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a b s t r a c t

We define a symmetric derivative on an arbitrary nonempty closed subset of the real
numbers andderive someof its properties. It is shown that real-valued functions defined on
time scales that are neither delta nor nabla differentiable can be symmetric differentiable.
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1. Introduction

Symmetric properties of functions are very useful in a large number of problems. Particularly in the theory of trigono-
metric series, applications of such properties are well known [1]. Differentiability is one of the most important properties
in the theory of functions of real variables. However, even simple functions such as

f (t) = |t| , g(t) =


t sin

1
t
, t ≠ 0

0, t = 0,
h(t) =

1
t2

, t ≠ 0, (1.1)

do not have a (classical) derivative at t = 0. Authors like Riemann, Schwarz, Peano, Dini, and de la Vallée-Poussin extended
the classical derivative in different ways, depending on the purpose [1]. One of those notions is the symmetric derivative:

f s(t) = lim
h→0

f (t + h) − f (t − h)
2h

. (1.2)

While the functions in (1.1) do not have ordinary derivatives at t = 0, they have symmetric derivatives: f s(0) = g s(0) =

hs(0) = 0. For a deeper understanding of the symmetric derivative and its properties, we refer the reader to the specialized
monograph [2]. Here we note that the symmetric quotient (f (t + h) − f (t − h)) /(2h) has, in general, better convergence
properties than the ordinary difference quotient [3], leading naturally to the so-called h-symmetric quantum calculus [4].
A more recent theory is the general time scale calculus. In 1988, Hilger introduced the calculus on time scales as a gener-
alization of continuous and discrete time theories, obviating the need for separate proofs and highlighting the differences
between them [5,6]. Here we introduce the notion of symmetric derivative on time scales, initiating the corresponding
theory and putting into context some of the recent results found in the literature.

The article is organized as follows. In Section 2 we review the necessary concepts and we fix notations. The results are
then given in Section 3, where we define the time scale symmetric derivative and derive some of its properties. Applications
are found in the context of quantum calculus [4]. Finally, we show in Section 4 that the new symmetric derivative is a
generalization of the diamond-α derivative [7], which brings new insights.
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2. Preliminary notions and notations

A nonempty closed subset of R is called a time scale and is denoted by T. We assume that a time scale has the topology
inherited from R with the standard topology. Two jump operators are considered: the forward jump operator σ : T → T,
defined by σ(t) := inf {s ∈ T : s > t} with inf ∅ = supT (i.e., σ(M) = M if T has a maximum M), and the backward jump
operator ρ : T → T defined by ρ(t) := sup {s ∈ T : s < t} with sup∅ = infT (i.e., ρ(m) = m if T has a minimum m).
A point t ∈ T is said to be right-dense, right-scattered, left-dense or left-scattered if σ(t) = t, σ (t) > t, ρ(t) = t or
ρ(t) < t , respectively. A point t ∈ T is dense if it is right and left dense; isolated if it is right and left scattered. If supT is
finite and left-scattered, then we define Tκ

:= T \ {supT}, otherwise Tκ
:= T; if infT is finite and right-scattered, then

Tκ := T \ {infT}, otherwise Tκ := T. We set Tκ
κ := Tκ ∩ Tκ and we denote f ◦ σ by f σ and f ◦ ρ by f ρ .

3. Main results

In quantum calculus, the h-symmetric difference and the q-symmetric difference, h > 0 and 0 < q < 1, are defined by

D̃h(t) =
f (t + h) − f (t − h)

2h
(3.1)

and

D̃q(t) =
f (qt) − f


q−1t


q − q−1


t

, t ≠ 0, (3.2)

respectively [4]. Here we propose a general notion of symmetric derivative on time scales that encompasses all the three
definitions (1.2), (3.1) and (3.2).

Definition 3.1. We say that a function f : T → R is symmetric continuous at t ∈ T if, for any ε > 0, there exists a
neighborhood Ut ⊂ T of t such that for all s ∈ Ut for which 2t − s ∈ Ut one has |f (s) − f (2t − s)| 6 ε.

It is easy to see that continuity implies symmetric continuity.

Proposition 3.2. Let T be a time scale. If f : T → R is a continuous function, then f is symmetric continuous.

Proof. Since f is continuous at t ∈ T, then, for any ε > 0, there exists a neighborhood Ut of t such that |f (s) − f (t)| < ε
2

and |f (2t − s) − f (t)| < ε
2 for all s ∈ Ut for which 2t − s ∈ Ut . Thus, |f (s) − f (2t − s)| 6 |f (s) − f (t)|+ |f (t) − f (2t − s)|

< ε. �

The next example shows that symmetric continuity does not imply continuity.

Example 3.3. Consider the function f : R → R defined by

f (t) =


0, if t ≠ 0,
1, if t = 0.

Function f is symmetric continuous at 0: for any ε > 0, there exists a neighborhood Ut of t = 0 such that |f (s) − f (−s)| =

0 < ε for all s ∈ Ut for which −s ∈ Ut . However, f is not continuous at 0.

Definition 3.4. Let f : T → R and t ∈ Tκ
κ . The symmetric derivative of f at t , denoted by f ♦(t), is the real number (provided

it exists) with the property that, for any ε > 0, there exists a neighborhood U ⊂ T of t such that[f σ (t) − f (s) + f (2t − s) − f ρ(t)] − f ♦ (t) [σ(t) + 2t − 2s − ρ(t)]
 6 ε |σ(t) + 2t − 2s − ρ(t)|

for all s ∈ U for which 2t − s ∈ U . A function f is said to be symmetric differentiable provided f ♦(t) exists for all t ∈ Tκ
κ .

Some useful properties of the symmetric derivative are given in Theorem 3.5.

Theorem 3.5. Let f : T → R and t ∈ Tκ
κ . The following holds:

(i) Function f has at most one symmetric derivative at t.
(ii) If f is symmetric differentiable at t, then f is symmetric continuous at t.
(iii) If f is continuous at t and t is not dense, then f is symmetric differentiable at t with f ♦(t) =

f σ (t)−f ρ (t)
σ (t)−ρ(t) .

(iv) If t is dense, then f is symmetric differentiable at t if and only if the limit lims→t
f (2t−s)−f (s)

2t−2s exists as a finite number. In this
case f ♦(t) = lims→t

f (2t−s)−f (s)
2t−2s = limh→0

f (t+h)−f (t−h)
2h .

(v) If f is symmetric differentiable and continuous at t, then f σ (t) = f ρ(t) + f ♦(t) [σ(t) − ρ(t)].
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Proof. (i) Suppose that f has two symmetric derivatives at t , f ♦

1 (t) and f ♦

2 (t). Then, there exists a neighborhood U1 of t such
that [f σ (t) − f (s) + f (2t − s) − f ρ(t)] − f ♦

1 (t) [σ(t) + 2t − 2s − ρ(t)]
 6

ε

2
|σ(t) + 2t − 2s − ρ(t)|

for all s ∈ U1 for which 2t − s ∈ U1, and a neighborhood U2 of t such that[f σ (t) − f (s) + f (2t − s) − f ρ(t)] − f ♦

2 (t) [σ(t) + 2t − 2s − ρ(t)]
 6

ε

2
|σ(t) + 2t − 2s − ρ(t)|

for all s ∈ U2 for which 2t − s ∈ U2. Therefore, for all s ∈ U1 ∩ U2 for which 2t − s ∈ U1 ∩ U2,

|f ♦

1 (t) − f ♦

2 (t) | =

f ♦

1 (t) − f ♦

2 (t)
 σ(t) + 2t − 2s − ρ(t)

σ (t) + 2t − 2s − ρ (t)


=

1
|σ(t) + 2t − 2s − ρ(t)|

 [f σ (t) − f (s) + f (2t − s) − f ρ(t)]

− f ♦

2 (t) [σ(t) + 2t − 2s − ρ(t)]

− [f σ (t) − f (s) + f (2t − s) − f ρ(t)] + f ♦

1 (t) [σ(t) + 2t − 2s − ρ(t)]


6
1

|σ(t) + 2t − 2s − ρ (t)|

 [f σ (t) − f (s) + f (2t − s) − f ρ(t)]

− f ♦

2 (t) [σ(t) + 2t − 2s − ρ(t)]


+

[f σ (t) − f (s) + f (2t − s) − f ρ(t)] − f ♦

1 (t) [σ(t) + 2t − 2s − ρ(t)]


6 ε.

(ii) From the hypothesis, for any ϵ∗ > 0, there exists a neighborhood U of t such that[f σ (t) − f (s) + f (2t − s) − f ρ(t)] − f ♦ (t) [σ(t) + 2t − 2s − ρ(t)]
 6 ε∗

|σ(t) + 2t − 2s − ρ(t)|

for all s ∈ U for which 2t − s ∈ U . Therefore, for all s ∈ U∩]t − ε∗, t + ε∗
[,

|f (2t − s) − f (s)| 6
[f σ (t) − f (s) + f (2t − s) − f ρ(t)] − f ♦(t) [σ(t) + 2t − 2s − ρ(t)]


+
[f σ (t) − f ρ(t)] − f ♦(t) [σ(t) + 2t − 2s − ρ(t)]


6
[f σ (t) − f (s) + f (2t − s) − f ρ(t)] − f ♦(t) [σ(t) + 2t − 2s − ρ(t)]


+
[f σ (t) − f (t) + f (t) − f ρ(t)] − f ♦(t) [σ(t) + 2t − 2t − ρ(t)]

+ 2
f ♦(t)

 |t − s|

6 ε∗
|σ(t) + 2t − 2s − ρ(t)| + ε∗

|σ(t) + 2t − 2t − ρ(t)| + 2
f ♦(t)

 |t − s|

6 ε∗
|σ(t) − ρ(t)| + 2ε∗

|t − s| + ε∗
|σ(t) − ρ(t)| + 2

f ♦(t)
 |t − s|

= 2ε∗
|σ(t) − ρ(t)| + 2


ε∗

+
f ♦(t)

 |t − s|

6 2ε∗
|σ(t) − ρ (t)| + 2


ε∗

+
f ♦(t)

 ε∗

= 2ε∗

|σ(t) − ρ(t)| + ε∗

+
f ♦(t)

 ,
proving that f is symmetric continuous at t .

(iii) Suppose that t ∈ Tκ
κ is not dense and f is continuous at t . Then,

lim
s→t

f σ (t) − f (s) + f (2t − s) − f ρ(t)
σ (t) + 2t − 2s − ρ(t)

=
f σ (t) − f ρ(t)
σ (t) − ρ(t)

.

Hence, for any ε > 0, there exists a neighborhood U of t such that f σ (t) − f (s) + f (2t − s) − f ρ(t)
σ (t) + 2t − 2s − ρ(t)

−
f σ (t) − f ρ(t)
σ (t) − ρ(t)

 6 ε

for all s ∈ U for which 2t − s ∈ U . It follows that
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f σ (t) − f ρ(t)
σ (t) − ρ(t)

[σ(t) + 2t − 2s − ρ(t)]


6 ε [σ(t) + 2t − 2s − ρ(t)] ,

which proves that f ♦(t) = (f σ (t) − f ρ(t)) / (σ (t) − ρ(t)).
(iv) Assume that f is symmetric differentiable at t and t is dense. Let ε > 0 be given. Then, there exists a neighborhood

U of t such that[f σ (t) − f (s) + f (2t − s) − f ρ(t)] − f ♦(t) [σ(t) + 2t − 2s − ρ(t)]
 6 ε |σ(t) + 2t − 2s − ρ(t)|

for all s ∈ U for which 2t − s ∈ U . Since t is dense,
[−f (s) + f (2t − s)] − f ♦(t) [2t − 2s]

 6 ε |2t − 2s| for all s ∈ U for

which 2t − s ∈ U . It follows that
 f (2t−s)−f (s)

2t−2s − f ♦(t)
 6 ε for all s ∈ U with s ≠ t . Therefore, we get the desired result:

f ♦(t) = lims→t
f (2t−s)−f (s)

2t−2s . Conversely, let us suppose that t is dense and the limit lims→t
f (2t−s)−f (s)

2t−2s =: L exists. Then, there

exists a neighborhood U of t such that
 f (2t−s)−f (s)

2t−2s − L
 6 ε for all s ∈ U for which 2t − s ∈ U . Because t is dense, we have f σ (t)−f (s)+f (2t−s)−f ρ (t)

σ (t)+2t−2s−ρ(t) − L
 6 ε. Therefore,

|[f σ (t) − f (s) + f (2t − s) − f ρ(t)] − L [σ(t) + 2t − 2s − ρ(t)]| 6 ε |σ(t) + 2t − 2s − ρ (t)| ,

which leads us to the conclusion that f is symmetric differentiable and f ♦(t) = L. Note that if we use the substitution
s = t + h, then f ♦(t) = limh→0

f (t+h)−f (t−h)
2h .

(v) If t is a dense point, then σ(t) = ρ(t) and f σ (t) = f ρ(t) + f ♦(t) [σ(t) − ρ(t)]. If t is not dense, and since f is
continuous, then f ♦(t) =

f σ (t)−f ρ (t)
σ (t)−ρ(t) ⇔ f σ (t) = f ρ(t) + f ♦(t) [σ(t) − ρ(t)]. �

Example 3.6. Let T = R. Then our symmetric derivative coincides with the classic symmetric derivative (1.2): f ♦
= f s.

Example 3.7. Let T = hZ, h > 0. Then the symmetric derivative is the symmetric difference operator (3.1): f ♦
= D̃h.

Example 3.8. Let T = qZ, 0 < q < 1. Then the symmetric derivative coincides with the q-symmetric difference operator
(3.2): f ♦

= D̃q.

Remark 3.9. Independently of the time scale T, the symmetric derivative of a constant is zero and the symmetric derivative
of the identity function is one.

Remark 3.10. An alternative way to define the symmetric derivative of f at t ∈ Tκ
κ consists in saying that the limit

f ♦(t) = lims→t
f σ (t)−f (s)+f (2t−s)−f ρ (t)

σ (t)+2t−2s−ρ(t) = limh→0
f σ (t)−f (t+h)+f (t−h)−f ρ (t)

σ (t)−2h−ρ(t) exists.

Theorem 3.11. Let f , g : T → R be two symmetric differentiable functions at t ∈ Tκ
κ and λ ∈ R. The following holds:

(i) Function f + g is symmetric differentiable at t with (f + g)♦ (t) = f ♦(t) + g♦(t).
(ii) Function λf is symmetric differentiable at t with (λf )♦ (t) = λf ♦(t).
(iii) If f and g are continuous at t, then fg is symmetric differentiable at t with (fg)♦(t) = f ♦(t)gσ (t) + f ρ(t)g♦(t).

(iv) If f is continuous at t and f σ (t)f ρ(t) ≠ 0, then 1/f is symmetric differentiable at t with


1
f

♦

(t) = −
f♦(t)

f σ (t)f ρ (t) .

(v) If f and g are continuous at t and gσ (t)gρ(t) ≠ 0, then f /g is symmetric differentiable at t with


f
g

♦

(t) =

f♦(t)gρ (t)−f ρ (t)g♦(t)
gσ (t)gρ (t) .

Proof. (i) For t ∈ Tκ
κ we have

(f + g)♦ (t) = lim
s→t

(f + g)σ (t) − (f + g) (s) + (f + g) (2t − s) − (f + g)ρ (t)
σ (t) + 2t − 2s − ρ(t)

= lim
s→t

f σ (t) − f (s) + f (2t − s) − f ρ(t)
σ (t) + 2t − 2s − ρ(t)

+ lim
s→t

gσ (t) − g(s) + g (2t − s) − gρ(t)
σ (t) + 2t − 2s − ρ(t)

= f ♦(t) + g♦(t).

(ii) Let t ∈ Tκ
κ and λ ∈ R. Then,

(λf )♦ (t) = lim
s→t

(λf )σ (t) − (λf ) (s) + (λf ) (2t − s) − (λf )ρ (t)
σ (t) + 2t − 2s − ρ(t)

= λ lim
s→t

f σ (t) − f (s) + f (2t − s) − f ρ(t)
σ (t) + 2t − 2s − ρ(t)

= λf ♦(t).
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(iii) Let us assume that t ∈ Tκ
κ and f and g are continuous at t . If t is dense, then

(fg)♦(t) = lim
h→0

(fg) (t + h) − (fg) (t − h)
2h

= lim
h→0

f (t + h) − f (t − h)
2h

g (t + h) + lim
h→0

g (t + h) − g (t − h)
2h

f (t − h)

= f ♦(t)gσ (t) + f ρ(t)g♦(t).

If t is not dense, then

(fg)♦(t) =
(fg)σ (t) − (fg)ρ(t)

σ (t) − ρ(t)
=

f σ (t) − f ρ(t)
σ (t) − ρ(t)

gσ (t) +
gσ (t) − gρ(t)
σ (t) − ρ(t)

f ρ(t)

= f ♦(t)gσ (t) + f ρ(t)g♦(t)

proving the intended equality.

(iv) Using the relation


1
f × f


(t) = 1we canwrite that 0 =


1
f × f

♦

(t) = f ♦(t)


1
f

σ

(t)+f ρ(t)


1
f

♦

(t). Therefore,
1
f

♦

(t) = −
f♦(t)

f σ (t)f ρ (t) .
(v) Let t ∈ Tκ

κ . Then,
f
g

♦

(t) =


f ×

1
g

♦

(t) = f ♦(t)

1
g

σ

(t) + f ρ(t)

1
g

♦

(t)

=
f ♦(t)
gσ (t)

+ f ρ(t)


−
g♦(t)

gσ (t)gρ(t)


=

f ♦(t)gρ(t) − f ρ(t)g♦(t)
gσ (t) gρ(t)

. �

Example 3.12. The symmetric derivative of f (t) = t2 is f ♦(t) = σ(t) + ρ(t).

Example 3.13. The symmetric derivative of f (t) = 1/t is f ♦(t) = −
1

σ(t)ρ(t) .

4. Particular cases

In Section 3 we introduced the symmetric derivative on a time scale T and derived some of its properties. It has been
shown that the newnotion unifies the symmetric derivatives of classical analysis [2] and quantum calculus [4]. Herewe note
that our symmetric derivative is different from the delta and nabla derivatives considered in the time scale literature [5,6,8].
A simple example of a function that is neither delta nor nabla differentiable, in the sense of time scales, but that is symmetric
differentiable, is the absolute value function.

Example 4.1. Let T be a time scale with 0 ∈ Tκ
κ and f : T → R be defined by f (t) = |t|. This function is not differentiable

at point t = 0 in the sense of time scales [5–8]. However, the symmetric derivative is always well defined:

f ♦(0) = lim
h→0

f σ (0) − f (0 + h) + f (0 − h) − f ρ (0)
σ (0) − 2h − ρ(0)

= lim
h→0

σ(0) + ρ(0)
σ (0) − 2h − ρ(0)

,

so that f ♦(0) = 0 if 0 is dense, and f ♦(0) = (σ (0) + ρ(0))/(σ (0) − ρ(0)) otherwise.

In theparticular case a function is simultaneously delta andnabla differentiable [6,8], Proposition 4.2 shows that a relation
can be done between our symmetric derivative and the recent diamond-α derivative [7, Corollary 4.4].

Proposition 4.2. If f is delta and nabla differentiable, then f is symmetric differentiable and, for each t ∈ Tκ
κ , f

♦(t) = γ (t)
f ∆(t) + (1 − γ (t)) f ∇(t), where

γ (t) = lim
s→t

σ (t) − s
σ(t) + 2t − 2s − ρ(t)

. (4.1)

Proof. Note that

f ♦(t) = lim
s→t

f σ (t) − f (s) + f (2t − s) − f ρ (t)
σ (t) + 2t − 2s − ρ(t)

= lim
s→t


σ(t) − s

σ(t) + 2t − 2s − ρ(t)
f σ (t) − f (s)

σ (t) − s
+

(2t − s) − ρ(t)
σ (t) + 2t − 2s − ρ(t)

f (2t − s) − f ρ (t)
(2t − s) − ρ(t)



= lim
s→t


σ(t) − s

σ(t) + 2t − 2s − ρ(t)
f ∆(t) +

(2t − s) − ρ(t)
σ (t) + 2t − 2s − ρ(t)

f ∇(t)


.
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For each t ∈ T, define γ (t) := lims→t
σ(t)−s

σ(t)+2t−2s−ρ(t) and γ̃ (t) := lims→t
(2t−s)−ρ(t)

σ (t)+2t−2s−ρ(t) . It is clear that γ (t)+ γ̃ (t) = 1. Note
that if t ∈ T is dense, then

γ (t) = lim
s→t

σ (t) − s
σ(t) + 2t − 2s − ρ(t)

= lim
s→t

t − s
2t − 2s

=
1
2

and, therefore, γ̃ (t) = 1/2. On the other hand, if t ∈ T is not dense, then

γ (t) = lim
s→t

σ (t) − s
σ(t) + 2t − 2s − ρ(t)

=
σ(t) − t

σ(t) − ρ(t)

and γ̃ (t) =
t−ρ(t)

σ (t)−ρ(t) . Hence, functions γ , γ̃ : T → R are well defined and, if f is delta and nabla differentiable, then
f ♦(t) = γ (t)f ∆(t) + γ̃ (t)f ∇(t) = γ (t)f ∆(t) + (1 − γ (t)) f ∇(t). �

Remark 4.3. Functions γ , γ̃ : T → R are bounded and nonnegative: 0 6 γ (t), γ̃ (t) 6 1. This is due to the fact that
ρ(t) 6 t 6 σ(t) for every t ∈ T.

Corollary 4.4. If f is delta and nabla differentiable and if function γ (·) in (4.1) is a constant, γ (t) ≡ α, then the symmetric
derivative coincides with the diamond-α derivative: f ♦(t) = αf ∆(t) + (1 − α)f ∇(t).

In the classical case T = R it can be proved that ‘‘A continuous function is necessarily increasing in any interval in which
its symmetric derivative exists and is positive’’ [2]. We note that this result is not valid for the symmetric derivative on
time scales. For instance, consider the time scale T = N and function f (n) = n if n is odd and f (n) = 10n if n is even.
The symmetric derivative of f is given by f ♦(n) =

f σ (n)−f ρ (n)
σ (n)−ρ(n) =

10(n+1)−10(n−1)
(n+1)−(n−1) = 10 for n odd, while for n even one has

f ♦(n) =
f σ (n)−f ρ (n)
σ (n)−ρ(n) =

(n+1)−(n−1)
(n+1)−(n−1) = 1. Clearly, function f is non-increasing although its symmetric derivative is always

positive. In this example, the symmetric derivative coincides with the diamond-α derivative, α = 1/2, showing that there
is an inconsistency in Corollary 2.1 of [9].
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