2

2n (x). (10)

Remark 3.1. Observe that with (9), we can write the last equation as

Pα,q
2n+1(x) = (1 + x)Pα+1,q

2n (x), (11)

one should point out that we have α in the left hand side whereas we have α + 1 in the right hand
side.

Proof. One can easily show that 1

−1
x2q+1(1 − x2)α(1 − x)xk GGα,2q+2

2n (x)dx = 0, 0 ≤ k ≤ 2n − 1.
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They all follow from the orthogonality property of GG2n , except for k = 0, where the oddity of
x2q+1 is used in addition. It can also be shown that 1

−1
x2q+1(1 − x2)α(1 − x)xk(1 + x)GGα+1,2q+2

2n (x)dx = 0, 0 ≤ k ≤ 2n.

They all follow from the orthogonality property of GG2n , except for k = 2n, where again the
oddity of x2q+1 is important.

These identities immediately imply that the polynomials

Pα,q
2n = GGα,2q+2

2n , Pα,q
2n+1 = (1 + x)GGα+1,2q+2

2n

from a sequence of polynomials, orthogonal with respect to the weight x2q+1(1 − x2)α

(1 − x). �

Remark 3.2. By using Eq. (7) we get for n ≥ 0 the hypergeometric representation for Pα,q
2n (x):

Pα,q
2n (x) = x2n

2 F1


−n, −n − q −

1
2
; −2n − α − q −

1
2
;

1

x2


, (12)

that we can be written as [8, V1 p. 40 (23)]

Pα,q
2n (x) =

(−1)n


q +
3
2


n

n + q + α +
3
2


n

2 F1


−n, n + q + α +

3
2
; q +

3
2
; x2


. (13)

Once we have got these algebraic relations we can compute the recurrences coefficients
associated to the polynomial sequence (Pα,q

n (x)).

Remark 3.3. Notice that due the expression of the integrals and the weight functions we can find
a link between the polynomials (Pα,q

n ) and GG-polynomials, which was not possible to do with
Laguerre–Freud equation [2] or with the explicit representation of Pα,q

n (x) [1].

Proposition 3.2. The recurrence coefficients of the monic polynomial sequence (Pα,q
n (x))

fulfills (1) are given by

β
α,q
n = (−1)n+1, n ≥ 0 (14)

γ
α,q
2n = −2

n(2n + 2q + 1)

(4n + 2α + 2q + 1)(4n + 2α + 2q + 3)
, n ≥ 1 (15)

γ
α,q
2n+1 = −2

(n + α + 1)(2n + 2α + 2q + 3)

(4n + 2α + 2q + 3)(4n + 2α + 2q + 5)
, n ≥ 0. (16)

Proof. These recurrence coefficients follow from the contiguity relations between hypergeomet-
ric functions. �

4. Zeros of (Pα,q
n )

Using (9) and (10) we can state the following result:

Theorem 4.1. The following statements hold:
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• All the zeros of Pα,q
n (x) are real.

• The Perron’s zero is −1.
• The zeros of Pα,q

2n (x) and the zeros of Pα,q
2n+1(x) do not interlace.

Proof. By (9) and (10), the first two statements follow. To prove the third one, it is sufficient to
point out that the zeros of GGα,µ

2n and GGα+1,µ
2n are non-interlacing. However, both polynomials

are even of the same degree and non-zero at the origin. It is straightforward that two such
polynomials cannot have interlacing zero sets. The zeros do not coincide because the parameter
α becomes α + 1 and µ is unchanged. �

Proposition 4.2. If we denote by xα+i,q+ j
n,n the largest zero of Pα+i,q+ j

n , then

xα+ j,q+ j
2n−2 j,2n−2 j < xα+i,q+i

2n−2i,2n−2i , 0 ≤ i < j ≤ n − 1. (17)

Proof. Pα,q
2n (x) = GGα,2q+2

2n (x) = J
α,

2q+1
2

n (x2), then zeros of J
α,

2q+1
2

n are the same as those of

K
α,

2q+1
2

n with K
α,

2q+1
2

n (x) = ( d
dx )n(xn+

2q+1
2 (1 − x)α+n) thus

K
α,

2q+1
2

n (x) =
d

dx
K

α+1,
2q+3

2
n−1 (x)

this implies that between two consecutive zeros of K
α,

2q+1
2

n there exists one zero of K
α+1,

2q+3
2

n−1 and

then the largest zero of Pα,q
2n is greater than Pα+1,q+1

2(n−1) and so on for the largest zero of Pα+1,q+1
2(n−1) ,

Pα+2,q+2
2(n−2) , . . . . �

Remark 4.1. Using Proposition 4.2. and the relation

xα+k,q+l
2n+1,m = xα+k+1,q+l

2n,m−1 ; k, l ∈ N, 2 ≤ m ≤ 2n + 1,

with xα+k,q+l
2n+1,1 = −1, we obtain

xα+ j−1,q+ j
2n−2 j+1,2n−2 j+1 < xα+i−1,q+i

2n−2i+1,2n−2i+1, 0 ≤ i < j ≤ n.
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