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Abstract 

The dom&ation number of a graph is the minimum number of vertices in a set S such that 
every vertex of the graph is either in S or adjacent to a member of S. The bondage number of 
a graph G is the cardinality of a smallest set of edges whose removal results in a graph with 
domination number greater than that of G. We prove that a graph with p vertices and bondage 
number b has at least p(b + 1)/4 edges, and for each b there is at least one p for which this 
bound is sharp. @ 1999 Elsevier Science B.V. All rights reserved 
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1. Introduction and previous results 

For a vertex x in a graph G = (V,E), the closed neighbourhood of x is the set N[x] 

consisting of x together with all the vertices of G adjacent to x. The set of neighbours 

of x is the open neighbourhood N(x ) .  The set A C_ V is a dominating set of G if ,4 

has a nonempty intersection with N[u] for each u C V. If, from among all dominating 

sets of G, A has minimum cardinality, we call A a 7-set of G and its cardinality IA 

is the domination number 7(G) of G. 

It is immediate that y(H)>~7(G) when H is a spanning subgraph of G. Every con- 

nected graph G has a spanning tree T with 7 ( G ) = 7 ( T )  and so, in general, a graph 

will have nonempty sets of edges FC_E for which ? ' ( G -  F ) = ? , ( G ) .  Such a set F 

will be called an inessential set of edges in G. However, many graphs also possess 

single edges e for which 7 ( G -  e ) > 7 ( G ) .  In [6], the present authors give a structural 
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characterization of the class of trees in which every single edge is inessential while 
later, in [5], a linear recognition algorithm and an alternate characterization is presented. 

One measure of the stability of the domination number of G under edge removal 
is the bondage number b(G) defined in [4] (although actually presented at the SIAM 
meeting on Discrete Math held at M.I.T. in 1982 but appearing in print much later; 
this concept was also called the domination line-stability in [1]). In particular, b(G) 
is the largest positive integer k so that every subset of edges F C E with IF] = k -  1 
is inessential. Fink et al. [4] determined the bondage numbers of cycles, paths and 
complete multipartite graphs and showed that b(T)~<2 for any tree T. The previously 
mentioned result in [6] can thus be interpreted as a characterization of trees T with 
b(T) =2 .  

Along with the exact values for b(G) computed in [4] several general upper bounds 
were also derived. In particular, the following theorem was proved. 

Theorem A (Bauer et al. [1]; Fink et al. [4]). I f  G is a nonempty graph, then 

b(G) <~ min (deg(u) + deg(v) - 1 ). 
uvcE(G) 

In [7], this result is improved and, in [11], Wang, by careful consideration of the 
nature of the edges from the neighbours of u and v, further refines this bound. 

In [4], the authors conjectured that if G is a nonempty graph, then b(G)<~A(G)+ 1, 
where A( G)=  maxxev deg(x). As noted in [1], if Fv is the set of edges incident to v, 
then ?(G-F,:)>7(G) unless it is the case that y ( G -  v ) = 7 ( G ) -  1. This tended to 
support this conjecture. Additional support was given by Chvfital and Cook [3], where 
it is shown that b*(G)<~ A(G) where b*(G) (the fractional bondage number of G) is 
the linear programming relaxation of an integer linear program that gives the bondage 
number. 

However, this conjecture was shown to be false by Teschner [8] as well as by the 
present authors [7]. In [8], the graph/£3 x K3 was given as a counterexample while in 
[7] the more general theorem given below was proved. 

Theorem B (Hartnell and Rail [7]). For a positive integer n>~3, let G, be the carte- 
sian product Kn × K,. Then b(Gn) = 3(n - 1) = 3A(G,). 

A proof of this theorem also appears later in [10]. In [9], this bound is shown to be 
sharp for graphs with domination number 3 or smaller. 

Still another upper bound (see [7]) is the following result, in terms of the maximum 
degree and the edge connectivity of a graph G. 

Theorem C (Hartnell and Rail [7]). I f  G has edge connectivity k, then b(G)<~A(G)+ 
k - 1 .  

In what follows, we will establish a lower bound on the number of edges in a graph 
with a specified bondage number and a fixed number of  vertices. In doing so we also 
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show that the bondage number itself is bounded above by twice the average degree of 
the vertices in the graph minus one. This, in general, improves the bound of twice the 
maximum degree minus one which follows immediately from Theorem A. 

2. New bounds 

Before we address the question on bondage we make a general observation regarding 

the degrees of  vertices that are within distance 2 of  each other. 
For any connected graph G, let dega(G) represent the value of the expression 

~,EVtC) deg(v)/I V(G)I. 

Lemma 1. For any connected 9raph G, there exists a pair o f  vertices, say u and e, 

that are either adjacent or at distance 2 from each other, with the properO, that 

deg(u) ÷ deg(v) ~< 2 dega(G ). 

Proof. Assume that the lemma is false and let G be a graph where the result does not 
hold. 

Let the vertices of degree less than or equal to dega(G ) be S = {sl,s2 . . . . .  s,,,} and 

the vertices of  degree strictly greater than dega(G ) be F = {fi,  ~ . . . . .  f ,}.  
Observe that no pair of  vertices of  S can be joined by an edge. Hence, each 

si E S has only vertices in F as neighbours. Also note that each ~ E F has at most 
one vertex of S as a neighbour otherwise, if  there were two, they would contradict 
our assumption. 

Now we proceed to sum the degrees of all vertices in the graph as follows. For 
each si E S we consider a neighbour ~ E F  and take deg(s i )+  deg(fj). Observe that 
deg(si) + deg( f j )>2dega(G) .  Furthermore, by the above remarks, these neighbours 
in F must be distinct. After adding m such pairs (to exhaust S), the degrees of any 
remaining members of  F are included. But the total sum of degrees is greater than 
]V(G)ldega(G ) which is impossible. The lemma follows. 

We now turn our attention to the main result. 
First, recall [1,4] that for any graph G, if  u and v are adjacent, then b(G)<<, deg(u)+ 

deg(v) - 1. 
We extend this result to include distance 2 vertices. 

Theorem 2. I f  u and v are vertices o f  G such that the distance between them is al 

most 2, then b(G) <~ deg(u) + deg(v) - 1. 

Proof. By [1,4], if u and v are adjacent, the result holds. Now consider u and v non- 
adjacent but with w, say, the common neighbour of  u and v. Delete all edges meeting u 
and all edges incident with v except for the one to w. Consider a y-set of the resulting 
graph G r. Since v is a leaf in G ~ we may, without loss of  generality, assume that w is; 
in the y-set of  G ~. But then all neighbours of  u are dominated by vertices other than 
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u (in this 7-set) and hence, in G, we could use the same set of vertices, but without 

u itself, to dominate G. The theorem follows. [] 

We are now in a position to establish the following. 

Theorem 3. For any connected graph G, with p vertices and bondage number b(G), 

the number of edges is at least (p/4)(b(G) + 1 ). 

Proof. Let G be a graph satisfying the hypothesis. Let dega(G ) represent the average 
degree. By Lemma 1 we know there is at least one pair of  vertices, say u and v, that 
are either adjacent or at distance 2 from each other, with the property that deg (u )+  
deg(v)~<2dega(G ). In either case by Theorem 2 we have 

b(G) + 1 ~< deg(u) + deg(v) ~<2(dega(G)). (1) 

But 

21E(G)I = p(deg~(G)) ~ 4]E(G)] = 2p(dega(G)) ~> p(b(G) + 1 ) (by (1)) 

IE(G)I>~P(b(G)+ 1). 

Corollary 4. b(G)<~2(dega(G))- 1. 

[] 

We observe that for each value of b(G), the lower bound given in the theorem is 
sharp for some values of  p. 

I f  b(G) = 1, simply take p = 2 (necessary for G to be connected) and G isomorphic 

to/£2. 
I f  b(G)= 2, consider p = 4 and G isomorphic to a path on four vertices. 
For b(G)=k,  k > 2 ,  let G be the graph on p = 4 m  vertices constructed as 

follows. Start with the Harary graph (see [2]) on 2m vertices. In particular, for k 
even take a cycle on 2m vertices and then join vertices i and j if i - Lk/2] <~j <~i + 
LU2J (working modulo 2m). For k odd add the main diagonals. Observe that each ver- 
tex is of  degree k -  1. Now attach a leaf to each of the 2m vertices to 
form G. 

It was shown in [1] (and later in [6]) that the star is the unique graph with the 
property that the bondage number is 1 and the deletion of any edge results in the 
domination number increasing. We conclude by determining when this very special 
property holds for higher bondage number. Let us call a graph uniJormly bonded if 
it has bondage number b and the deletion of an), b edges results in a graph with 
increased domination number. 

Theorem 5. The only uniformly bonded graphs with bondage number 2 are C3 and 
P4. The unique graph with bondage number 3 that is uniformly bonded is the graph 
C4. There are no such graphs for bondage number greater than 3. 
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Proof .  W e  first observe  that i f  one deletes a single edge f rom a uni formly  bonded 

graph with bondage  number  2 then the resulting graph must  be either a star or a 

col lect ion o f  stars (since only one edge r emoved  in fact there can be at most  two 

stars). 

Say after one edge is deleted, we  obtain one star. If  this star has 3 or more leaves, 

then the original  graph has bondage  number  1. If  this star has two leaves, then we 

started with C~. W e  cannot  obtain K2 nor Kt. 

Say after one edge is deleted, we obtain two stars. I f  one o f  these stars has three 

or more  vert ices and the other  at least two, then the original  graph must have had 

bondage  number  1 (delete  edge to a leaf  in star o f  order 3 or more) .  If  onc star 

has order 1 and the other  order  4 or more,  then the original graph again must  have 

had bondage  number  1. I f  one star has order  l and the other  3, then the original 

graph must  be P4 i f  the bondage  number  is 2. The original  graph could not be any 

smaller.  

N o w  consider  un i formly  bonded  graphs with bondage  number  3. Delet ing any single 

edge must  yield C3 or P4 or  a col lect ion o f  these. But more  than one component  would  

not be possible  as then one could delete one further edge from each without  affecting 

the dominat ion  number.  So we  must  obtain either C3 ( imposs ib le)  or P4 by delet ing 

one edge. It is easy to ver i fy  that the original  graph must  be C4. 

Next  consider  a graph with  bondage  number  4 that is uni formly bonded. But then 

delet ing a single edge results in C4 (as more  than one component  would  a l low two 

edges to be deleted f rom one and one edge f rom another).  But Ca with a diagonal 

does not have bondage  number  4 so there is no such graph. Hence  there are none for 

higher  values  o f  b. ~Z 
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