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Abstract

Purpose: To determine the feasibility of targeting gene expression specifically to cone photoreceptors using recombinant adeno-asso-
ciated virus (rAAV) as the vector.

Methods: An rAAV vector was constructed that contains a 2.1 kb upstream sequence of the human red opsin gene to direct green
fluorescent protein (GFP) expression. A control construct containing a 472 bp mouse rod opsin promoter, previously shown to drive
photoreceptor-specific expression, was also used. Each recombinant virus was injected into the subretinal space of rat, ferret or guinea
pig eyes. GFP expression was analyzed 4–6 weeks after injection microscopically.

Result: The human 2.1 kb cone opsin gene upstream sequence targeted GFP expression only to a subset of photoreceptors. Cone-spe-
cific expression was shown by co-localization of GFP fluorescence and cone-specific opsin antibody staining. Additionally, in rats,
expression was specific for L/M-cones whereas no S-cones exhibited GFP fluorescence. The efficiency of rAAV mediated cone transduc-
tion surrounding the injection site was high since every L/M-cone antibody-staining cone was also positive for GFP expression.

Conclusion: The human red/green opsin gene promoter used in this study is sufficient to direct efficient cone-specific gene expression in
several mammalian species, suggesting that key cell-type specific regulatory elements must be broadly conserved in mammals. These
observations have significance in devising gene therapy strategies for retinal dystrophies that primarily affect cones and point toward
a way to functionally dissect the cone opsin promoter in vivo.
� 2008 Published by Elsevier Ltd.
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1. Introduction

Old world primates possess trichromatic vision while
new world primates and other mammals are dichromats
(Jacobs, 1993). Although some mammals exhibit a level
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of co-expression, the S (blue), M (green) and L (red) photo-
pigment (cone opsin) genes appear to be expressed mostly
mutually exclusively in each cone photoreceptor, thus
defining three cone subtypes in primates (Schnapf, Kraft,
& Baylor, 1987) and two (L/M and S) cones in other mam-
mals. (Note: to allow cross-reference between human and
other mammalian photopigments, the ‘‘L/M’’ and ‘‘S’’
cone designations in rodents refer to the equivalent human
red/green and blue photopigments, respectively.) Human
red and green cone opsin genes are tandemly arrayed
head-to-tail on the X-chromosome (Feil, Aubourg, Heilig,
& Mandel, 1990) and are highly homologous in sequence
(Nathans, Thomas, & Hogness, 1986). This suggests a
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recent duplication of a common red/green ancestor to cre-
ate separate genes (Ibbotson, Hunt, Bowmaker, & Mollon,
1992; Jacobs & Neitz, 1987). In contrast, the autosomal
blue cone opsin gene diverged over 108 years earlier, before
the vertebrate radiation. The similarity between human red
and green gene sequences extends upstream to about
�195 bp, thus highlighting this small upstream domain to
likely contain important element of the cone promoter.

In the initial sequence analysis and in subsequent trans-
genic mouse assays of cone-promoter function, a highly
conserved 37 bp element was noted at about �3.5 kbp in
the human red opsin gene (Nathans et al., 1986; Wang
et al., 1992). Since a DNA region containing this element
was required in transgenic mice for transgene expression
independent of integration site, it was termed a locus con-
trol region (LCR) according to convention (Kioussis &
Festenstein, 1997). In addition to the LCR, a proximal
region of red or green opsin gene upstream sequences
was also required for measurable expression. When a
human red opsin gene that included the LCR in 9 kbp of
upstream sequence was inserted into transgenic mice,
mouse cones expressed the human transgene at levels
equivalent to the endogenous M opsin gene and the protein
appeared to function normally (Jacobs et al., 1999; Sha-
aban et al., 1998). This suggested that (1) all trans-elements
necessary for cone opsin expression are in sufficient excess
in mouse cones to support transcription from additional
copies of a cone promoter and that (2) mouse trans-ele-
ments can recognize human cone cis-elements. Interest-
ingly, in these transgenic animals the human red
photopigment was not only found in mouse M-cones as
expected, but in S-cones as well. It therefore appears that
either the human red gene does not contain regulatory
regions recognized by mouse cone elements for cone sub-
type restriction or that transgene chromosome position
effects had negated cone subtype restriction in the trans-
genic lines analyzed. Resolve of this issue provided one
impetus to somatically deliver genes regulated by cone-pro-
moter elements in rodent cones.

Another study of cone opsin promoter function
employed a Weri RB cell line to assess patterns of transient
expression (Shaaban & Deeb, 1998). In addition to noting
several fairly ubiquitous SP1 and SP3 sites, one positive-
acting DNA region at �93 to �109 bp that footprinted
with Weri cell nuclear extract exhibited homology to the
rod opsin Ret-1/PCE element (Ahmad, 1995; Morabito,
Yu, & Barnstable, 1991) suggesting interaction with an
RX-like element. Evidence for CRX-like binding was sug-
gestive but less clear and NRL-DNA binding was con-
cluded to be absent. The strongest footprint (�58 to
�80 bp) had about a threefold positive effect in the
in vitro Weri expression assay. A unique core sequence in
this interval is conserved between human red and green
opsin promoters and a homologue can be found in the
human blue opsin promoter as well, prompting the reason-
able suggestion that it may represent a cone-specificity
domain. Unfortunately, this cell culture assay system does
not act entirely cone like. Inclusion of the human cone
LCR in test constructs had no effect on expression effi-
ciency in Weri cells. In view of the LCR’s very strong
cone-specific enhancer effects in transgenic animals (Wang
et al., 1992; Jacobs et al., 1999; Shaaban et al., 1998), this
lack of an effect in cultured cells suggests that in vitro
assay systems may not respond faithfully to important
functional aspects of the cone opsin promoter, a second
reason for developing an in vivo assay of cone-promoter
functions.

Retinal disorders affecting cone photoreceptors, includ-
ing inherited cone dystrophies, cone–rod dystrophies,
rod–cone dystrophies, as well as complex diseases such as
age-related macular degeneration (AMD), severely impair
visions of millions of people in the world, and there is no
effective treatment currently. Recent progress toward safe
and effective retinal gene therapies has focused on recombi-
nant viral gene delivery techniques in three general areas.
(1) Gene augmentation therapy for lack-of-function muta-
tions such as null mutations in the bPDE gene has shown
structural and biochemical rescue in the rd mouse (Bennett
et al., 1996; Takahashi, Miyoshi, Verma, & Gage, 1999).
(2) Allele-specific targeting for dominant-negative muta-
tions, such as anti-P23H rod opsin ribozymes delivered by
recombinant adeno-associated virus preserved photorecep-
tors for more than three months in a transgenic rat model
for P23H RP (LaVail et al., 2000). (3) Neurotrophin gene
therapy using recombinant adenovirus carrying a CNTF
cDNA has lead to structural rescue of photoreceptors for
several months in the rd (Liang et al., 2001) and rds (Ali
et al., 2000) mouse models of RP and in the P23H transgenic
rat model (Bok, Yasumura, Matthes, & Ruiz, 2002). In each,
very encouraging ‘‘proof-of-concept’’ experiments in animal
models of RP have been reported (see Dinculescu, Glushak-
ova, Min, & Hauswirth, 2005 for recent review). Although
this bodes well for degenerative retinal diseases of rods, cone
degeneration due to defects in cone-specific genes have, by
comparison, received little experimental attention, yet they
encompass an important subset of retinal dystrophies. This,
then, provides a third reason: the need for an in vivo assay of
cone-specific promoters.

One logical step toward a remedy for this situation and
possibly aiding in the development of reagents for cone dis-
eases is to identify promoters that will support efficient and
specific expression in cone photoreceptors. We report here
cone-specific expression in rats, ferrets and guinea pigs using
a relatively short promoter element from the human red cone
opsin gene packaged into a recombinant AAV vector.
2. Materials and methods

2.1. Recombinant AAV plasmids

The plasmid pR2.1-LacZ containing the 2.1 kb fragment of the
upstream sequence of human red opsin gene was generously provided
by Dr. J. Nathans. This sequence contains a 1.6 kb BamHI–StuI fragment,
extending from �3.1 to �4.6 kb joined to a proximal promoter of 495 bp
of the human red pigment gene, and was cloned into the SmaI–NcoI
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digested pLacF vector (Wang et al., 1992). The pR2.1-LacZ plasmid was
digested with NcoI which was then blunt ended by a Klenow polymerase
filling reaction and digested with KpnI to release the 2.1 kb fragment. This
fragment was then ligated to a recombinant AAV vector, pTR-UF2, that
had been digested with KpnI and XbaI in which the XbaI site was blunted
by end-filling, to generate plasmid pR2.1-UF2, a cone promoter driving
the GFP gene in an rAAV construct. The control rAAV plasmid mOp-
GFP-rAAV contains a 472 bp proximal promoter of the mouse rod opsin
gene as described previously (Flannery, Zolotukhin, Vaquero, LaVail,
et al., 1997). Plasmid DNA for each construct was isolated using the alka-
line lysis method and purified by equilibrium centrifugation in CsCl-ethi-
dium bromide gradients.

2.2. Packaging of rAAV

The plasmid DNA, pR2.1-UF-2, or mOp-GFP-rAAV was packaged
into recombinant virus by transfection of human 293 cells along with
helper plasmid DNA (pDG) (Grimm, Kern, Rittner, & Kleinschmidt,
1998) using the calcium phosphate method (Zolotukhin, Potter, Haus-
wirth, Guy, & Muzyczka, 1996; Zolotukhin et al., 1999). This helper plas-
mid contains wild type AAV genes encoding REP and CAP proteins, as
well as some early gene product of adenovirus required for packaging
rAAV. The transfected cell cultures were maintained in Dulbecco’s mod-
ified Eagle’s medium (DMEM) supplemented with 10% fetal calf serum in
a 5% CO2 atmosphere at 37 �C and were harvested 48 h after transfection.
The cells were lysed by freeze/thaw three times and the recombinant AAV
particles were purified by iodixanol step gradient centrifugation and con-
centrated through heparin column. The titer of rAAV was determined by
quantitative-competitive PCR (QC-PCR) and infectious center assay
(McLaughlin, Collis, Hermonat, & Muzyczka, 1988).

2.3. Subretinal injection of rAAV

All animals were treated in accordance with federal, state, and local
regulations as well as with the ARVO Statement for the Use of Animals
in Ophthalmic and Vision Research. Adult rats and guinea pigs were anes-
thetized with ketamine/xylazine (1:1 mixture) through intramuscular injec-
tion. The pupils were then dilated with 2.5% of phenylephrine and 1%
atropine followed by administration of topical anesthetic (0.5% propara-
caine HCl) to the cornea. Subretinal injection was performed by inserting
a blunt 32 gauge needle between the retina and retinal pigmented epithe-
lium and injecting 2 ll of the rAAV (5 · 108 infectious units/ml) in rats
and 10 ll in ferrets and guinea pigs under direst visualization using a dis-
secting microscope (Timmers, Zhang, Squitieri, & Gonzalez-Pola, 2001).
Contralateral control eyes were injected with rAAV carrying the same
GFP reporter gene under the control of the mouse proximal rod opsin
gene promoter described above (Flannery et al., 1997).

2.4. Animal tissue preparation

Animals were sacrificed 4–6 weeks after injection and perfused with 4%
of paraformaldehyde/0.1 M phosphate buffer (pH 7.2). The eyes were
immediately removed and fixed by immersing in the same fixative for
two hours at 4 �C after puncturing the cornea to allow penetration of fix-
ative. Following removal of the cornea and lens, eyecups were cryoprotect-
ed in 30% sucrose in PBS for several hours or overnight prior to quick
freezing in optical cutting temperature (OCT) compound and 14 lm thick
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Fig. 1. Schematic diagram of the plasmid constructs used to produce rAAV. (
cassette. (B) Human L/M cone opsin promoter driving GFP (pR2.1-GFP) rA
sections cut at �20 to �22� C. The sections were mounted on gelatin-
coated slides and were either used immediately or stored at �20 �C in
the dark.
2.5. Immunocytochemistry

Cone photoreceptor cells were identified by staining tissue sections
with FITC-conjugated peanut agglutinin (PNA) and cone opsin specific
antibodies. PNA was diluted in PBS according to the instructions of the
supplier (Vector Laboratory, Burlingame, CA). A mouse M-cone opsin
specific monoclonal antibody, COS-1 (Szel et al., 1986), was diluted
10,000· in PBS solution. Polyclonal antibody JH455 against the mouse
blue opsin (kind gift by Dr. Nathans; Chiu & Nathans, 1994) was diluted
5000· in the same buffer. Cryosections were preincubated with blocking
reagent for 30 min at room temperature and then incubated with specific
antibody overnight at 4 �C. After removal of the primary antiserum and
washing with PBS, the sections were incubated with either fluorescein
isothiocyonate (FITC) or CY3-conjugated secondary antibody. Slides
were coverslipped using Pro-long anti-fade mounting medium (Molecular
Probes) and the antibody labeling was examined in a Zeiss microscope
equipped with epifluorescence illumination and a high-resolution digital
camera.

For double labeling studies, sections were incubated with a combined
mixture of the M and S opsin primary antibodies and/or PNA. Separate
images of fluorescein or CY3 fluorescence were captured from the same
local in a section and digitally overlaid. Control experiments without pri-
mary antibody demonstrated that the secondary antibodies did not cross-
react with the inappropriate primary antibodies and that fluorescent sig-
nals did not bleed through the incorrect channel.
3. Results

3.1. A vector for cone photoreceptor-specific gene expression

To construct a recombinant AAV containing the GFP
reporter gene driven by candidate cone-specific promoter,
a 2.1 kb fragment spanning about 4.6 kb upstream of the
human red pigment gene with a 2.5 kb internal deletion
between �3.1 kb and �0.5 kb was inserted into a pTR-
UF2 vector (Zolotukhin et al., 1996) to drive GFP reporter
gene expression. The resulting construct, pR2.1-GFP-UF2
AAV, is shown in Fig. 1A. As a control, the mouse rod
opsin proximal promoter (+86 to �385) was used in the
same vector (Fig. 1B). This promoter has been shown to
drive photoreceptor-specific expression in mice and rats
(Flannery et al., 1997). These constructs were then pack-
aged into rAAV particles by transfecting human 293 cells
along with a helper plasmid which provides all the proteins
required for packaging in trans (Zolotukhin et al., 1996).
The rAAV particles were then purified and titered.

The rAAV was injected into the subretinal space of
adult animals. For each animal, one eye was injected with
TRpA1 Epo Ptk neor TRpA1 Epo Ptk neor

TRpA1 Epo Ptk neor TRpA1 Epo Ptk neor

A) Mouse rod opsin proximal promoter driving GFP (mOps-GFP) rAAV
AV cassette.
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the cone-promoter driving GFP-AAV and the other was
injected with the control vector (mouse rod opsin proximal
promoter driving GFP-AAV). Injected eyes were removed
after 4–6 weeks and the retinas fixed and dissected free of
RPE and vitreous. Initially, GFP fluorescence was visual-
Fig. 2. GFP reporter gene expression in photoreceptor cells of rats and ferre
control rAAV containing a mouse rod opsin promoter. (B) GFP expression in
GFP expression in photoreceptors of ferret retina injected with pR2.1-GFP rA
photoreceptors of ferret retina injected with pR2.1-GFP rAAV. (E and F) PNA
(G) COS-1 monoclonal antibody (L/M cone-specific) staining of the transverse
retina sections expressing GFP.
ized directly from agarose embedded retina sections using
an epifluorescence microscope. For subsequent immuno-
staining and photographing, GFP antibody (Clontech)
was employed and subsequently detected using fluorescent
dye-conjugated secondary antibody. Fig. 2A shows an
ts. (A) GFP expression in rod photoreceptors of rat retina injected with
photoreceptors of rat retina injected with pR2.1-GFP rAAV. (C and D)

AV-lower magnification of 2 continuous fields showing GFP expression in
staining of all the cone types in rats in GFP expressed photoreceptor cells.

section that expressing GFP. (H) Blue cone specific antibody staining of the
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example of GFP expression in rod photoreceptors of rat
retina injected with control AAV containing mouse rod
opsin proximal promoter driving GFP. Panel B show
examples of GFP expression in the rat retina (Fig. 2B)
and ferret retina (Fig. 2C and D) that had been injected
with the pR2.1-GFP-rAAV. The region of GFP-positive
photoreceptors extended more than half the retina, equiva-
lent to the transduced area previously noted for the rod
promoter (Flannery et al., 1997). GFP protein is localized
to the inner segment, cell body and synapse of photorecep-
tor cells, as expected for a cytoplasmic protein (Fig. 2B).
The frequency of GFP-positive photoreceptors however is
markedly lower than when the rod opsin promoter vector
was used (compare Fig. 2B with Fig. 2A). Approximately
one in 50 photoreceptor cells supported GFP expression
with the cone opsin promoter. Additionally, a clear gradi-
ent in the frequency of transduced cells exists in that near
the injection site, the transduction efficiency is much higher
than in areas more distal to the injection site. A similar
result was obtained when adult ferrets were inoculated with
the cone opsin promoter vector.

3.2. Identification of the cone subtype expressing GFP

Recent studies have shown the presence of two photopic
spectral sensitivities and at least two cone types in a num-
ber of rodent species by immunocytochemical studies using
cone-specific visual pigment antibodies (Szel et al., 1986;
Govardovskii, Rohlich, Szel, & Khokhlova, 1992; Szel,
Diamantstein, & Rohlich, 1988; Szel & Rohlich, 1992; Szel
et al., 1992). Clearly the density of cones relative to rods
and the ratio and topographic distribution of the two types
of cones are different among different species (Govardov-
skii, Rohlich, Szel, & Khokhlova, 1992; Szel et al., 1988;
Szel et al.,1992). One cone subtype which was recognized
by monoclonal antibody specific to middle-to-long wave-
length-sensitive visual pigments, contains a visual pigment
that is highly homologous to red and green pigments of pri-
mates. The other subtype which was recognized by anti-
body specific to the visual pigment sensitive to short
wavelengths, contains a visual pigment highly homologous
to blue pigment of primates (Szel et al., 1986).

To further confirm that the GFP expressing cells in
Fig. 2B are indeed cones, we performed immunocytochem-
istry using cone opsin specific antibodies and peanut agglu-
tinin (PNA). PNA labels the matrix sheath of all subtypes
of cone photoreceptors, as well as the outer and inner seg-
ment of L/M-cone photoreceptors in rodents. Fig. 2E and
F shows examples of PNA and GFP antibody double label-
ing results from two different injected rat retinas. In this
case, GFP-positive cells are visualized by CY3-conjugated
secondary antibody, and cones by FITC-conjugated
PNA. It is clear that the GFP was expressed in the same
cone photoreceptors labeled by PNA but in different com-
partment. To identify the subtypes of these GFP expressing
cone photoreceptors, L/M-cone opsin and S-cone opsin
specific antibodies were used. Examples of the double label-
ing of GFP antibody and L/M-cone opsin, and S-cone
opsin specific antibodies are shown in Fig. 2G and H,
respectively. In this case, GFP-positive cells are green,
and cone opsin specific antibody labeled cells are visualized
by Cy3-conjugated secondary antibody, and therefore red.
GFP obviously was expressed in the same photoreceptors
that are labeled by L/M-cone opsin specific antibody
COS-1 (Fig. 2G), but not in cones that are labeled by S-
cone opsin specific antibody JH455 (Fig. 2H) (Chiu &
Nathans, 1994). Therefore these GFP-positive cells are
cone photoreceptors, indicating that this 2.1 kb human
red/green opsin promoter directed L/M cone-specific
expression in rat retinas. Additionally every COS-1 positive
cone also showed GFP fluorescence as shown in Fig. 2G,
indicating that the transduction efficiency of cone photore-
ceptor cells by rAAV is very high in the area surrounding
the injection site. The different subcellular sites of green
fluorescent and antibody-staining signals are clear, indicat-
ing that each protein is expressed in the different compart-
ment of the same cone photoreceptor as expected. Opsin
protein is localized in the outer segment while the GFP
protein is expressed and remains localized in the inner seg-
ment of the cone photoreceptor as noted previously for
rods (Flannery et al., 1997).

4. Discussion

Effective gene therapy of inherited retinal degenerations
depends on a safe and efficient gene delivery system to tar-
get the specific cell types affected by the causative muta-
tions. Recombinant AAV vectors provide many
advantages over other viral vectors in their broad host
range (Buller, Straus, & Rose, 1979; Casto, Armstrong,
Atchison, & Hammon, 1967), their ability to infect both
mitotic and post-mitotic growth-arrested cells at high effi-
ciency, their ability to accept non-viral regulatory
sequences without interference from the packaged viral
sequences, and the lack of any associated human disease
(Berns & Giraud, 1995). The specificity of targeting to a
particular cell type thus is determined by the functionality
of the cell-type specific promoter and the site of
inoculation.

The results presented here demonstrate several features
of the human cone opsin promoter with regard to its ther-
apeutic potential. First, 2.1 kb of the human red/green
opsin gene upstream sequence is sufficient to target cone
photoreceptor-specific expression of the reporter gene in
rats and guinea pigs (data not shown) using recombinant
AAV as a vector through subretinal injections. This regu-
latory sequence extends to �4.6 kb upstream of the
human red pigment gene and contains a 2.5 kb internal
deletion spanning the region from �3.1 to �0.5 kb. Thus
the promoter used contains a proximal (495 bp) and an
upstream domain from �3.1 to �4.6. This upstream
domain contains a locus control region (LCR) that is
essential for expression of both red and green pigment
genes in human and is highly conserved among human,
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cow, and rats (Wang et al., 1992). It is interesting that
even though non-primate mammals have only a single
copy of the visual pigment gene, they retain a LCR
domain homologous to that of the red/green pigments
of human. Second, the expression of the GFP reporter
gene is cone specific as demonstrated by cone-specific
antibody co-localization. It is interesting to note that this
2.1 kb human red/green opsin gene promoter is capable of
directing L/M-cone, but not S-cone-specific reporter gene
expression in rats. This is different from the observation
by Wang et al. (Wang et al., 1992) in which the same
2.1 kb human red/green opsin gene promoter has been
shown to direct reporter gene expression in both L/M-
and S-cone photoreceptors in transgenic mice. Such dis-
crepancy could be due to the species difference. It has
been shown that the rat retina contains less than 1% cone
photoreceptors, the majority of which (93%) are L/M-
cones, and the distribution of the two cone types is nearly
uniform throughout the rat retina (Szel & Rohlich, 1992).
However in the mouse retina, cone photoreceptors, which
make up about 3% of all photoreceptors, follow an
uneven distribution in which the L/M-cones exist exclu-
sively in the dorsal half of the mouse retina, while most
S-cones occupy the ventral half with a small number scat-
tered among the L/M-cones in the dorsal retina (Szel
et al., 1992). It could also be due to the different experi-
mental procedures. In transgenic mice, the reporter gene
expression could have different patterns of tissue and
developmental stage-specific expression due to random
integration of target gene with different copy number,
whereas in our rAAV mediated delivery system, the repor-
ter gene expression is not influenced by chromosomal
structure. It is also possible that different serotypes of
AAV also have different trophisms for different cell types,
independent of promoter used. In this experiment, we
used serotype 2, but recently we and other groups (unpub-
lished and personal communications) have found that ser-
otypes 5 and 9 transduce photoreceptor and RPE much
more efficiently. We have not compared different sero-
types with this particular promoter construct and we do
not know with higher transduction efficiency for photore-
ceptor with AAV5 and AAV9, whether this promoter
supports reporter gene expression in S-cone also.

Cone-specific expression of GFP driven by a human red/
green pigment gene promoter in rats and guinea pigs indi-
cates that this promoter is also functional in this species
despite the significant differences in color vision perception
and significant divergence between the two species. This
suggests that many of the key regulatory elements for pho-
toreceptor-specific gene expression are broadly conserved
in mammals. Third, the efficiency of transduction of cone
photoreceptor cells surrounding the injection site is very
high, as demonstrated by the fact that every COS-1 anti-
body-staining cone is also positive for GFP expression near
the injected area of the retina. This implies that high effi-
cient transduction may also be achievable in the cone-rich
macula of primates.
In conclusion, we have shown that cone photoreceptor
cells can be specifically targeted at high efficiency by using
a human promoter of the red/green pigment genes medi-
ated by rAAV and delivered via subretinal injections. This
has significant implications for the therapy of retinal
degenerations that primarily affect cone photoreceptors.
These include macular degeneration, cone dystrophies,
and cone–rod dystrophies as well as the later stages of ret-
initis pigmentosa in which cone photoreceptors also degen-
erate in response to loss of rod photoreceptors. In addition,
this rAAV mediated photoreceptor-specific gene delivery
system should provide a direct in vivo functional assay sys-
tem for identifying important cis-regulatory elements in
cones. Understanding the regulatory mechanisms that con-
trol which cell or cells express a particular retinal gene at
specific levels is key to developing an efficient and safe ret-
inal gene therapy.
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