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Abstract

Chen, C. and J. Wang, Factors in graphs with odd-cycle property, Discrete Mathematics 112 (1993)
29-40.

We present some conditions for the existence of a (g, f)-factor or a (g, f')-parity factor in a graph
G with the odd-cycle property that any two odd cycles of G either have a vertex in common or are
joined by an edge.

1. Definitions and notations

We consider finite graphs G with vertex set ¥(G) and edge set E(G). For any
ve V(G), we denote by dg(v) the degree of vin G. For any S < V(G), we denote by G[S]
the subgraph of G induced by S, and by G— S the subgraph of G obtained from G by
deleting the vertices in S together with their incident edges. Similarly, for any
M S E(G), we write G—M for the subgraph of G obtained from G by deleting the
edges in M. If S and T are subsets of V(G), we denote by e (S, T) the number of edges
of G joining a vertex in S to a vertex in T. Write

Q;(G)={v|veV(G) and d¢(v)=j},

and put g;(G)=|Q;(G)|. In particular, let i(G)=qo(G), ie. i(G) is the number of the
isolated vertices of G. If G is a bipartite graph with bipartition (X, Y), then write
G=(X,Y; E(G)). Let Z denote the set of nonnegative integers.
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Let G be a graph, and g, f: V(G)—Z such that
g(x)< f(x) for all xeV(G). (1)

Then a spanning subgraph F of G is called a (g, f)-factor if dp(x)e{g(x),
g(x)+1,..., f(x)} for all xeV(G). Furthermore, if

g(x)= f(x) (mod 2) for all xeV(G), )

and dr(x)e{g(x), g(x)+2, ..., f(x)}, then the spanning subgraph F is called a (g, f)-
parity factor. Particularly, both (g, f)-factors and (g, f)-parity factors are f-factors or
k-factors according as g(x)=f(x) or g{x)= f(x)=k for all xeV(G). It is clear that if
G has a (g, f)-factor, then either

Y f(x)=0 (mod 2) (3)
xeV (G)
or
g(y)<f(y) for some yeV(G), )

and if G has a (g, f)-parity factor, then (3) must hold. In addition, G is said to have the
odd-cycle property if any two odd cycles of G either have a vertex in common or are
joined by an edge, and is said to have the (g, f)-inequality property if the vertex subset
{x|xeV(G) and g(x)< f(x)} is a clique of G (it may be the empty subset). Trivially,
G has the odd-cycle property if G is a bipartite graph. For any nonnegative integer a,
we can also define an (a, f)-factor, an (a, f)-parity factor and the (a, f)-inequality
property similarly as above. Some other definitions and known results related to ours
can be found in [1,2,7,11].

2. Results on (g, f)-factors

The criterion for a general graph to have a (g, f)-factor is due to Lovasz as follows.

Proposition 1 (Lovasz [8]). Let G be a graph, and g, f: V(G)—Z. Then G has a (g, f)-
factor if and only if

88, T)=3 f(5)+ . (d-s(t)—g(1)—hs(S, T)=20

se8 teT

for all S, TS V(G) with SnT=0, where hg (S, T) denotes the number of components C of
G—(SuT) such that g(v)= f(v) for all veV(C) and

JC,Ty= Y fw—es(V(C).T)=1 (mod 2).

veV (C)
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The purpose of this section is to give some conditions which are simpler than that of
Proposition 1 for the existence of a (g, f)-factor in a graph with special properties.

Theorem 1. Let G be a connected graph with the odd-cycle property and g, - V(G)—»Z
satisfy (1) and either (3) or (4). Then G has a (g, f »-factor if

Y6(S, T):= Zf )+ Y. (de-s()—g@)=m

ses teT

for all S, TS V(G) with SA"T=0 and SUT#0, where

1 if G has odd cycles and there exist x,yeV(G)

0= such that g (x)=f(x) and g(y)<f(y)
0 otherwise.

Note that if g(x) < f(x) for all xe V(G), then Proposition 1 implies a stronger result
than that of Theorem 1 since hg (S, T)=0 for all S, T< V(G) with SAT=0 in this case.
So we may consider Theorem 1 with the condition that there exists at least one vertex
x of G such that g(x)= f(x).

Proof of Theorem 1. Let S, T< V(G) with SnT=4. It is sufficient by Proposition 1 to
show that d4(S, 7)=0. By the hypotheses, we may assume that SUT#¢ and
he(S, T)=1. Write U=V(G)—(SuT), and let Cy, ..., C, be the components of G[U].
Then

3(8,1)=Y. f()= ¥ 9O +2|EGIT])|+ec(T,U)—hg(S, T)

seS teT

=Y f)- ) g)+21EGITT)

seS teT
+ ) ﬂ@ he(S,T)

,
(e,
j=1 xeV (Cj)

= Y f-Y (fO+g)+2|E(GLT)

veV (G) teT

- 2 J(C;, T)—he(S,T) )

X Sf)=3 (fO+g()+2|EGLT])

veV(G) teT

- ¥ 4G 1] ©
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Let C=(A, B; E(C)) be a bipartite component of G[U] which is counted in hg(S, T).
Then since f(x)=g(x) for all xe AUB, and E(G[A])= E(G[B])=0, we have by (5) that

06¢(SUB, TUA)—64(S, T)

— Y (f(X) +9(x)+ 2|E(GLAD)| + 2e6 (A, T)

xeAd

+J(C, T)~he(SUB, TUA)+he(S, T)

—2{— Y f(x)+eg(A, T)+[ £ J(C, T)']}( 0 (mod 2)). (7)

xeAd

Clearly, (7) still holds when 4 and B are interchanged. Hence by (7) we obtain that
[06(SUB, TUA)—66(S, T)]+[06(SUA, TUB)—66(S, T)]

=—2 Y f(0)+2e(V(C),T)+4[3J(C.T)]

xeV(C)
=-2J(C,T)+4[3J(C.T)]
=2
since J(C, T) is odd. Combining it with (7), we can claim that either dg(SUB, TUA)<
86(S, T) or 6g(SUA, TUB)<d4(S, T). Therefore, by the odd-cycle property, we can
choose S*, T* < V(G) with S*nT* =@ and S*UT* #0 such that §5(S*, T*)< (S, T),

and hg(S*, T*)< 1 and hg(S*, T*)=1 only if G has odd cycles. Thus it follows from the
hypotheses that

06(S, T)206(S*, T*) 20 —he(8*, T*)= — 1.

Suppose that 34(S, T)= —1, then #, =0 and hg(S*, T*)=1. So we must have that
g(x)= f(x) for all xe V(G) by the definition of , and the choice of (S*, T*). Since in
this case both (3) and the equality in (6) hold, we have d;(S, T)=0 (mod 2), and hence
66(S, T)=0. Thus, the proof is complete. [

Corollary 1.1 (Folkman and Fulkerson [3]). Let G=(X, Y; E(G)) be a bipartite graph
and g, {1 V(G)—~Z satisfy (1). Then G has a (g, f)-factor if and only if

VG(A’ 3)20 and yG(B9 A)>O (8)
for all A= X and BC Y.

Proof. The necessity is trivial. To show the sufficiency, we first note that for any
component C of G, either there exists a vertex v of C such that g(v) < f(v) or

Yoo f= Y f

xeV{(C)nX yeV(C)nY



Factors in graphs with odd-cycle property 33

by setting A=V(C)nX and B=V(C)nY in (8). Thus either (4) or (3) holds for any
component C, and so we may assume that G is connected. Hence it suffices by
Theorem 1 to show that yg(S, T)=>0 for any S, T< V(G) with SnT=0. In fact

76(8, T)=76(8nX, TnY)+76(8SnY, TnX) >0

by (8). Thus, the proof is complete. [J

The following corollary was originally proved by using integer programming
techniques.

Corollary 1.2 (Fulkerson et al. [4]). Let G be a graph with the odd-cycle property and
[:V(G)>Z satisfy (3). Then G has an f-factor if and only if

Y S+ Y do-sO—f(1)=0 ©)

seS teT

for all S, T V(G) with SNT=0.

Proof. The necessity is trivial. To show the sufficiency by using Theorem 1 (with
n, =0), it suffices to show that

Y f()=0 (mod 2) (10)

veV(C)

for any component C of G, by which we may assume that G is connected. In fact, if C is
bipartite, then we obtain (10) from (9) by the same conclusion as used in the proof of
Corollary 1.1; if C is not bipartite, since G has at most one such component, we still
have (10) by the condition (3). [

Theorem 2. Let a be an integer, G be a connected graph with the odd-cycle property, and
[ V(G)—=Z satisfy f(x)za for all xeV(G) and either (3) or f(y)>a for some
yeV(G). Then G has an (a, f )-factor if

1

(@=)g;(G=8)< ), f(x)—m (11)

0 x€eS

a

T

J

for all SSV(G).
Proof. Let S, T7< V(G) with SAT=0 and SUT#0. Put

0="U 0,(6-5)
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Then we have

76(8,T):= Zf(s)'i'Z(dc s(t)—a)

seS teT

23 f+ Y (dg-s(t)—a)

seS teQ

=Y /4 Y (j—@)q,(G—S$)

seS Jj=0
Zm

by (11). So the theorem is proved by Theorem 1. [

Note that Theorem 2 can be strengthened in some cases, in analogy to that of
Theorem 1. For example, if G is a bipartite graph or f(x)=a for all xe V'(G), then (11)
is also a necessary condition, and the connectivity condition of G can be omitted since
11 =0, and it can be showed that either (3) or (4) holds for any component of G in these
cases. In particular, we can obtain from Theorem 2 the following criterion for a graph
with the odd-cycle property to have a 1-factor, which is also an easy consequence of
the theorem due to Tutte [12] that a graph G has a {K ,, C;|j > 3}-factor if and only if
i(G—S)< S| for all SSV(G).

Corollary 2.1. A graph G of even order with the odd-cycle property has a 1-factor if
and only if

i(G—S)< S| for all SSV(G).
Theorem 3. Let G be a connected graph with the odd-cycle property, and g, [ V(G)—2Z

satisfy (1), either (3) or (4), and g(x)<dg(x) and f(x)>0 for all xe V(G). Then G has
a (g, f y-factor if

S))
dG(x) dg(y)

for any two adjacent vertices x and y of G.

(12)

Proof. By Theorem 1, it suffices to show that yg(S, T)=n, for any S, T= V(G) with
SAT=0 and SUT#0. Let C4, ..., C,, be all the components of G—(SuT). Then by
(12) we have that

(8, 7) ZdG

< ) eq(S, T)
seS teT

f() , g(t)
> Y e, s)-m+ Y eG(t,t)(l-—dG(t))

s,s'eS t,t’eT
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N f(s) g(t)
Z[ZeGsVC)d—() Y el tVC))< dG(t)>:|

ses§ teT
S) g(®)
L e g e (110 ) e

22 > [ec(s f) G())+eG(s, 1) <1 —;;%)—ec(s, t)}(),

where for brevity we have written s instead of {s}, etc. Note that y4(S, T)=0 only if
V(G)=S8uT and neither G[S] nor G[T] has an edge, i.e. G is a bipartite graph with
bipartite (S, T). So it follows y4(S, T)=#,. Thus, the theorem is proved. [

Kano and Saito [5] presented that if g(x)< f{x) and g(x)<8dg(x)< f(x) for all
xeV(G), then G has a (g, f)-factor, where # is some real number such that 0<0<1.
Our Corollary 3.1 is a similar result for the special graphs and functions f, g without
the constraint that g(x)< f(x) for all xe V(G), and from the proofs of the next three
theorems we shall see that the result is very useful.

Corollary 3.1. Let G be a connected graph with the odd-cycle property, and
9,1 V(G)—>Z satisfy either (3) or (4). If there exists a real number 0 with 0 <0 <1 such
that

9(x)<0dg(x)< f(x)
for all xeV(G), then G has a (g, f)-factor.

Proof. This is an immediate consequence of Theorem 3. [

Theorem 4. Every r-regular graph G with the odd-cycle property has a k-factor, where
0<k<r and k|V(G)| =0 (mod 2).

Proof. Since G has at most one component which is not bipartite, it is easy to show
that k|V(C)|=0 (mod 2) for each component C of G. Thus we may assume that
0O<k<rand G is connected. Set f=k/r and g(x)= f(x)=k for all xeV(G). Then the
conditions in Corollary 3.1 are satisfied, and so the theorem is proved. [

Before stating the next two theorems, let us recall two definitions. A graph G is
called an [a, b]-graph if a<dg(x)<b for all xe V(G), and said to be [a, b]-factorable if
G can be decomposed into some edge-disjoint [a, b]-factors, where a<b.

Theorem 5. Let G be a graph with the strong odd-cycle property that any two odd cycles
of G have a vertex in common, and k=1 such that k|V(G) =0 (mod 2). Then G is
k-factorable if and only if G is a km-regular graph for some m= 1.
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Proof. The necessity is trivial. We show the sufficiency by induction on m>=2. By
Theorem 4, G has a k-factor F. Then G— E(F) is a k(m— 1)-regular graph having at

most one comnonent which is not binartite. It is easy to see bv the hvnotheses that

210USL QLC VO PO 1 aS 0L paiil 13 Lal L OLL U LU Y pOLIUSUS gl

each component C of G—E(F) also has the strong odd-cycle property and satisfies
k|V(C)|=0 (mod 2). Thus, every C can be decomposed into m—1 k-factors by
induction, and so G can be decomposed into m k-factors. [

Note that Theorem 5 is an extension of the theorem due to Konig [6] that
a bipartite graph is l-factorable if and only if it is regular. Furthermore, if G is
a bipartite graph, then Theorem 5 can be strengthened to give the next result due to
de Werra (see [7]), whose short argument using Corollary 3.1 is given here.

Theorem 6 (D. de Werra). Ler O<<a<b and G be a bipartite graph. Then G is
[a, b]-factorable if and only if G is an [am, bm]-graph for some m> 0.

Proof. The necessity is trivial. Conversely, we shall show the sufficiency by induction
on m. Without loss of generality, we may assume that m>2 and G is connected. Put
8=1/m and define functions g and fon V(G) as follows:

fx)=g(x)=a if dg(x)=am,
fx)—1=gx)=| (I/m)dg(x) | if am<dg(x)<bm,
fx)=g(x)=b if dg(x)=bm,

for all xeV(G). Note that when U:={veV(G}lam<ds(v)<bm}=@, the function
f satisfies (3). In fact, let G=(X, Y; E(G)), and set

={xeX|dg(x)=am} and X,={xeX|dg(x)=bm},
={yeY|dg(y)=am} and Y,={yeYl|ds(y)=bm},
then it is easy to show that
a(| X, |+ Y1)+ b(1 X2 +]Y21)=0 (mod 2).

Thus, the conditions in Corollary 3.1 are satisfied, and so G has a (g, f)-factor F. Put
=G —E(F). We observe that for any veU, it follows that

1
a< n% de(v)<b and a(m—1)< (l —E> dg(v)<b(m—1).
Hence

a1 <%d6(v)— 1< f(0)— 1 =g(0) <dr(®) < f(v)

1
=g(v)+l<%d6(v)+l<b+1



Factors in graphs with odd-cycle property 37

%)
=
(=N

am—1)—1< (1 —;%) de(v) —1<dg(v)—g () — 1 =ds(v) — f(V)<dp (V)

sdG(v)~g(v)=dG(v)—f(v)+1<<1 —%) deg)+1<bm—-1+1.

Therefore, F is an [a, b]-factor and F’ is an [a(m—1),b(m—1)]-factor of G. By
induction, F’ can be decomposed into m— 1 [a, b]-factors, and so G can be decom-
posed into m [a, b]-factors. [

3. Results on (g, f)-parity factors
The criterion for a general graph to have an f-factor was found by Tutte as follows.

Proposition 2 (Tutte [12]). Let G be a graph and - V(G)— Z satisfy (3). Then G has an
Sf-factor if and only if

Y SO+ Y ([do-s()—f(1)—hs(S, T)=0

ses teT
for all S,T<V(G) with SA"T=0, where h(S,T) is the number of components C of
G—(SuT) with

Y. f)—ec(V(C), T)=1 (mod 2).

veV (C)

A similar criterion for a general graph to have a (g, f)-parity factor can be derived
from Proposition 2 or some other results due to Lovasz [10]. That is

Proposition 3 [1,10]). Let G be a graph, and g, f: V(G)—Z satisfy (1), (2) and (3). Then
G has a (g, f)-parity factor if and only if

Y fE)+ Y ([do-s(0—g)—hs(S, T)=0

seS teT

for all S, TSV (G) with SAT=0.

Here we shall present some simpler conditions than that of Proposition 3 for the
existence of a (g, f)-parity factor in a graph with special properties, which are similar
to that given in Theorems 1-3.

Theorem 7. Let G be a connected graph with the odd-cycle and (g, f)-inequality
properties, where g, [:V(G)— Z satisfy (1), (2) and (3). Then G has a (g, f)-parity factor if

768, T)i= 3} [+ Y (dg-s()—g(O)=>n;

seS teT
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for all S, TS V(G) with SAnT=0 and SUT#0, where

1 if G has odd cycles and there exists xeV(G)
Ny = such thar g(x)< f{(x);
0 otherwise.

Proof. We first construct a new graph H from G by joining 1 (f{v) — g(v)) new loops to
each vertex v of G. Then for all ve V(H)=V(G),

dy(v)=dg(v)+ f(v) —g(v). (13)

Clearly, G has a (g, f)-parity factor if and only if H has an f-factor. Thus, it suffices by
Proposition 2 to show that

Ou(S, T):=3 f(9)+ Y (dy_s(®)—f()—hu(S,T)=0
seS teT
for any S,T<V(H) with SnT=0 and SUT#0. Similarly as in the proof of
Theorem 1, we can choose S* T*< V(H) with S*AT*=0 and S*UT*#9 such that
Ou(S*, T*)<dy(S, T) and hiy(S*, T*)<#n,+ 1. Thus, by (13) and the hypotheses, we
have that
Su(S, T)= Y. f()+ Y (du—s=()—f()—hu(S* T*)

seS* teT*

=) [+ Y (de-s<0)—g(®)—n2—1
seS* teT*

=-1,

and hence d(S, T) =0 since it can be shown that 54(S, T)=0 (mod 2) similarly as the
equality in (6). Consequently, the theorem is proved. [J

Corollary 7.1. Let G=(X, Y; E(G)) be a bipartite graph, and g, f: V(G)—Z satisfy (1),
(2) and (3). Suppose that there exists at most one vertex or one pair of adjacent vertices
such that (4) holds. Then G has a (g, f)-parity factor if and only if

v6(4,B)=0 and y(B,A)=0 (14)
for all A= X and BEY.

Proof. The proof is analogous to that of Corollary 1.1 by using Theorem 7 instead of
Theorem 1. [

Note that Corollary 7.1 is sharp in the sense that the condition ‘there exists at most
one vertex or one pair of adjacent vertices such that (4) holds’ cannot be replaced by
that ‘there exist at most two vertices such that (4) holds’. This fact will be shown by the
graph G and the functions g and f given in Fig. 1, where the integers beside
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2,2 0,2
X
- ]
Y
2,2 0,2
Fig. 1.

the vertices v denote g(v) and f(v). Obviously, G has no (g, f)-parity factor, but the
conditions (1), (2), (3) and (14) are satisfied, and G has only two vertices such that (4)
holds.

To end this paper, we finally state another two theorems without proofs since they
can be proved analogously to Theorems 2 and 3 by applying Theorem 7 instead of
Theorem 1.

Theorem 8. Let a be an integer and G be a connected graph with the odd-cycle and
(a, f)-inequality properties, where f:V(G)—Z satisfies (3), and f(x)=a and f(x)=a
(mod 2) for all xeV(G). Then G has an (a, f)-parity factor if

a=1

Z (a—j)g;(G—8)< Z f(x)—n,

j=0 xeS

Jor all S V(G).

Theorem 9. Let G be a connected graph with the odd-cycle and (g, f)-inequality
properties, where g, [+ V(G)—Z satisfy (1), (2), (3) and g(x)<dg(x) and f(x)>0 for all
xeV(G). Then G has a (g, f)-parity factor if

g(x) < S
de(x)  dg(y)

for any two adjacent vertices x and y of G.

Corollary 9.1. Let G be a connected graph with the odd-cycle and (g, f)-inequality
properties, where g, - V(G)— Z satisfy (2) and (3). If there exists a real number 8 with
0<0<1 such that

g(x)<0dg(x) < f(x)
for all xeV(G), then G has a (g, f)-parity factor.
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